Carbon nanotube-based three-dimensional monolithic optoelectronic integrated system View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-06-08

AUTHORS

Yang Liu, Sheng Wang, Huaping Liu, Lian-Mao Peng

ABSTRACT

Single material-based monolithic optoelectronic integration with complementary metal oxide semiconductor-compatible signal processing circuits is one of the most pursued approaches in the post-Moore era to realize rapid data communication and functional diversification in a limited three-dimensional space. Here, we report an electrically driven carbon nanotube-based on-chip three-dimensional optoelectronic integrated circuit. We demonstrate that photovoltaic receivers, electrically driven transmitters and on-chip electronic circuits can all be fabricated using carbon nanotubes via a complementary metal oxide semiconductor-compatible low-temperature process, providing a seamless integration platform for realizing monolithic three-dimensional optoelectronic integrated circuits with diversified functionality such as the heterogeneous AND gates. These circuits can be vertically scaled down to sub-30 nm and operates in photovoltaic mode at room temperature. Parallel optical communication between functional layers, for example, bottom-layer digital circuits and top-layer memory, has been demonstrated by mapping data using a 2 × 2 transmitter/receiver array, which could be extended as the next generation energy-efficient signal processing paradigm. More... »

PAGES

15649

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ncomms15649

DOI

http://dx.doi.org/10.1038/ncomms15649

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085932088

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28593946


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "Key Laboratory for the Physics and Chemistry of Nanodevices and Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Yang", 
        "id": "sg:person.014545003741.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014545003741.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Sheng", 
        "id": "sg:person.0752733733.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752733733.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Collaborative Innovation Center of Quantum Matter", 
          "id": "https://www.grid.ac/institutes/grid.495569.2", 
          "name": [
            "Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China", 
            "Collaborative Innovation Center of Quantum Matter, Beijing 100190, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Huaping", 
        "id": "sg:person.01242156312.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242156312.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "Key Laboratory for the Physics and Chemistry of Nanodevices and Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China", 
            "Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peng", 
        "givenName": "Lian-Mao", 
        "id": "sg:person.010515521607.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010515521607.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nphoton.2010.189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003312402", 
          "https://doi.org/10.1038/nphoton.2010.189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/59/5/002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004477180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2014.215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008640603", 
          "https://doi.org/10.1038/nnano.2014.215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011326097", 
          "https://doi.org/10.1038/nature12502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/lsa.2015.131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011685170", 
          "https://doi.org/10.1038/lsa.2015.131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adom.201500529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012316848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2007.84", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013020154", 
          "https://doi.org/10.1038/nphoton.2007.84"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013150355", 
          "https://doi.org/10.1038/nature10067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.041402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016472637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.041402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016472637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2014.73", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016539442", 
          "https://doi.org/10.1038/nphoton.2014.73"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2016.70", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019620357", 
          "https://doi.org/10.1038/nphoton.2016.70"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/530144a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025242731", 
          "https://doi.org/10.1038/530144a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1086534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025758199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.257402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030065881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.257402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030065881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature16454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030858133", 
          "https://doi.org/10.1038/nature16454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1369-7021(06)71574-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034347623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl500693x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035030788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2007.300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035164187", 
          "https://doi.org/10.1038/nnano.2007.300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mattod.2014.07.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036315826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2014.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037290326", 
          "https://doi.org/10.1038/nphoton.2014.1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adom.201500237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039395401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn503046y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040858109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2004.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045780530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1369-7021(06)71652-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046839390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2008/807457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049173971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2008.94", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051376546", 
          "https://doi.org/10.1038/nphoton.2008.94"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2011.250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052639497", 
          "https://doi.org/10.1038/nphoton.2011.250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2015.318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053037908", 
          "https://doi.org/10.1038/nnano.2015.318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl080814u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056217772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl080814u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056217772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl101513z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056218004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl101513z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056218004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl203270b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056218965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl501124s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056220761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl502534j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056220945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2808754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057870688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.93946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058134085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jproc.2009.2014298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061297026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mc.2015.376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061389249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1132394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062454715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iedm.2012.6479162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094330973"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-06-08", 
    "datePublishedReg": "2017-06-08", 
    "description": "Single material-based monolithic optoelectronic integration with complementary metal oxide semiconductor-compatible signal processing circuits is one of the most pursued approaches in the post-Moore era to realize rapid data communication and functional diversification in a limited three-dimensional space. Here, we report an electrically driven carbon nanotube-based on-chip three-dimensional optoelectronic integrated circuit. We demonstrate that photovoltaic receivers, electrically driven transmitters and on-chip electronic circuits can all be fabricated using carbon nanotubes via a complementary metal oxide semiconductor-compatible low-temperature process, providing a seamless integration platform for realizing monolithic three-dimensional optoelectronic integrated circuits with diversified functionality such as the heterogeneous AND gates. These circuits can be vertically scaled down to sub-30\u2009nm and operates in photovoltaic mode at room temperature. Parallel optical communication between functional layers, for example, bottom-layer digital circuits and top-layer memory, has been demonstrated by mapping data using a 2 \u00d7 2 transmitter/receiver array, which could be extended as the next generation energy-efficient signal processing paradigm.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ncomms15649", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "type": "Periodical"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Carbon nanotube-based three-dimensional monolithic optoelectronic integrated system", 
    "pagination": "15649", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "362e80417f88ad43ce1d8600dfd6b8fcd186a7fae0873529c139400d7e8d9beb"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28593946"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101528555"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ncomms15649"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085932088"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ncomms15649", 
      "https://app.dimensions.ai/details/publication/pub.1085932088"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000608.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/ncomms15649"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms15649'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms15649'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms15649'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms15649'


