Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-05-17

AUTHORS

Jian Zhang, Tao Wang, Pan Liu, Zhongquan Liao, Shaohua Liu, Xiaodong Zhuang, Mingwei Chen, Ehrenfried Zschech, Xinliang Feng

ABSTRACT

Various platinum-free electrocatalysts have been explored for hydrogen evolution reaction in acidic solutions. However, in economical water-alkali electrolysers, sluggish water dissociation kinetics (Volmer step) on platinum-free electrocatalysts results in poor hydrogen-production activities. Here we report a MoNi4 electrocatalyst supported by MoO2 cuboids on nickel foam (MoNi4/MoO2@Ni), which is constructed by controlling the outward diffusion of nickel atoms on annealing precursor NiMoO4 cuboids on nickel foam. Experimental and theoretical results confirm that a rapid Tafel-step-decided hydrogen evolution proceeds on MoNi4 electrocatalyst. As a result, the MoNi4 electrocatalyst exhibits zero onset overpotential, an overpotential of 15 mV at 10 mA cm−2 and a low Tafel slope of 30 mV per decade in 1 M potassium hydroxide electrolyte, which are comparable to the results for platinum and superior to those for state-of-the-art platinum-free electrocatalysts. Benefiting from its scalable preparation and stability, the MoNi4 electrocatalyst is promising for practical water-alkali electrolysers. More... »

PAGES

15437

References to SciGraph publications

  • 2016-10-18. Ultrasmall and phase-pure W2C nanoparticles for efficient electrocatalytic and photoelectrochemical hydrogen evolution in NATURE COMMUNICATIONS
  • 2004-07. Studies of the Hydrogen Evolution Reaction on Raney Nickel—Molybdenum Electrodes in JOURNAL OF APPLIED ELECTROCHEMISTRY
  • 2016-07-27. Pentlandite rocks as sustainable and stable efficient electrocatalysts for hydrogen generation in NATURE COMMUNICATIONS
  • 2016-02-10. Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis in NATURE COMMUNICATIONS
  • 2015-08-07. Molecular metal–Nx centres in porous carbon for electrocatalytic hydrogen evolution in NATURE COMMUNICATIONS
  • 2015-09-14. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide in NATURE MATERIALS
  • 2016-04-01. Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution in NATURE COMMUNICATIONS
  • 2016-09-12. Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene in NATURE ENERGY
  • 2012-05-06. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts in NATURE MATERIALS
  • 2016-03-14. Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide in NATURE MATERIALS
  • 2014-08-22. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis in NATURE COMMUNICATIONS
  • 2006-10-15. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution in NATURE MATERIALS
  • 2015-11-09. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies in NATURE MATERIALS
  • 2016-04-29. Gold-supported cerium-doped NiOx catalysts for water oxidation in NATURE ENERGY
  • 2015-08-19. Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water in NATURE COMMUNICATIONS
  • 2016-09-16. Efficient hydrogen evolution by ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam in NATURE COMMUNICATIONS
  • 2015-11-30. Design of active and stable Co–Mo–Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction in NATURE MATERIALS
  • 2015-03-11. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production in NATURE COMMUNICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/ncomms15437

