Metabolic network analysis reveals microbial community interactions in anammox granules View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-05-31

AUTHORS

Christopher E. Lawson, Sha Wu, Ananda S. Bhattacharjee, Joshua J. Hamilton, Katherine D. McMahon, Ramesh Goel, Daniel R. Noguera

ABSTRACT

Microbial communities mediating anaerobic ammonium oxidation (anammox) represent one of the most energy-efficient environmental biotechnologies for nitrogen removal from wastewater. However, little is known about the functional role heterotrophic bacteria play in anammox granules. Here, we use genome-centric metagenomics to recover 17 draft genomes of anammox and heterotrophic bacteria from a laboratory-scale anammox bioreactor. We combine metabolic network reconstruction with metatranscriptomics to examine the gene expression of anammox and heterotrophic bacteria and to identify their potential interactions. We find that Chlorobi-affiliated bacteria may be highly active protein degraders, catabolizing extracellular peptides while recycling nitrate to nitrite. Other heterotrophs may also contribute to scavenging of detritus and peptides produced by anammox bacteria, and potentially use alternative electron donors, such as H2, acetate and formate. Our findings improve the understanding of metabolic activities and interactions between anammox and heterotrophic bacteria and offer the first transcriptional insights on ecosystem function in anammox granules. More... »

PAGES

15416

References to SciGraph publications

  • 2014-09-23. Microbial community analysis of a full-scale DEMON bioreactor in BIOPROCESS AND BIOSYSTEMS ENGINEERING
  • 2011-11. The Pathway Tools Pathway Prediction Algorithm in ENVIRONMENTAL MICROBIOME
  • 2016-01-15. Segregating metabolic processes into different microbial cells accelerates the consumption of inhibitory substrates in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2013-06-21. MetaPathways: a modular pipeline for constructing pathway/genome databases from environmental sequence information in BMC BIOINFORMATICS
  • 2016-06-17. Microbial interactions lead to rapid micro-scale successions on model marine particles in NATURE COMMUNICATIONS
  • 2006-04. Deciphering the evolution and metabolism of an anammox bacterium from a community genome in NATURE
  • 1999-07. Missing lithotroph identified as new planctomycete in NATURE
  • 2016-06-07. Assessment of Heterotrophic Growth Supported by Soluble Microbial Products in Anammox Biofilm using Multidimensional Modeling in SCIENTIFIC REPORTS
  • 2008-05-30. Mapping and quantifying mammalian transcriptomes by RNA-Seq in NATURE METHODS
  • 2014-12-11. Microbial Community Composition and Ultrastructure of Granules from a Full-Scale Anammox Reactor in MICROBIAL ECOLOGY
  • 2016-03-31. Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system in NATURE COMMUNICATIONS
  • 1994-03. The hydrogenases and formate dehydrogenases ofEscherichia coli in ANTONIE VAN LEEUWENHOEK
  • 2011-10-02. Molecular mechanism of anaerobic ammonium oxidation in NATURE
  • 2013-11-23. Identification of the type II cytochrome cmaturation pathway in anammox bacteria by comparative genomics in BMC MICROBIOLOGY
  • 2011-12-15. Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2010-03-08. Prodigal: prokaryotic gene recognition and translation initiation site identification in BMC BIOINFORMATICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/ncomms15416

