Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-05-26

AUTHORS

Daniel Huber, Marcus Reindl, Yongheng Huo, Huiying Huang, Johannes S. Wildmann, Oliver G. Schmidt, Armando Rastelli, Rinaldo Trotta

ABSTRACT

The development of scalable sources of non-classical light is fundamental to unlocking the technological potential of quantum photonics. Semiconductor quantum dots are emerging as near-optimal sources of indistinguishable single photons. However, their performance as sources of entangled-photon pairs are still modest compared to parametric down converters. Photons emitted from conventional Stranski–Krastanov InGaAs quantum dots have shown non-optimal levels of entanglement and indistinguishability. For quantum networks, both criteria must be met simultaneously. Here, we show that this is possible with a system that has received limited attention so far: GaAs quantum dots. They can emit triggered polarization-entangled photons with high purity (g(2)(0) = 0.002±0.002), high indistinguishability (0.93±0.07 for 2 ns pulse separation) and high entanglement fidelity (0.94±0.01). Our results show that GaAs might be the material of choice for quantum-dot entanglement sources in future quantum technologies. More... »

PAGES

15506

References to SciGraph publications

  • 2016-09-29. Solid-state single-photon emitters in NATURE PHOTONICS
  • 2013-05-22. Nuclear spin effects in semiconductor quantum dots in NATURE MATERIALS
  • 2013-07-23. Bonding them all in NATURE MATERIALS
  • 2015-01-07. Room-Temperature Single-photon level Memory for Polarization States in SCIENTIFIC REPORTS
  • 2002-10. Indistinguishable photons from a single-photon device in NATURE
  • 2008-06-18. The quantum internet in NATURE
  • 2016-01-27. Wavelength-tunable sources of entangled photons interfaced with atomic vapours in NATURE COMMUNICATIONS
  • 2001-11. Long-distance quantum communication with atomic ensembles and linear optics in NATURE
  • 2014-10-31. Observation of strongly entangled photon pairs from a nanowire quantum dot in NATURE COMMUNICATIONS
  • 2014-02-28. Push-button photon entanglement in NATURE PHOTONICS
  • 2014-02-05. Deterministic and electrically tunable bright single-photon source in NATURE COMMUNICATIONS
  • 2016-03-07. Near-optimal single-photon sources in the solid state in NATURE PHOTONICS
  • 2016-09-12. Quantum dot spin coherence governed by a strained nuclear environment in NATURE COMMUNICATIONS
  • 2013-11-17. A light-hole exciton in a quantum dot in NATURE PHYSICS
  • 2014-08-24. Manipulation of the nuclear spin ensemble in a quantum dot with chirped magnetic resonance pulses in NATURE NANOTECHNOLOGY
  • 2014-02-16. On-demand generation of indistinguishable polarization-entangled photon pairs in NATURE PHOTONICS
  • 2010-07. Ultrabright source of entangled photon pairs in NATURE
  • 2013-07-28. Charge noise and spin noise in a semiconductor quantum device in NATURE PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/ncomms15506