 

This table displays all metadata directly associated to this object as RDF triples.

223 TRIPLES      21 PREDICATES      66 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ncomms15649 schema:about anzsrc-for:09
2 anzsrc-for:0906
3 schema:author Ned49112c4aa14973982f8fa9ce827ade
4 schema:citation sg:pub.10.1038/530144a
5 sg:pub.10.1038/lsa.2015.131
6 sg:pub.10.1038/nature10067
7 sg:pub.10.1038/nature12502
8 sg:pub.10.1038/nature16454
9 sg:pub.10.1038/nnano.2007.300
10 sg:pub.10.1038/nnano.2014.215
11 sg:pub.10.1038/nnano.2015.318
12 sg:pub.10.1038/nphoton.2007.84
13 sg:pub.10.1038/nphoton.2008.94
14 sg:pub.10.1038/nphoton.2010.189
15 sg:pub.10.1038/nphoton.2011.250
16 sg:pub.10.1038/nphoton.2014.1
17 sg:pub.10.1038/nphoton.2014.73
18 sg:pub.10.1038/nphoton.2016.70
19 https://doi.org/10.1002/adom.201500237
20 https://doi.org/10.1002/adom.201500529
21 https://doi.org/10.1016/j.mattod.2014.07.008
22 https://doi.org/10.1016/j.physrep.2004.10.006
23 https://doi.org/10.1016/s1369-7021(06)71574-7
24 https://doi.org/10.1016/s1369-7021(06)71652-2
25 https://doi.org/10.1021/nl080814u
26 https://doi.org/10.1021/nl101513z
27 https://doi.org/10.1021/nl203270b
28 https://doi.org/10.1021/nl500693x
29 https://doi.org/10.1021/nl501124s
30 https://doi.org/10.1021/nl502534j
31 https://doi.org/10.1021/nn503046y
32 https://doi.org/10.1063/1.2808754
33 https://doi.org/10.1063/1.93946
34 https://doi.org/10.1088/0034-4885/59/5/002
35 https://doi.org/10.1103/physrevb.93.041402
36 https://doi.org/10.1103/physrevlett.92.257402
37 https://doi.org/10.1109/iedm.2012.6479162
38 https://doi.org/10.1109/jproc.2009.2014298
39 https://doi.org/10.1109/mc.2015.376
40 https://doi.org/10.1126/science.1086534
41 https://doi.org/10.1126/science.1132394
42 https://doi.org/10.1155/2008/807457
43 schema:datePublished 2017-06-08
44 schema:datePublishedReg 2017-06-08
45 schema:description Single material-based monolithic optoelectronic integration with complementary metal oxide semiconductor-compatible signal processing circuits is one of the most pursued approaches in the post-Moore era to realize rapid data communication and functional diversification in a limited three-dimensional space. Here, we report an electrically driven carbon nanotube-based on-chip three-dimensional optoelectronic integrated circuit. We demonstrate that photovoltaic receivers, electrically driven transmitters and on-chip electronic circuits can all be fabricated using carbon nanotubes via a complementary metal oxide semiconductor-compatible low-temperature process, providing a seamless integration platform for realizing monolithic three-dimensional optoelectronic integrated circuits with diversified functionality such as the heterogeneous AND gates. These circuits can be vertically scaled down to sub-30 nm and operates in photovoltaic mode at room temperature. Parallel optical communication between functional layers, for example, bottom-layer digital circuits and top-layer memory, has been demonstrated by mapping data using a 2 × 2 transmitter/receiver array, which could be extended as the next generation energy-efficient signal processing paradigm.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree true
49 schema:isPartOf Nc536399b118c4bcca69803655a96fb03
50 sg:journal.1043282
51 schema:name Carbon nanotube-based three-dimensional monolithic optoelectronic integrated system
52 schema:pagination 15649
53 schema:productId N1b813334f58a4560991f65d4883758d6
54 N83ed4c1f492449e4809ecda5e54f2d58
55 Na6c347a59d734f6daa810e3f01b4af05
56 Nf946a5cf2eea4d3b861247a4be4072aa
57 Nfba530a4dba24cc0af0b53b56128c374
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085932088
59 https://doi.org/10.1038/ncomms15649
60 schema:sdDatePublished 2019-04-10T16:56
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N9d242407bd664a029142f2fb87691a46
63 schema:url http://www.nature.com/articles/ncomms15649
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N1b813334f58a4560991f65d4883758d6 schema:name dimensions_id
68 schema:value pub.1085932088
69 rdf:type schema:PropertyValue
70 N5dccacfa70c844a886be94b60c416753 rdf:first sg:person.010515521607.58
71 rdf:rest rdf:nil
72 N83ed4c1f492449e4809ecda5e54f2d58 schema:name readcube_id
73 schema:value 362e80417f88ad43ce1d8600dfd6b8fcd186a7fae0873529c139400d7e8d9beb
74 rdf:type schema:PropertyValue