    DOI

    http://dx.doi.org/10.1038/ncomms15437

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1085428587

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28513620


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Center for Advancing Electronics Dresden (Cfaed) and Department of Chemistry and Food Chemistry, Technische Universitaet Dresden, 01062, Dresden, Germany", 
              "id": "http://www.grid.ac/institutes/grid.4488.0", 
              "name": [
                "Center for Advancing Electronics Dresden (Cfaed) and Department of Chemistry and Food Chemistry, Technische Universitaet Dresden, 01062, Dresden, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Jian", 
            "id": "sg:person.013716304017.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013716304017.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Univ Lyon, Ens de Lyon, CNRS, Universit\u00e9 Lyon 1, Laboratoire de Chimie, UMR 5182, F-69342, Lyon, France", 
              "id": "http://www.grid.ac/institutes/grid.463879.7", 
              "name": [
                "Univ Lyon, Ens de Lyon, CNRS, Universit\u00e9 Lyon 1, Laboratoire de Chimie, UMR 5182, F-69342, Lyon, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Tao", 
            "id": "sg:person.01054603405.89", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054603405.89"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CREST, JST, 4-1-8 Honcho Kawaguchi, 332-0012, Saitama, Japan", 
              "id": "http://www.grid.ac/institutes/grid.419082.6", 
              "name": [
                "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan", 
                "CREST, JST, 4-1-8 Honcho Kawaguchi, 332-0012, Saitama, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Pan", 
            "id": "sg:person.0700644400.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700644400.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fraunhofer Institute for Ceramic Technologies and Systems (IKTS), 01109, Dresden, Germany", 
              "id": "http://www.grid.ac/institutes/grid.461622.5", 
              "name": [
                "Fraunhofer Institute for Ceramic Technologies and Systems (IKTS), 01109, Dresden, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liao", 
            "givenName": "Zhongquan", 
            "id": "sg:person.0740231111.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740231111.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Advancing Electronics Dresden (Cfaed) and Department of Chemistry and Food Chemistry, Technische Universitaet Dresden, 01062, Dresden, Germany", 
              "id": "http://www.grid.ac/institutes/grid.4488.0", 
              "name": [
                "Center for Advancing Electronics Dresden (Cfaed) and Department of Chemistry and Food Chemistry, Technische Universitaet Dresden, 01062, Dresden, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Shaohua", 
            "id": "sg:person.01043365501.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043365501.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Advancing Electronics Dresden (Cfaed) and Department of Chemistry and Food Chemistry, Technische Universitaet Dresden, 01062, Dresden, Germany", 
              "id": "http://www.grid.ac/institutes/grid.4488.0", 
              "name": [
                "Center for Advancing Electronics Dresden (Cfaed) and Department of Chemistry and Food Chemistry, Technische Universitaet Dresden, 01062, Dresden, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhuang", 
            "givenName": "Xiaodong", 
            "id": "sg:person.0772375763.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772375763.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CREST, JST, 4-1-8 Honcho Kawaguchi, 332-0012, Saitama, Japan", 
              "id": "http://www.grid.ac/institutes/grid.419082.6", 
              "name": [
                "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan", 
                "CREST, JST, 4-1-8 Honcho Kawaguchi, 332-0012, Saitama, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Mingwei", 
            "id": "sg:person.01111213505.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111213505.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fraunhofer Institute for Ceramic Technologies and Systems (IKTS), 01109, Dresden, Germany", 
              "id": "http://www.grid.ac/institutes/grid.461622.5", 
              "name": [
                "Fraunhofer Institute for Ceramic Technologies and Systems (IKTS), 01109, Dresden, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zschech", 
            "givenName": "Ehrenfried", 
            "id": "sg:person.01062644175.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062644175.68"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Advancing Electronics Dresden (Cfaed) and Department of Chemistry and Food Chemistry, Technische Universitaet Dresden, 01062, Dresden, Germany", 
              "id": "http://www.grid.ac/institutes/grid.4488.0", 
              "name": [
                "Center for Advancing Electronics Dresden (Cfaed) and Department of Chemistry and Food Chemistry, Technische Universitaet Dresden, 01062, Dresden, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Feng", 
            "givenName": "Xinliang", 
            "id": "sg:person.0750742345.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750742345.75"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/ncomms5695", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051699857", 
              "https://doi.org/10.1038/ncomms5695"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms12269", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050380390", 
              "https://doi.org/10.1038/ncomms12269"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms13216", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006039411", 
              "https://doi.org/10.1038/ncomms13216"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4481", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043649453", 
              "https://doi.org/10.1038/nmat4481"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms9064", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012932651", 
