Direct observation of coherent energy transfer in nonlinear micromechanical oscillators View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-05-26

AUTHORS

Changyao Chen, Damián H Zanette, David A Czaplewski, Steven Shaw, Daniel López

ABSTRACT

Energy dissipation is an unavoidable phenomenon of physical systems that are directly coupled to an external environmental bath. In an oscillatory system, it leads to the decay of the oscillation amplitude. In situations where stable oscillations are required, the energy dissipated by the vibrations is usually compensated by replenishment from external energy sources. Consequently, if the external energy supply is removed, the amplitude of oscillations start to decay immediately, since there is no means to restitute the energy dissipated. Here, we demonstrate a novel dissipation engineering strategy that can support stable oscillations without supplying external energy to compensate losses. The fundamental intrinsic mechanism of resonant mode coupling is used to redistribute and store mechanical energy among vibrational modes and coherently transfer it back to the principal mode when the external excitation is off. To experimentally demonstrate this phenomenon, we exploit the nonlinear dynamic response of microelectromechanical oscillators to couple two different vibrational modes through an internal resonance. More... »

PAGES

15523

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ncomms15523

DOI

http://dx.doi.org/10.1038/ncomms15523

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085598757

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28548088


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1116", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical Physiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Argonne National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.187073.a", 
          "name": [
            "Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Changyao", 
        "id": "sg:person.014142177201.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014142177201.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bariloche Atomic Centre", 
          "id": "https://www.grid.ac/institutes/grid.418211.f", 
          "name": [
            "Centro At\u00f3mico Bariloche and Instituto Balseiro, Comisi\u00f3n Nacional de Energ\u00eda At\u00f3mica. Consejo Nacional de Investigaciones Cient\u00edficas y T\u00e9cnicas. 8400 San Carlos de Bariloche, R\u00edo Negro, Argentina."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zanette", 
        "givenName": "Dami\u00e1n H", 
        "id": "sg:person.0673125037.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673125037.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Argonne National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.187073.a", 
          "name": [
            "Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Czaplewski", 
        "givenName": "David A", 
        "id": "sg:person.01022512773.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022512773.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Florida Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.255966.b", 
          "name": [
            "Department of Mechanical and Aerospace Engineering, Florida Institute of Technology, 150 West University Bolevard., Melbourne, Florida 32901, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shaw", 
        "givenName": "Steven", 
        "id": "sg:person.016303032223.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016303032223.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Argonne National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.187073.a", 
          "name": [
            "Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "L\u00f3pez", 
        "givenName": "Daniel", 
        "id": "sg:person.01353520516.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353520516.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevx.6.021001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008099031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.6.021001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008099031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.145503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013203478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.145503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013203478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.061102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013799887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.061102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013799887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-9130-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015327143", 
          "https://doi.org/10.1007/978-1-4020-9130-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1015327143", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jmems.2016.2529296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016094006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016300003", 
          "https://doi.org/10.1038/nature10261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mcas.2010.936282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017860195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0960-1317/22/1/013001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020575013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021423602", 
          "https://doi.org/10.1038/nature08524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021423602", 
          "https://doi.org/10.1038/nature08524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2016.19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021997272", 
          "https://doi.org/10.1038/nnano.2016.19"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2014.168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022128873", 
          "https://doi.org/10.1038/nnano.2014.168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022844542", 
          "https://doi.org/10.1038/nphys2277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.207204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024389897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.207204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024389897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.080601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030697570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.080601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030697570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.050402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035709528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.050402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035709528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjst/e2015-02594-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040693772", 
          "https://doi.org/10.1140/epjst/e2015-02594-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2015-60517-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043163102", 
          "https://doi.org/10.1140/epjb/e2015-60517-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.1978.4309986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048930074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2008.125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049855538", 
          "https://doi.org/10.1038/nnano.2008.125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051232255", 
          "https://doi.org/10.1038/ncomms1813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.2014.0408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051701693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4894417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058092255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.147202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060765342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.147202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060765342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.117.017203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060765856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.117.017203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060765856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/50.762910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061183367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jmems.2014.2374451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061291650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jproc.2013.2253291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061297789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3153771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062104212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1119/1.15272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062233423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1195596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062462775"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-05-26", 
    "datePublishedReg": "2017-05-26", 
    "description": "Energy dissipation is an unavoidable phenomenon of physical systems that are directly coupled to an external environmental bath. In an oscillatory system, it leads to the decay of the oscillation amplitude. In situations where stable oscillations are required, the energy dissipated by the vibrations is usually compensated by replenishment from external energy sources. Consequently, if the external energy supply is removed, the amplitude of oscillations start to decay immediately, since there is no means to restitute the energy dissipated. Here, we demonstrate a novel dissipation engineering strategy that can support stable oscillations without supplying external energy to compensate losses. The fundamental intrinsic mechanism of resonant mode coupling is used to redistribute and store mechanical energy among vibrational modes and coherently transfer it back to the principal mode when the external excitation is off. To experimentally demonstrate this phenomenon, we exploit the nonlinear dynamic response of microelectromechanical oscillators to couple two different vibrational modes through an internal resonance.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ncomms15523", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5063335", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "type": "Periodical"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Direct observation of coherent energy transfer in nonlinear micromechanical oscillators", 
    "pagination": "15523", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b97be21fdd68c3307389d3d64fea1a3a41b065f7f4e53369b811165bda807e22"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28548088"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101528555"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ncomms15523"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085598757"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ncomms15523", 
      "https://app.dimensions.ai/details/publication/pub.1085598757"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000578.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/ncomms/2017/170526/ncomms15523/full/ncomms15523.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms15523'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms15523'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms15523'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms15523'