    DOI

    http://dx.doi.org/10.1038/ncomms15506

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1085599339

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28548081


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Optical Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Quantum Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Semiconductor and Solid State Physics, Johannes Kepler University, Altenbergerstra\u00dfe 69, 4040, Linz, Austria", 
              "id": "http://www.grid.ac/institutes/grid.9970.7", 
              "name": [
                "Institute of Semiconductor and Solid State Physics, Johannes Kepler University, Altenbergerstra\u00dfe 69, 4040, Linz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huber", 
            "givenName": "Daniel", 
            "id": "sg:person.01001046347.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001046347.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Semiconductor and Solid State Physics, Johannes Kepler University, Altenbergerstra\u00dfe 69, 4040, Linz, Austria", 
              "id": "http://www.grid.ac/institutes/grid.9970.7", 
              "name": [
                "Institute of Semiconductor and Solid State Physics, Johannes Kepler University, Altenbergerstra\u00dfe 69, 4040, Linz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Reindl", 
            "givenName": "Marcus", 
            "id": "sg:person.01200755301.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200755301.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CAS-Alibaba Quantum Computing Laboratory, USTC Shanghai, 201315, Shanghai, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Institute of Semiconductor and Solid State Physics, Johannes Kepler University, Altenbergerstra\u00dfe 69, 4040, Linz, Austria", 
                "Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstra\u00dfe 20, 01069, Dresden, Germany", 
                "Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China", 
                "CAS-Alibaba Quantum Computing Laboratory, USTC Shanghai, 201315, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huo", 
            "givenName": "Yongheng", 
            "id": "sg:person.01011201664.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011201664.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Semiconductor and Solid State Physics, Johannes Kepler University, Altenbergerstra\u00dfe 69, 4040, Linz, Austria", 
              "id": "http://www.grid.ac/institutes/grid.9970.7", 
              "name": [
                "Institute of Semiconductor and Solid State Physics, Johannes Kepler University, Altenbergerstra\u00dfe 69, 4040, Linz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huang", 
            "givenName": "Huiying", 
            "id": "sg:person.016305312507.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016305312507.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Semiconductor and Solid State Physics, Johannes Kepler University, Altenbergerstra\u00dfe 69, 4040, Linz, Austria", 
              "id": "http://www.grid.ac/institutes/grid.9970.7", 
              "name": [
                "Institute of Semiconductor and Solid State Physics, Johannes Kepler University, Altenbergerstra\u00dfe 69, 4040, Linz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wildmann", 
            "givenName": "Johannes S.", 
            "id": "sg:person.0775312306.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775312306.71"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstra\u00dfe 20, 01069, Dresden, Germany", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstra\u00dfe 20, 01069, Dresden, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schmidt", 
            "givenName": "Oliver G.", 
            "id": "sg:person.01273116456.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273116456.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Semiconductor and Solid State Physics, Johannes Kepler University, Altenbergerstra\u00dfe 69, 4040, Linz, Austria", 
              "id": "http://www.grid.ac/institutes/grid.9970.7", 
              "name": [
                "Institute of Semiconductor and Solid State Physics, Johannes Kepler University, Altenbergerstra\u00dfe 69, 4040, Linz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rastelli", 
            "givenName": "Armando", 
            "id": "sg:person.0575504076.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0575504076.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Semiconductor and Solid State Physics, Johannes Kepler University, Altenbergerstra\u00dfe 69, 4040, Linz, Austria", 
              "id": "http://www.grid.ac/institutes/grid.9970.7", 
              "name": [
                "Institute of Semiconductor and Solid State Physics, Johannes Kepler University, Altenbergerstra\u00dfe 69, 4040, Linz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Trotta", 
            "givenName": "Rinaldo", 
            "id": "sg:person.01352244164.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352244164.00"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/ncomms4240", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030547687", 
              "https://doi.org/10.1038/ncomms4240"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys2799", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025585076", 
              "https://doi.org/10.1038/nphys2799"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2016.186", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020983585", 
              "https://doi.org/10.1038/nphoton.2016.186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2014.175", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035765226", 
              "https://doi.org/10.1038/nnano.2014.175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35106500", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023270335", 