    DOI

    http://dx.doi.org/10.1038/ncomms15416

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1085726259

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28561030


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Ammonium Compounds", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacteria", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bioreactors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Denitrification", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Bacterial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Heterotrophic Processes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metabolic Networks and Pathways", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metagenomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microbial Interactions", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nitrates", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nitrites", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nitrogen", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oxidation-Reduction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Waste Water", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Water Purification", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Civil and Environmental Engineering, University of Wisconsin\u2013Madison, 53706, Madison, Wisconsin, USA", 
              "id": "http://www.grid.ac/institutes/grid.14003.36", 
              "name": [
                "Department of Civil and Environmental Engineering, University of Wisconsin\u2013Madison, 53706, Madison, Wisconsin, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lawson", 
            "givenName": "Christopher E.", 
            "id": "sg:person.010064527267.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010064527267.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Civil and Environmental Engineering, University of Utah, 84112, Salt Lake City, Utah, USA", 
              "id": "http://www.grid.ac/institutes/grid.223827.e", 
              "name": [
                "Department of Civil and Environmental Engineering, University of Utah, 84112, Salt Lake City, Utah, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wu", 
            "givenName": "Sha", 
            "id": "sg:person.016567600467.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016567600467.56"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Civil and Environmental Engineering, University of Utah, 84112, Salt Lake City, Utah, USA", 
              "id": "http://www.grid.ac/institutes/grid.223827.e", 
              "name": [
                "Department of Civil and Environmental Engineering, University of Utah, 84112, Salt Lake City, Utah, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bhattacharjee", 
            "givenName": "Ananda S.", 
            "id": "sg:person.01313650431.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313650431.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Bacteriology, University of Wisconsin\u2013Madison, 53706, Madison, Wisconsin, USA", 
              "id": "http://www.grid.ac/institutes/grid.14003.36", 
              "name": [
                "Department of Bacteriology, University of Wisconsin\u2013Madison, 53706, Madison, Wisconsin, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hamilton", 
            "givenName": "Joshua J.", 
            "id": "sg:person.011572157757.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011572157757.91"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Bacteriology, University of Wisconsin\u2013Madison, 53706, Madison, Wisconsin, USA", 
              "id": "http://www.grid.ac/institutes/grid.14003.36", 
              "name": [
                "Department of Civil and Environmental Engineering, University of Wisconsin\u2013Madison, 53706, Madison, Wisconsin, USA", 
                "Department of Bacteriology, University of Wisconsin\u2013Madison, 53706, Madison, Wisconsin, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "McMahon", 
            "givenName": "Katherine D.", 
            "id": "sg:person.01007375500.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007375500.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Civil and Environmental Engineering, University of Utah, 84112, Salt Lake City, Utah, USA", 
              "id": "http://www.grid.ac/institutes/grid.223827.e", 
              "name": [
                "Department of Civil and Environmental Engineering, University of Utah, 84112, Salt Lake City, Utah, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Goel", 
            "givenName": "Ramesh", 
            "id": "sg:person.014445372267.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014445372267.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin\u2013Madison, 53726, Madison, Wisconsin, USA", 
              "id": "http://www.grid.ac/institutes/grid.14003.36", 
              "name": [
                "Department of Civil and Environmental Engineering, University of Wisconsin\u2013Madison, 53706, Madison, Wisconsin, USA", 
                "Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin\u2013Madison, 53726, Madison, Wisconsin, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Noguera", 
            "givenName": "Daniel R.", 
            "id": "sg:person.01040656401.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040656401.68"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/22749", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010580643", 
              "https://doi.org/10.1038/22749"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-14-202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017016864", 
              "https://doi.org/10.1186/1471-2105-14-202"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10453", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001273287", 
              "https://doi.org/10.1038/nature10453"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms11965", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002310529", 
              "https://doi.org/10.1038/ncomms11965"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00449-014-1289-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010336694", 