 

This table displays all metadata directly associated to this object as RDF triples.

203 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ncomms15523 schema:about anzsrc-for:11
2 anzsrc-for:1116
3 schema:author N1e1461c48f0a4d98914a892dba6703bf
4 schema:citation sg:pub.10.1007/978-1-4020-9130-8
5 sg:pub.10.1038/nature08524
6 sg:pub.10.1038/nature10261
7 sg:pub.10.1038/ncomms1813
8 sg:pub.10.1038/nnano.2008.125
9 sg:pub.10.1038/nnano.2014.168
10 sg:pub.10.1038/nnano.2016.19
11 sg:pub.10.1038/nphys2277
12 sg:pub.10.1140/epjb/e2015-60517-3
13 sg:pub.10.1140/epjst/e2015-02594-4
14 https://app.dimensions.ai/details/publication/pub.1015327143
15 https://doi.org/10.1063/1.4894417
16 https://doi.org/10.1088/0960-1317/22/1/013001
17 https://doi.org/10.1098/rsta.2014.0408
18 https://doi.org/10.1103/physrevlett.102.080601
19 https://doi.org/10.1103/physrevlett.103.207204
20 https://doi.org/10.1103/physrevlett.112.145503
21 https://doi.org/10.1103/physrevlett.116.061102
22 https://doi.org/10.1103/physrevlett.116.147202
23 https://doi.org/10.1103/physrevlett.117.017203
24 https://doi.org/10.1103/physrevlett.91.050402
25 https://doi.org/10.1103/physrevx.6.021001
26 https://doi.org/10.1109/50.762910
27 https://doi.org/10.1109/jmems.2014.2374451
28 https://doi.org/10.1109/jmems.2016.2529296
29 https://doi.org/10.1109/jproc.2013.2253291
30 https://doi.org/10.1109/mcas.2010.936282
31 https://doi.org/10.1109/tsmc.1978.4309986
32 https://doi.org/10.1115/1.3153771
33 https://doi.org/10.1119/1.15272
34 https://doi.org/10.1126/science.1195596
35 schema:datePublished 2017-05-26
36 schema:datePublishedReg 2017-05-26
37 schema:description Energy dissipation is an unavoidable phenomenon of physical systems that are directly coupled to an external environmental bath. In an oscillatory system, it leads to the decay of the oscillation amplitude. In situations where stable oscillations are required, the energy dissipated by the vibrations is usually compensated by replenishment from external energy sources. Consequently, if the external energy supply is removed, the amplitude of oscillations start to decay immediately, since there is no means to restitute the energy dissipated. Here, we demonstrate a novel dissipation engineering strategy that can support stable oscillations without supplying external energy to compensate losses. The fundamental intrinsic mechanism of resonant mode coupling is used to redistribute and store mechanical energy among vibrational modes and coherently transfer it back to the principal mode when the external excitation is off. To experimentally demonstrate this phenomenon, we exploit the nonlinear dynamic response of microelectromechanical oscillators to couple two different vibrational modes through an internal resonance.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree true
41 schema:isPartOf Nfdfad9ee07ee43d281d7135146eed6ff
42 sg:journal.1043282
43 schema:name Direct observation of coherent energy transfer in nonlinear micromechanical oscillators
44 schema:pagination 15523
45 schema:productId N11f2f79774394655b57b5833e42c4c33
46 N1377c1af67004dacbe006a287121ea0f
47 N8131acbcb2184ae78f148a1946059a86
48 Nc6329d542cea43548c030aaa5f156b91
49 Nd0ce1e55c33b4042b5064988456ddf00
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085598757
51 https://doi.org/10.1038/ncomms15523
52 schema:sdDatePublished 2019-04-10T14:20
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher Nfb74db71bc454e8fab590785e8471f8f
55 schema:url http://www.nature.com/ncomms/2017/170526/ncomms15523/full/ncomms15523.html
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N11200c8d816a49a0bffbcdf824143a92 rdf:first sg:person.0673125037.10
60 rdf:rest N89c3ee0a77a44864b2e8b776774d2475
61 N11f2f79774394655b57b5833e42c4c33 schema:name readcube_id
62 schema:value b97be21fdd68c3307389d3d64fea1a3a41b065f7f4e53369b811165bda807e22
63 rdf:type schema:PropertyValue
64 N1377c1af67004dacbe006a287121ea0f schema:name doi
65 schema:value 10.1038/ncomms15523
66 rdf:type schema:PropertyValue