              "https://doi.org/10.1038/35106500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3715", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030085943", 
              "https://doi.org/10.1038/nmat3715"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep07658", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028397221", 
              "https://doi.org/10.1038/srep07658"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017984816", 
              "https://doi.org/10.1038/nature07127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2016.23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022498351", 
              "https://doi.org/10.1038/nphoton.2016.23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2014.29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014304062", 
              "https://doi.org/10.1038/nphoton.2014.29"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049170231", 
              "https://doi.org/10.1038/nature09148"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys2688", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028162800", 
              "https://doi.org/10.1038/nphys2688"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms10375", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053568343", 
              "https://doi.org/10.1038/ncomms10375"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2013.377", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007548071", 
              "https://doi.org/10.1038/nphoton.2013.377"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms12745", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026463503", 
              "https://doi.org/10.1038/ncomms12745"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3652", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001349362", 
              "https://doi.org/10.1038/nmat3652"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01086", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016707465", 
              "https://doi.org/10.1038/nature01086"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms6298", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004004560", 
              "https://doi.org/10.1038/ncomms6298"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-05-26", 
        "datePublishedReg": "2017-05-26", 
        "description": "The development of scalable sources of non-classical light is fundamental to unlocking the technological potential of quantum photonics. Semiconductor quantum dots are emerging as near-optimal sources of indistinguishable single photons. However, their performance as sources of entangled-photon pairs are still modest compared to parametric down converters. Photons emitted from conventional Stranski\u2013Krastanov InGaAs quantum dots have shown non-optimal levels of entanglement and indistinguishability. For quantum networks, both criteria must be met simultaneously. Here, we show that this is possible with a system that has received limited attention so far: GaAs quantum dots. They can emit triggered polarization-entangled photons with high purity (g(2)(0) = 0.002\u00b10.002), high indistinguishability (0.93\u00b10.07 for 2\u2009ns pulse separation) and high entanglement fidelity (0.94\u00b10.01). Our results show that GaAs might be the material of choice for quantum-dot entanglement sources in future quantum technologies.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/ncomms15506", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3807855", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5494452", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7579288", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "8"
          }
        ], 
        "keywords": [
          "GaAs quantum dots", 
          "quantum dots", 
          "indistinguishable single photons", 
          "non-classical light", 
          "future quantum technologies", 
          "high entanglement fidelity", 
          "polarization-entangled photons", 
          "InGaAs quantum dots", 
          "semiconductor quantum dots", 
          "quantum photonics", 
          "high indistinguishability", 
          "quantum technologies", 
          "entanglement source", 
          "quantum networks", 
          "single photons", 
          "photon pairs", 
          "entanglement fidelity", 
          "photons", 
          "dots", 
          "material of choice", 
          "indistinguishability", 
          "technological potential", 
          "scalable source", 
          "photonics", 
          "entanglement", 
          "GaAs", 
          "source", 
          "light", 
          "high purity", 
          "fidelity", 
          "non-optimal levels", 
          "pairs", 
          "purity", 
          "materials", 
          "potential", 
          "system", 
          "converter", 
          "results", 
          "technology", 
          "optimal source", 
          "performance", 
          "choice", 
          "attention", 
          "levels", 
          "development", 
          "network", 
          "criteria", 
          "limited attention"
        ], 
        "name": "Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots", 
        "pagination": "15506", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1085599339"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/ncomms15506"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28548081"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/ncomms15506", 
          "https://app.dimensions.ai/details/publication/pub.1085599339"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:06", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_737.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/ncomms15506"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms15506'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms15506'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms15506'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms15506'