              "https://doi.org/10.1038/ncomms9064"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms12765", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013271354", 
              "https://doi.org/10.1038/ncomms12765"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms8992", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018049168", 
              "https://doi.org/10.1038/ncomms8992"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nenergy.2016.53", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012040498", 
              "https://doi.org/10.1038/nenergy.2016.53"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms11204", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027800015", 
              "https://doi.org/10.1038/ncomms11204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4588", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018283553", 
              "https://doi.org/10.1038/nmat4588"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nenergy.2016.130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004115728", 
              "https://doi.org/10.1038/nenergy.2016.130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4410", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034201391", 
              "https://doi.org/10.1038/nmat4410"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms10667", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039240984", 
              "https://doi.org/10.1038/ncomms10667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms7512", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003320850", 
              "https://doi.org/10.1038/ncomms7512"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3313", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005456159", 
              "https://doi.org/10.1038/nmat3313"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:jach.0000031161.26544.6a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043801171", 
              "https://doi.org/10.1023/b:jach.0000031161.26544.6a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1752", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043173310", 
              "https://doi.org/10.1038/nmat1752"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4465", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030801881", 
              "https://doi.org/10.1038/nmat4465"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-05-17", 
        "datePublishedReg": "2017-05-17", 
        "description": "Various platinum-free electrocatalysts have been explored for hydrogen evolution reaction in acidic solutions. However, in economical water-alkali electrolysers, sluggish water dissociation kinetics (Volmer step) on platinum-free electrocatalysts results in poor hydrogen-production activities. Here we report a MoNi4 electrocatalyst supported by MoO2 cuboids on nickel foam (MoNi4/MoO2@Ni), which is constructed by controlling the outward diffusion of nickel atoms on annealing precursor NiMoO4 cuboids on nickel foam. Experimental and theoretical results confirm that a rapid Tafel-step-decided hydrogen evolution proceeds on MoNi4 electrocatalyst. As a result, the MoNi4 electrocatalyst exhibits zero onset overpotential, an overpotential of 15\u2009mV at 10\u2009mA\u2009cm\u22122 and a low Tafel slope of 30\u2009mV per decade in 1\u2009M potassium hydroxide electrolyte, which are comparable to the results for platinum and superior to those for state-of-the-art platinum-free electrocatalysts. Benefiting from its scalable preparation and stability, the MoNi4 electrocatalyst is promising for practical water-alkali electrolysers.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/ncomms15437", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3797845", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "8"
          }
        ], 
        "keywords": [
          "water dissociation kinetics", 
          "platinum-free electrocatalysts", 
          "nickel foam", 
          "fast water dissociation kinetics", 
          "sluggish water dissociation kinetics", 
          "M potassium hydroxide electrolyte", 
          "low Tafel slope", 
          "efficient hydrogen production", 
          "hydrogen evolution reaction", 
          "potassium hydroxide electrolyte", 
          "hydrogen production activity", 
          "outward diffusion", 
          "hydrogen production", 
          "Tafel slope", 
          "onset overpotential", 
          "evolution reaction", 
          "scalable preparation", 
          "hydroxide electrolyte", 
          "electrocatalysts", 
          "hydrogen evolution", 
          "electrolyser", 
          "foam", 
          "overpotential", 
          "acidic solution", 
          "cuboid", 
          "mV", 
          "theoretical results", 
          "kinetics", 
          "electrolyte", 
          "diffusion", 
          "stability", 
          "results", 
          "nickel atoms", 
          "solution", 
          "slope", 
          "platinum", 
          "dissociation kinetics", 
          "preparation", 
          "Ma", 
          "evolution", 
          "production", 
          "reaction", 
          "atoms", 
          "state", 
          "decades", 
          "activity"
        ], 
        "name": "Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics", 
        "pagination": "15437", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1085428587"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/ncomms15437"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28513620"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/ncomms15437", 
          "https://app.dimensions.ai/details/publication/pub.1085428587"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:42", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_726.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/ncomms15437"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms15437'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms15437'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms15437'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms15437'