              "https://doi.org/10.1007/s00449-014-1289-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04647", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036758210", 
              "https://doi.org/10.1038/nature04647"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2180-13-265", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028345775", 
              "https://doi.org/10.1186/1471-2180-13-265"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045381177", 
              "https://doi.org/10.1038/nmeth.1226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00871633", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037982579", 
              "https://doi.org/10.1007/bf00871633"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00248-014-0546-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011248640", 
              "https://doi.org/10.1007/s00248-014-0546-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2015.243", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041063288", 
              "https://doi.org/10.1038/ismej.2015.243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-11-119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026423599", 
              "https://doi.org/10.1186/1471-2105-11-119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep27576", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028223903", 
              "https://doi.org/10.1038/srep27576"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.4056/sigs.1794338", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003520644", 
              "https://doi.org/10.4056/sigs.1794338"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2011.189", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011324081", 
              "https://doi.org/10.1038/ismej.2011.189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms11172", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044991453", 
              "https://doi.org/10.1038/ncomms11172"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-05-31", 
        "datePublishedReg": "2017-05-31", 
        "description": "Microbial communities mediating anaerobic ammonium oxidation (anammox) represent one of the most energy-efficient environmental biotechnologies for nitrogen removal from wastewater. However, little is known about the functional role heterotrophic bacteria play in anammox granules. Here, we use genome-centric metagenomics to recover 17 draft genomes of anammox and heterotrophic bacteria from a laboratory-scale anammox bioreactor. We combine metabolic network reconstruction with metatranscriptomics to examine the gene expression of anammox and heterotrophic bacteria and to identify their potential interactions. We find that Chlorobi-affiliated bacteria may be highly active protein degraders, catabolizing extracellular peptides while recycling nitrate to nitrite. Other heterotrophs may also contribute to scavenging of detritus and peptides produced by anammox bacteria, and potentially use alternative electron donors, such as H2, acetate and formate. Our findings improve the understanding of metabolic activities and interactions between anammox and heterotrophic bacteria and offer the first transcriptional insights on ecosystem function in anammox granules.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/ncomms15416", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3849448", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4179650", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "8"
          }
        ], 
        "keywords": [
          "heterotrophic bacteria", 
          "genome-centric metagenomics", 
          "microbial community interactions", 
          "metabolic network reconstruction", 
          "metabolic network analysis", 
          "transcriptional insights", 
          "draft genome", 
          "microbial communities", 
          "ecosystem functions", 
          "alternative electron donors", 
          "protein degraders", 
          "gene expression", 
          "environmental biotechnology", 
          "anaerobic ammonium oxidation", 
          "community interactions", 
          "network reconstruction", 
          "extracellular peptides", 
          "bacteria", 
          "anammox bioreactor", 
          "anammox bacteria", 
          "metabolic activity", 
          "ammonium oxidation", 
          "anammox granules", 
          "network analysis", 
          "potential interactions", 
          "metatranscriptomics", 
          "Chlorobi", 
          "genome", 
          "granules", 
          "metagenomics", 
          "anammox", 
          "electron donor", 
          "heterotrophs", 
          "peptides", 
          "degraders", 
          "biotechnology", 
          "interaction", 
          "detritus", 
          "expression", 
          "nitrogen removal", 
          "insights", 
          "community", 
          "activity", 
          "bioreactor", 
          "scavenging", 
          "function", 
          "understanding", 
          "formate", 
          "nitrate", 
          "nitrite", 
          "analysis", 
          "oxidation", 
          "donors", 
          "findings", 
          "removal", 
          "wastewater", 
          "reconstruction", 
          "H2"
        ], 
        "name": "Metabolic network analysis reveals microbial community interactions in anammox granules", 
        "pagination": "15416", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1085726259"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/ncomms15416"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28561030"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/ncomms15416", 
          "https://app.dimensions.ai/details/publication/pub.1085726259"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:33", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_748.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/ncomms15416"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms15416'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms15416'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms15416'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms15416'