     

    This table displays all metadata directly associated to this object as RDF triples.

    246 TRIPLES      21 PREDICATES      92 URIs      65 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/ncomms15506 schema:about anzsrc-for:02
    2 anzsrc-for:0205
    3 anzsrc-for:0206
    4 schema:author N5d31c36fc7574c2ba82c3c1287909285
    5 schema:citation sg:pub.10.1038/35106500
    6 sg:pub.10.1038/nature01086
    7 sg:pub.10.1038/nature07127
    8 sg:pub.10.1038/nature09148
    9 sg:pub.10.1038/ncomms10375
    10 sg:pub.10.1038/ncomms12745
    11 sg:pub.10.1038/ncomms4240
    12 sg:pub.10.1038/ncomms6298
    13 sg:pub.10.1038/nmat3652
    14 sg:pub.10.1038/nmat3715
    15 sg:pub.10.1038/nnano.2014.175
    16 sg:pub.10.1038/nphoton.2013.377
    17 sg:pub.10.1038/nphoton.2014.29
    18 sg:pub.10.1038/nphoton.2016.186
    19 sg:pub.10.1038/nphoton.2016.23
    20 sg:pub.10.1038/nphys2688
    21 sg:pub.10.1038/nphys2799
    22 sg:pub.10.1038/srep07658
    23 schema:datePublished 2017-05-26
    24 schema:datePublishedReg 2017-05-26
    25 schema:description The development of scalable sources of non-classical light is fundamental to unlocking the technological potential of quantum photonics. Semiconductor quantum dots are emerging as near-optimal sources of indistinguishable single photons. However, their performance as sources of entangled-photon pairs are still modest compared to parametric down converters. Photons emitted from conventional Stranski–Krastanov InGaAs quantum dots have shown non-optimal levels of entanglement and indistinguishability. For quantum networks, both criteria must be met simultaneously. Here, we show that this is possible with a system that has received limited attention so far: GaAs quantum dots. They can emit triggered polarization-entangled photons with high purity (g(2)(0) = 0.002±0.002), high indistinguishability (0.93±0.07 for 2 ns pulse separation) and high entanglement fidelity (0.94±0.01). Our results show that GaAs might be the material of choice for quantum-dot entanglement sources in future quantum technologies.
    26 schema:genre article
    27 schema:isAccessibleForFree true
    28 schema:isPartOf N4bd795b9024143d882d5402e00140973
    29 Ncfb1540c0f5c421ba4dcd9332b69e854
    30 sg:journal.1043282
    31 schema:keywords GaAs
    32 GaAs quantum dots
    33 InGaAs quantum dots
    34 attention
    35 choice
    36 converter
    37 criteria
    38 development
    39 dots
    40 entanglement
    41 entanglement fidelity
    42 entanglement source
    43 fidelity
    44 future quantum technologies
    45 high entanglement fidelity
    46 high indistinguishability
    47 high purity
    48 indistinguishability
    49 indistinguishable single photons
    50 levels
    51 light
    52 limited attention
    53 material of choice
    54 materials
    55 network
    56 non-classical light
    57 non-optimal levels
    58 optimal source
    59 pairs
    60 performance
    61 photon pairs
    62 photonics
    63 photons
    64 polarization-entangled photons
    65 potential
    66 purity
    67 quantum dots
    68 quantum networks
    69 quantum photonics
    70 quantum technologies
    71 results
    72 scalable source
    73 semiconductor quantum dots
    74 single photons
    75 source
    76 system
    77 technological potential
    78 technology
    79 schema:name Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots
    80 schema:pagination 15506
    81 schema:productId N74ca536ad2f64043b3ef176eb391f4ec
    82 N7ff1bbdfef69421095f57ba4eefbe224
    83 Nbb0837e80f274fdf93e5bf7458ce4b77
    84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085599339
    85 https://doi.org/10.1038/ncomms15506
    86 schema:sdDatePublished 2022-08-04T17:06
    87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    88 schema:sdPublisher N009c39e282734f5e9bc5f1d40ff2590b
    89 schema:url https://doi.org/10.1038/ncomms15506
    90 sgo:license sg:explorer/license/
    91 sgo:sdDataset articles
    92 rdf:type schema:ScholarlyArticle
    93 N009c39e282734f5e9bc5f1d40ff2590b schema:name Springer Nature - SN SciGraph project
    94 rdf:type schema:Organization
    95 N4841d081fb18441f89ae5e5207a950e3 rdf:first sg:person.01273116456.30
    96 rdf:rest N79b295ff1a794fa8aedf1c94a3560b31
    97 N4bd795b9024143d882d5402e00140973 schema:issueNumber 1
    98 rdf:type schema:PublicationIssue
    99 N5d31c36fc7574c2ba82c3c1287909285 rdf:first sg:person.01001046347.52
    100 rdf:rest Na5061fc453f04b8c8daa52f8647e555d
    101 N6ca122dcf46d4c899b2b0ddefef8d36d rdf:first sg:person.01352244164.00
    102 rdf:rest rdf:nil
    103 N74ca536ad2f64043b3ef176eb391f4ec schema:name pubmed_id
    104 schema:value 28548081
    105 rdf:type schema:PropertyValue
    106 N79b295ff1a794fa8aedf1c94a3560b31 rdf:first sg:person.0575504076.38
    107 rdf:rest N6ca122dcf46d4c899b2b0ddefef8d36d
    108 N7ff1bbdfef69421095f57ba4eefbe224 schema:name dimensions_id
    109 schema:value pub.1085599339
    110 rdf:type schema:PropertyValue
    111 N87a9ac1bc47542e3b8a303d6f09708bf rdf:first sg:person.01011201664.38
    112 rdf:rest Nec04060d65174becaf943c5df6517bda
    113 Na5061fc453f04b8c8daa52f8647e555d rdf:first sg:person.01200755301.48
    114 rdf:rest N87a9ac1bc47542e3b8a303d6f09708bf
    115 Nbb0837e80f274fdf93e5bf7458ce4b77 schema:name doi
    116 schema:value 10.1038/ncomms15506
    117 rdf:type schema:PropertyValue
    118 Ncfb1540c0f5c421ba4dcd9332b69e854 schema:volumeNumber 8
    119 rdf:type schema:PublicationVolume
    120 Nec04060d65174becaf943c5df6517bda rdf:first sg:person.016305312507.13
    121 rdf:rest Nfd561c1f187f4c67953910d50a3cc3cc
    122 Nfd561c1f187f4c67953910d50a3cc3cc rdf:first sg:person.0775312306.71
    123 rdf:rest N4841d081fb18441f89ae5e5207a950e3
    124 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    125 schema:name Physical Sciences
    126 rdf:type schema:DefinedTerm
    127 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
    128 schema:name Optical Physics
    129 rdf:type schema:DefinedTerm
    130 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
    131 schema:name Quantum Physics
    132 rdf:type schema:DefinedTerm
    133 sg:grant.3807855 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms15506
    134 rdf:type schema:MonetaryGrant
    135 sg:grant.5494452 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms15506
    136 rdf:type schema:MonetaryGrant