     

    This table displays all metadata directly associated to this object as RDF triples.

    246 TRIPLES      21 PREDICATES      89 URIs      63 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/ncomms15437 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author Nf8f16e1fa776404daae9b760155009fb
    4 schema:citation sg:pub.10.1023/b:jach.0000031161.26544.6a
    5 sg:pub.10.1038/ncomms10667
    6 sg:pub.10.1038/ncomms11204
    7 sg:pub.10.1038/ncomms12269
    8 sg:pub.10.1038/ncomms12765
    9 sg:pub.10.1038/ncomms13216
    10 sg:pub.10.1038/ncomms5695
    11 sg:pub.10.1038/ncomms7512
    12 sg:pub.10.1038/ncomms8992
    13 sg:pub.10.1038/ncomms9064
    14 sg:pub.10.1038/nenergy.2016.130
    15 sg:pub.10.1038/nenergy.2016.53
    16 sg:pub.10.1038/nmat1752
    17 sg:pub.10.1038/nmat3313
    18 sg:pub.10.1038/nmat4410
    19 sg:pub.10.1038/nmat4465
    20 sg:pub.10.1038/nmat4481
    21 sg:pub.10.1038/nmat4588
    22 schema:datePublished 2017-05-17
    23 schema:datePublishedReg 2017-05-17
    24 schema:description Various platinum-free electrocatalysts have been explored for hydrogen evolution reaction in acidic solutions. However, in economical water-alkali electrolysers, sluggish water dissociation kinetics (Volmer step) on platinum-free electrocatalysts results in poor hydrogen-production activities. Here we report a MoNi4 electrocatalyst supported by MoO2 cuboids on nickel foam (MoNi4/MoO2@Ni), which is constructed by controlling the outward diffusion of nickel atoms on annealing precursor NiMoO4 cuboids on nickel foam. Experimental and theoretical results confirm that a rapid Tafel-step-decided hydrogen evolution proceeds on MoNi4 electrocatalyst. As a result, the MoNi4 electrocatalyst exhibits zero onset overpotential, an overpotential of 15 mV at 10 mA cm−2 and a low Tafel slope of 30 mV per decade in 1 M potassium hydroxide electrolyte, which are comparable to the results for platinum and superior to those for state-of-the-art platinum-free electrocatalysts. Benefiting from its scalable preparation and stability, the MoNi4 electrocatalyst is promising for practical water-alkali electrolysers.
    25 schema:genre article
    26 schema:isAccessibleForFree true
    27 schema:isPartOf N7b8e052b92e74a2ab5f7713d50e65781
    28 Ne61daee189e14829a17f8415513be2ab
    29 sg:journal.1043282
    30 schema:keywords M potassium hydroxide electrolyte
    31 Ma
    32 Tafel slope
    33 acidic solution
    34 activity
    35 atoms
    36 cuboid
    37 decades
    38 diffusion
    39 dissociation kinetics
    40 efficient hydrogen production
    41 electrocatalysts
    42 electrolyser
    43 electrolyte
    44 evolution
    45 evolution reaction
    46 fast water dissociation kinetics
    47 foam
    48 hydrogen evolution
    49 hydrogen evolution reaction
    50 hydrogen production
    51 hydrogen production activity
    52 hydroxide electrolyte
    53 kinetics
    54 low Tafel slope
    55 mV
    56 nickel atoms
    57 nickel foam
    58 onset overpotential
    59 outward diffusion
    60 overpotential
    61 platinum
    62 platinum-free electrocatalysts
    63 potassium hydroxide electrolyte
    64 preparation
    65 production
    66 reaction
    67 results
    68 scalable preparation
    69 slope
    70 sluggish water dissociation kinetics
    71 solution
    72 stability
    73 state
    74 theoretical results
    75 water dissociation kinetics
    76 schema:name Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics
    77 schema:pagination 15437
    78 schema:productId N48156e6cc67644a8aaf2922604509b23
    79 Na9b63e7b3e3845d0b85c4b639cfa9ce5
    80 Ndd5194543c0348b7823eb7dc590fced1
    81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085428587
    82 https://doi.org/10.1038/ncomms15437
    83 schema:sdDatePublished 2022-10-01T06:42
    84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    85 schema:sdPublisher N15cf6707ee8f417d904b2210ffbbc092
    86 schema:url https://doi.org/10.1038/ncomms15437
    87 sgo:license sg:explorer/license/
    88 sgo:sdDataset articles
    89 rdf:type schema:ScholarlyArticle
    90 N0f20fb02a7a9496a835630ef5c2f6ac0 rdf:first sg:person.01111213505.34
    91 rdf:rest N9518704f65b44885bef4f034853f24b5
    92 N15cf6707ee8f417d904b2210ffbbc092 schema:name Springer Nature - SN SciGraph project
    93 rdf:type schema:Organization
    94 N4017c62890514725a2ee752bc869d38f rdf:first sg:person.0740231111.59