75 N9d242407bd664a029142f2fb87691a46 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 Na6c347a59d734f6daa810e3f01b4af05 schema:name pubmed_id
78 schema:value 28593946
79 rdf:type schema:PropertyValue
80 Nb8f0abb087014815a5ffca23d780bfe0 rdf:first sg:person.01242156312.46
81 rdf:rest N5dccacfa70c844a886be94b60c416753
82 Nc536399b118c4bcca69803655a96fb03 schema:volumeNumber 8
83 rdf:type schema:PublicationVolume
84 Ncd58d95f82454b4d9bb7ebbfe2dfa069 rdf:first sg:person.0752733733.34
85 rdf:rest Nb8f0abb087014815a5ffca23d780bfe0
86 Ned49112c4aa14973982f8fa9ce827ade rdf:first sg:person.014545003741.93
87 rdf:rest Ncd58d95f82454b4d9bb7ebbfe2dfa069
88 Nf946a5cf2eea4d3b861247a4be4072aa schema:name doi
89 schema:value 10.1038/ncomms15649
90 rdf:type schema:PropertyValue
91 Nfba530a4dba24cc0af0b53b56128c374 schema:name nlm_unique_id
92 schema:value 101528555
93 rdf:type schema:PropertyValue
94 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
95 schema:name Engineering
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
98 schema:name Electrical and Electronic Engineering
99 rdf:type schema:DefinedTerm
100 sg:journal.1043282 schema:issn 2041-1723
101 schema:name Nature Communications
102 rdf:type schema:Periodical
103 sg:person.010515521607.58 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
104 schema:familyName Peng
105 schema:givenName Lian-Mao
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010515521607.58
107 rdf:type schema:Person
108 sg:person.01242156312.46 schema:affiliation https://www.grid.ac/institutes/grid.495569.2
109 schema:familyName Liu
110 schema:givenName Huaping
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242156312.46
112 rdf:type schema:Person
113 sg:person.014545003741.93 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
114 schema:familyName Liu
115 schema:givenName Yang
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014545003741.93
117 rdf:type schema:Person
118 sg:person.0752733733.34 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
119 schema:familyName Wang
120 schema:givenName Sheng
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752733733.34
122 rdf:type schema:Person
123 sg:pub.10.1038/530144a schema:sameAs https://app.dimensions.ai/details/publication/pub.1025242731
124 https://doi.org/10.1038/530144a
125 rdf:type schema:CreativeWork
126 sg:pub.10.1038/lsa.2015.131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011685170
127 https://doi.org/10.1038/lsa.2015.131
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/nature10067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013150355
130 https://doi.org/10.1038/nature10067
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/nature12502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011326097
133 https://doi.org/10.1038/nature12502
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/nature16454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030858133
136 https://doi.org/10.1038/nature16454
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/nnano.2007.300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035164187
139 https://doi.org/10.1038/nnano.2007.300
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/nnano.2014.215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008640603
142 https://doi.org/10.1038/nnano.2014.215
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/nnano.2015.318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053037908
145 https://doi.org/10.1038/nnano.2015.318
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/nphoton.2007.84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013020154
148 https://doi.org/10.1038/nphoton.2007.84
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/nphoton.2008.94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051376546
151 https://doi.org/10.1038/nphoton.2008.94
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/nphoton.2010.189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003312402
154 https://doi.org/10.1038/nphoton.2010.189
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/nphoton.2011.250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052639497
157 https://doi.org/10.1038/nphoton.2011.250
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/nphoton.2014.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037290326