    137 sg:grant.7579288 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms15506
    138 rdf:type schema:MonetaryGrant
    139 sg:journal.1043282 schema:issn 2041-1723
    140 schema:name Nature Communications
    141 schema:publisher Springer Nature
    142 rdf:type schema:Periodical
    143 sg:person.01001046347.52 schema:affiliation grid-institutes:grid.9970.7
    144 schema:familyName Huber
    145 schema:givenName Daniel
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001046347.52
    147 rdf:type schema:Person
    148 sg:person.01011201664.38 schema:affiliation grid-institutes:None
    149 schema:familyName Huo
    150 schema:givenName Yongheng
    151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011201664.38
    152 rdf:type schema:Person
    153 sg:person.01200755301.48 schema:affiliation grid-institutes:grid.9970.7
    154 schema:familyName Reindl
    155 schema:givenName Marcus
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200755301.48
    157 rdf:type schema:Person
    158 sg:person.01273116456.30 schema:affiliation grid-institutes:None
    159 schema:familyName Schmidt
    160 schema:givenName Oliver G.
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273116456.30
    162 rdf:type schema:Person
    163 sg:person.01352244164.00 schema:affiliation grid-institutes:grid.9970.7
    164 schema:familyName Trotta
    165 schema:givenName Rinaldo
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352244164.00
    167 rdf:type schema:Person
    168 sg:person.016305312507.13 schema:affiliation grid-institutes:grid.9970.7
    169 schema:familyName Huang
    170 schema:givenName Huiying
    171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016305312507.13
    172 rdf:type schema:Person
    173 sg:person.0575504076.38 schema:affiliation grid-institutes:grid.9970.7
    174 schema:familyName Rastelli
    175 schema:givenName Armando
    176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0575504076.38
    177 rdf:type schema:Person
    178 sg:person.0775312306.71 schema:affiliation grid-institutes:grid.9970.7
    179 schema:familyName Wildmann
    180 schema:givenName Johannes S.
    181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775312306.71
    182 rdf:type schema:Person
    183 sg:pub.10.1038/35106500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023270335
    184 https://doi.org/10.1038/35106500
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1038/nature01086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016707465
    187 https://doi.org/10.1038/nature01086
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1038/nature07127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017984816
    190 https://doi.org/10.1038/nature07127
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1038/nature09148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049170231
    193 https://doi.org/10.1038/nature09148
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1038/ncomms10375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053568343
    196 https://doi.org/10.1038/ncomms10375
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/ncomms12745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026463503
    199 https://doi.org/10.1038/ncomms12745
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/ncomms4240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030547687
    202 https://doi.org/10.1038/ncomms4240
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1038/ncomms6298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004004560
    205 https://doi.org/10.1038/ncomms6298
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/nmat3652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001349362
    208 https://doi.org/10.1038/nmat3652
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/nmat3715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030085943
    211 https://doi.org/10.1038/nmat3715
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/nnano.2014.175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035765226
    214 https://doi.org/10.1038/nnano.2014.175
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1038/nphoton.2013.377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007548071
    217 https://doi.org/10.1038/nphoton.2013.377
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1038/nphoton.2014.29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014304062
    220 https://doi.org/10.1038/nphoton.2014.29
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/nphoton.2016.186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020983585
    223 https://doi.org/10.1038/nphoton.2016.186
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1038/nphoton.2016.23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022498351
    226 https://doi.org/10.1038/nphoton.2016.23
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1038/nphys2688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028162800
    229 https://doi.org/10.1038/nphys2688
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1038/nphys2799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025585076
    232 https://doi.org/10.1038/nphys2799
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1038/srep07658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028397221
    235 https://doi.org/10.1038/srep07658
    236 rdf:type schema:CreativeWork
    237 grid-institutes:None schema:alternateName CAS-Alibaba Quantum Computing Laboratory, USTC Shanghai, 201315, Shanghai, China
    238 Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstraße 20, 01069, Dresden, Germany
    239 schema:name CAS-Alibaba Quantum Computing Laboratory, USTC Shanghai, 201315, Shanghai, China
    240 Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China
    241 Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstraße 20, 01069, Dresden, Germany
    242 Institute of Semiconductor and Solid State Physics, Johannes Kepler University, Altenbergerstraße 69, 4040, Linz, Austria
    243 rdf:type schema:Organization
    244 grid-institutes:grid.9970.7 schema:alternateName Institute of Semiconductor and Solid State Physics, Johannes Kepler University, Altenbergerstraße 69, 4040, Linz, Austria
    245 schema:name Institute of Semiconductor and Solid State Physics, Johannes Kepler University, Altenbergerstraße 69, 4040, Linz, Austria
    246 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...