    95 rdf:rest N60a5b92d441d4570b1dc56a48b39f225
    96 N48156e6cc67644a8aaf2922604509b23 schema:name doi
    97 schema:value 10.1038/ncomms15437
    98 rdf:type schema:PropertyValue
    99 N60a5b92d441d4570b1dc56a48b39f225 rdf:first sg:person.01043365501.80
    100 rdf:rest Ndd67517aa9744ad6b45f1af3e073401f
    101 N6cf275b2363241b2878296c41e553fcd rdf:first sg:person.01054603405.89
    102 rdf:rest N78b164627f344f0f8c8428aef694f708
    103 N6f8e20bd0694480aa8724b8006d00568 rdf:first sg:person.0750742345.75
    104 rdf:rest rdf:nil
    105 N78b164627f344f0f8c8428aef694f708 rdf:first sg:person.0700644400.67
    106 rdf:rest N4017c62890514725a2ee752bc869d38f
    107 N7b8e052b92e74a2ab5f7713d50e65781 schema:issueNumber 1
    108 rdf:type schema:PublicationIssue
    109 N9518704f65b44885bef4f034853f24b5 rdf:first sg:person.01062644175.68
    110 rdf:rest N6f8e20bd0694480aa8724b8006d00568
    111 Na9b63e7b3e3845d0b85c4b639cfa9ce5 schema:name dimensions_id
    112 schema:value pub.1085428587
    113 rdf:type schema:PropertyValue
    114 Ndd5194543c0348b7823eb7dc590fced1 schema:name pubmed_id
    115 schema:value 28513620
    116 rdf:type schema:PropertyValue
    117 Ndd67517aa9744ad6b45f1af3e073401f rdf:first sg:person.0772375763.39
    118 rdf:rest N0f20fb02a7a9496a835630ef5c2f6ac0
    119 Ne61daee189e14829a17f8415513be2ab schema:volumeNumber 8
    120 rdf:type schema:PublicationVolume
    121 Nf8f16e1fa776404daae9b760155009fb rdf:first sg:person.013716304017.02
    122 rdf:rest N6cf275b2363241b2878296c41e553fcd
    123 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    124 schema:name Chemical Sciences
    125 rdf:type schema:DefinedTerm
    126 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    127 schema:name Physical Chemistry (incl. Structural)
    128 rdf:type schema:DefinedTerm
    129 sg:grant.3797845 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms15437
    130 rdf:type schema:MonetaryGrant
    131 sg:journal.1043282 schema:issn 2041-1723
    132 schema:name Nature Communications
    133 schema:publisher Springer Nature
    134 rdf:type schema:Periodical
    135 sg:person.01043365501.80 schema:affiliation grid-institutes:grid.4488.0
    136 schema:familyName Liu
    137 schema:givenName Shaohua
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043365501.80
    139 rdf:type schema:Person
    140 sg:person.01054603405.89 schema:affiliation grid-institutes:grid.463879.7
    141 schema:familyName Wang
    142 schema:givenName Tao
    143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054603405.89
    144 rdf:type schema:Person
    145 sg:person.01062644175.68 schema:affiliation grid-institutes:grid.461622.5
    146 schema:familyName Zschech
    147 schema:givenName Ehrenfried
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062644175.68
    149 rdf:type schema:Person
    150 sg:person.01111213505.34 schema:affiliation grid-institutes:grid.419082.6
    151 schema:familyName Chen
    152 schema:givenName Mingwei
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111213505.34
    154 rdf:type schema:Person
    155 sg:person.013716304017.02 schema:affiliation grid-institutes:grid.4488.0
    156 schema:familyName Zhang
    157 schema:givenName Jian
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013716304017.02
    159 rdf:type schema:Person
    160 sg:person.0700644400.67 schema:affiliation grid-institutes:grid.419082.6
    161 schema:familyName Liu
    162 schema:givenName Pan
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700644400.67
    164 rdf:type schema:Person
    165 sg:person.0740231111.59 schema:affiliation grid-institutes:grid.461622.5
    166 schema:familyName Liao
    167 schema:givenName Zhongquan
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740231111.59
    169 rdf:type schema:Person
    170 sg:person.0750742345.75 schema:affiliation grid-institutes:grid.4488.0
    171 schema:familyName Feng
    172 schema:givenName Xinliang
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750742345.75
    174 rdf:type schema:Person
    175 sg:person.0772375763.39 schema:affiliation grid-institutes:grid.4488.0
    176 schema:familyName Zhuang
    177 schema:givenName Xiaodong
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772375763.39
    179 rdf:type schema:Person
    180 sg:pub.10.1023/b:jach.0000031161.26544.6a schema:sameAs https://app.dimensions.ai/details/publication/pub.1043801171