67 N1e1461c48f0a4d98914a892dba6703bf rdf:first sg:person.014142177201.88
68 rdf:rest N11200c8d816a49a0bffbcdf824143a92
69 N6a68d9a7b5e347d7b63e7e1231ddefa1 rdf:first sg:person.01353520516.62
70 rdf:rest rdf:nil
71 N8131acbcb2184ae78f148a1946059a86 schema:name dimensions_id
72 schema:value pub.1085598757
73 rdf:type schema:PropertyValue
74 N89c3ee0a77a44864b2e8b776774d2475 rdf:first sg:person.01022512773.77
75 rdf:rest N995e368abc5944dfabd350224dec2310
76 N995e368abc5944dfabd350224dec2310 rdf:first sg:person.016303032223.67
77 rdf:rest N6a68d9a7b5e347d7b63e7e1231ddefa1
78 Nc6329d542cea43548c030aaa5f156b91 schema:name nlm_unique_id
79 schema:value 101528555
80 rdf:type schema:PropertyValue
81 Nd0ce1e55c33b4042b5064988456ddf00 schema:name pubmed_id
82 schema:value 28548088
83 rdf:type schema:PropertyValue
84 Nfb74db71bc454e8fab590785e8471f8f schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 Nfdfad9ee07ee43d281d7135146eed6ff schema:volumeNumber 8
87 rdf:type schema:PublicationVolume
88 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
89 schema:name Medical and Health Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:1116 schema:inDefinedTermSet anzsrc-for:
92 schema:name Medical Physiology
93 rdf:type schema:DefinedTerm
94 sg:grant.5063335 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms15523
95 rdf:type schema:MonetaryGrant
96 sg:journal.1043282 schema:issn 2041-1723
97 schema:name Nature Communications
98 rdf:type schema:Periodical
99 sg:person.01022512773.77 schema:affiliation https://www.grid.ac/institutes/grid.187073.a
100 schema:familyName Czaplewski
101 schema:givenName David A
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022512773.77
103 rdf:type schema:Person
104 sg:person.01353520516.62 schema:affiliation https://www.grid.ac/institutes/grid.187073.a
105 schema:familyName López
106 schema:givenName Daniel
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353520516.62
108 rdf:type schema:Person
109 sg:person.014142177201.88 schema:affiliation https://www.grid.ac/institutes/grid.187073.a
110 schema:familyName Chen
111 schema:givenName Changyao
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014142177201.88
113 rdf:type schema:Person
114 sg:person.016303032223.67 schema:affiliation https://www.grid.ac/institutes/grid.255966.b
115 schema:familyName Shaw
116 schema:givenName Steven
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016303032223.67
118 rdf:type schema:Person
119 sg:person.0673125037.10 schema:affiliation https://www.grid.ac/institutes/grid.418211.f
120 schema:familyName Zanette
121 schema:givenName Damián H
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673125037.10
123 rdf:type schema:Person
124 sg:pub.10.1007/978-1-4020-9130-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015327143
125 https://doi.org/10.1007/978-1-4020-9130-8
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/nature08524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021423602
128 https://doi.org/10.1038/nature08524
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/nature10261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016300003
131 https://doi.org/10.1038/nature10261
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/ncomms1813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051232255
134 https://doi.org/10.1038/ncomms1813
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/nnano.2008.125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049855538
137 https://doi.org/10.1038/nnano.2008.125
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/nnano.2014.168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022128873
140 https://doi.org/10.1038/nnano.2014.168
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/nnano.2016.19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021997272
143 https://doi.org/10.1038/nnano.2016.19
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/nphys2277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022844542
146 https://doi.org/10.1038/nphys2277