160 https://doi.org/10.1038/nphoton.2014.1
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/nphoton.2014.73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016539442
163 https://doi.org/10.1038/nphoton.2014.73
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nphoton.2016.70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019620357
166 https://doi.org/10.1038/nphoton.2016.70
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1002/adom.201500237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039395401
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1002/adom.201500529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012316848
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.mattod.2014.07.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036315826
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.physrep.2004.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045780530
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/s1369-7021(06)71574-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034347623
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/s1369-7021(06)71652-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046839390
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1021/nl080814u schema:sameAs https://app.dimensions.ai/details/publication/pub.1056217772
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1021/nl101513z schema:sameAs https://app.dimensions.ai/details/publication/pub.1056218004
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1021/nl203270b schema:sameAs https://app.dimensions.ai/details/publication/pub.1056218965
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1021/nl500693x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035030788
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1021/nl501124s schema:sameAs https://app.dimensions.ai/details/publication/pub.1056220761
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1021/nl502534j schema:sameAs https://app.dimensions.ai/details/publication/pub.1056220945
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1021/nn503046y schema:sameAs https://app.dimensions.ai/details/publication/pub.1040858109
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1063/1.2808754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057870688
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1063/1.93946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058134085
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1088/0034-4885/59/5/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004477180
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1103/physrevb.93.041402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016472637
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1103/physrevlett.92.257402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030065881
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1109/iedm.2012.6479162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094330973
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1109/jproc.2009.2014298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061297026
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1109/mc.2015.376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061389249
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1126/science.1086534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025758199
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1126/science.1132394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062454715
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1155/2008/807457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049173971
215 rdf:type schema:CreativeWork
216 https://www.grid.ac/institutes/grid.11135.37 schema:alternateName Peking University
217 schema:name Key Laboratory for the Physics and Chemistry of Nanodevices and Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
218 Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China
219 rdf:type schema:Organization
220 https://www.grid.ac/institutes/grid.495569.2 schema:alternateName Collaborative Innovation Center of Quantum Matter
221 schema:name Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
222 Collaborative Innovation Center of Quantum Matter, Beijing 100190, China
223 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...