    181 https://doi.org/10.1023/b:jach.0000031161.26544.6a
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1038/ncomms10667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039240984
    184 https://doi.org/10.1038/ncomms10667
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1038/ncomms11204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027800015
    187 https://doi.org/10.1038/ncomms11204
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1038/ncomms12269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050380390
    190 https://doi.org/10.1038/ncomms12269
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1038/ncomms12765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013271354
    193 https://doi.org/10.1038/ncomms12765
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1038/ncomms13216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006039411
    196 https://doi.org/10.1038/ncomms13216
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/ncomms5695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051699857
    199 https://doi.org/10.1038/ncomms5695
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/ncomms7512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003320850
    202 https://doi.org/10.1038/ncomms7512
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1038/ncomms8992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018049168
    205 https://doi.org/10.1038/ncomms8992
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/ncomms9064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012932651
    208 https://doi.org/10.1038/ncomms9064
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/nenergy.2016.130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004115728
    211 https://doi.org/10.1038/nenergy.2016.130
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/nenergy.2016.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012040498
    214 https://doi.org/10.1038/nenergy.2016.53
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1038/nmat1752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043173310
    217 https://doi.org/10.1038/nmat1752
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1038/nmat3313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005456159
    220 https://doi.org/10.1038/nmat3313
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/nmat4410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034201391
    223 https://doi.org/10.1038/nmat4410
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1038/nmat4465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030801881
    226 https://doi.org/10.1038/nmat4465
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1038/nmat4481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043649453
    229 https://doi.org/10.1038/nmat4481
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1038/nmat4588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018283553
    232 https://doi.org/10.1038/nmat4588
    233 rdf:type schema:CreativeWork
    234 grid-institutes:grid.419082.6 schema:alternateName CREST, JST, 4-1-8 Honcho Kawaguchi, 332-0012, Saitama, Japan
    235 schema:name CREST, JST, 4-1-8 Honcho Kawaguchi, 332-0012, Saitama, Japan
    236 WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan
    237 rdf:type schema:Organization
    238 grid-institutes:grid.4488.0 schema:alternateName Center for Advancing Electronics Dresden (Cfaed) and Department of Chemistry and Food Chemistry, Technische Universitaet Dresden, 01062, Dresden, Germany
    239 schema:name Center for Advancing Electronics Dresden (Cfaed) and Department of Chemistry and Food Chemistry, Technische Universitaet Dresden, 01062, Dresden, Germany
    240 rdf:type schema:Organization
    241 grid-institutes:grid.461622.5 schema:alternateName Fraunhofer Institute for Ceramic Technologies and Systems (IKTS), 01109, Dresden, Germany
    242 schema:name Fraunhofer Institute for Ceramic Technologies and Systems (IKTS), 01109, Dresden, Germany
    243 rdf:type schema:Organization
    244 grid-institutes:grid.463879.7 schema:alternateName Univ Lyon, Ens de Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie, UMR 5182, F-69342, Lyon, France
    245 schema:name Univ Lyon, Ens de Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie, UMR 5182, F-69342, Lyon, France
    246 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...