147 rdf:type schema:CreativeWork
148 sg:pub.10.1140/epjb/e2015-60517-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043163102
149 https://doi.org/10.1140/epjb/e2015-60517-3
150 rdf:type schema:CreativeWork
151 sg:pub.10.1140/epjst/e2015-02594-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040693772
152 https://doi.org/10.1140/epjst/e2015-02594-4
153 rdf:type schema:CreativeWork
154 https://app.dimensions.ai/details/publication/pub.1015327143 schema:CreativeWork
155 https://doi.org/10.1063/1.4894417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058092255
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1088/0960-1317/22/1/013001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020575013
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1098/rsta.2014.0408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051701693
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevlett.102.080601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030697570
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevlett.103.207204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024389897
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrevlett.112.145503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013203478
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevlett.116.061102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013799887
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevlett.116.147202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060765342
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrevlett.117.017203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060765856
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrevlett.91.050402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035709528
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrevx.6.021001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008099031
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1109/50.762910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061183367
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1109/jmems.2014.2374451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061291650
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1109/jmems.2016.2529296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016094006
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1109/jproc.2013.2253291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061297789
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1109/mcas.2010.936282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017860195
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1109/tsmc.1978.4309986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048930074
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1115/1.3153771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062104212
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1119/1.15272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062233423
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1126/science.1195596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062462775
194 rdf:type schema:CreativeWork
195 https://www.grid.ac/institutes/grid.187073.a schema:alternateName Argonne National Laboratory
196 schema:name Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA.
197 rdf:type schema:Organization
198 https://www.grid.ac/institutes/grid.255966.b schema:alternateName Florida Institute of Technology
199 schema:name Department of Mechanical and Aerospace Engineering, Florida Institute of Technology, 150 West University Bolevard., Melbourne, Florida 32901, USA.
200 rdf:type schema:Organization
201 https://www.grid.ac/institutes/grid.418211.f schema:alternateName Bariloche Atomic Centre
202 schema:name Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energía Atómica. Consejo Nacional de Investigaciones Científicas y Técnicas. 8400 San Carlos de Bariloche, Río Negro, Argentina.
203 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...