     

    This table displays all metadata directly associated to this object as RDF triples.

    296 TRIPLES      22 PREDICATES      115 URIs      91 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/ncomms15416 schema:about N00dcc96d523d47f592175677cf8ba37b
    2 N03b6c6e662f8471f82bf3dca7b184ee5
    3 N17200fb86dee4450a36220f5b1aeaa5a
    4 N18feb760cab84bb393d3caf838b5fca1
    5 N23ec49da7be44a45aafe94a14ea92e44
    6 N3db9b7e98f51417b8a80710496021996
    7 N603583ef620346b4a7343e35bc152bf6
    8 N7c410b95bed345cea4504ce761c6c9b2
    9 N881df7afafc44db793af6ee9d6a0ca85
    10 N8bd335e188764adf9f3db20939ae6795
    11 N9f82584804924c438b7170f2490da0a6
    12 Nc2a79df182994237a45c882819d9bc04
    13 Nd0b263bb6d6146b9a63fe166a1285303
    14 Nd980f60602d94524934793c95574d69e
    15 Neb0a44b8c90f4f2ab878162274c06942
    16 anzsrc-for:06
    17 anzsrc-for:0605
    18 schema:author Nff19f7c53e3a4690bf4fe17c91b2c207
    19 schema:citation sg:pub.10.1007/bf00871633
    20 sg:pub.10.1007/s00248-014-0546-7
    21 sg:pub.10.1007/s00449-014-1289-z
    22 sg:pub.10.1038/22749
    23 sg:pub.10.1038/ismej.2011.189
    24 sg:pub.10.1038/ismej.2015.243
    25 sg:pub.10.1038/nature04647
    26 sg:pub.10.1038/nature10453
    27 sg:pub.10.1038/ncomms11172
    28 sg:pub.10.1038/ncomms11965
    29 sg:pub.10.1038/nmeth.1226
    30 sg:pub.10.1038/srep27576
    31 sg:pub.10.1186/1471-2105-11-119
    32 sg:pub.10.1186/1471-2105-14-202
    33 sg:pub.10.1186/1471-2180-13-265
    34 sg:pub.10.4056/sigs.1794338
    35 schema:datePublished 2017-05-31
    36 schema:datePublishedReg 2017-05-31
    37 schema:description Microbial communities mediating anaerobic ammonium oxidation (anammox) represent one of the most energy-efficient environmental biotechnologies for nitrogen removal from wastewater. However, little is known about the functional role heterotrophic bacteria play in anammox granules. Here, we use genome-centric metagenomics to recover 17 draft genomes of anammox and heterotrophic bacteria from a laboratory-scale anammox bioreactor. We combine metabolic network reconstruction with metatranscriptomics to examine the gene expression of anammox and heterotrophic bacteria and to identify their potential interactions. We find that Chlorobi-affiliated bacteria may be highly active protein degraders, catabolizing extracellular peptides while recycling nitrate to nitrite. Other heterotrophs may also contribute to scavenging of detritus and peptides produced by anammox bacteria, and potentially use alternative electron donors, such as H2, acetate and formate. Our findings improve the understanding of metabolic activities and interactions between anammox and heterotrophic bacteria and offer the first transcriptional insights on ecosystem function in anammox granules.
    38 schema:genre article
    39 schema:inLanguage en
    40 schema:isAccessibleForFree true
    41 schema:isPartOf N2a03f117f018460391a795aa34dd1aab
    42 Nc8d15b198a524bffba095d646decc89d
    43 sg:journal.1043282
    44 schema:keywords Chlorobi
    45 H2
    46 activity
    47 alternative electron donors
    48 ammonium oxidation
    49 anaerobic ammonium oxidation
    50 analysis
    51 anammox
    52 anammox bacteria
    53 anammox bioreactor
    54 anammox granules
    55 bacteria
    56 bioreactor
    57 biotechnology
    58 community
    59 community interactions
    60 degraders
    61 detritus
    62 donors
    63 draft genome
    64 ecosystem functions
    65 electron donor
    66 environmental biotechnology
    67 expression
    68 extracellular peptides
    69 findings
    70 formate
    71 function
    72 gene expression
    73 genome
    74 genome-centric metagenomics
    75 granules
    76 heterotrophic bacteria
    77 heterotrophs
    78 insights
    79 interaction
    80 metabolic activity
    81 metabolic network analysis
    82 metabolic network reconstruction
    83 metagenomics
    84 metatranscriptomics
    85 microbial communities
    86 microbial community interactions
    87 network analysis
    88 network reconstruction
    89 nitrate
    90 nitrite
    91 nitrogen removal
    92 oxidation
    93 peptides
    94 potential interactions
    95 protein degraders
    96 reconstruction
    97 removal
    98 scavenging
    99 transcriptional insights
    100 understanding
    101 wastewater
    102 schema:name Metabolic network analysis reveals microbial community interactions in anammox granules
    103 schema:pagination 15416
    104 schema:productId N35f7cada705f4c938e98cdcca6483d42
    105 N67e48ec5e478418cb7e9ee33232810d7
    106 Ncf4f5320232549349b074f6f50b28cd6
    107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085726259
    108 https://doi.org/10.1038/ncomms15416
    109 schema:sdDatePublished 2022-05-20T07:33
    110 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    111 schema:sdPublisher N090745fdf1a042ea9459e68b403fb708
    112 schema:url https://doi.org/10.1038/ncomms15416
    113 sgo:license sg:explorer/license/
    114 sgo:sdDataset articles
    115 rdf:type schema:ScholarlyArticle
    116 N00dcc96d523d47f592175677cf8ba37b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Waste Water
    118 rdf:type schema:DefinedTerm
    119 N03b6c6e662f8471f82bf3dca7b184ee5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    120 schema:name Bacteria
    121 rdf:type schema:DefinedTerm
    122 N090745fdf1a042ea9459e68b403fb708 schema:name Springer Nature - SN SciGraph project
    123 rdf:type schema:Organization
    124 N17200fb86dee4450a36220f5b1aeaa5a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Oxidation-Reduction
    126 rdf:type schema:DefinedTerm
    127 N18feb760cab84bb393d3caf838b5fca1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Water Purification
    129 rdf:type schema:DefinedTerm
    130 N23ec49da7be44a45aafe94a14ea92e44 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Denitrification
    132 rdf:type schema:DefinedTerm
    133 N2a03f117f018460391a795aa34dd1aab schema:volumeNumber 8
    134 rdf:type schema:PublicationVolume
    135 N3381c356dc684bbaa8873486108ccd47 rdf:first sg:person.01040656401.68
    136 rdf:rest rdf:nil
    137 N35f7cada705f4c938e98cdcca6483d42 schema:name doi
    138 schema:value 10.1038/ncomms15416
    139 rdf:type schema:PropertyValue
    140 N3db9b7e98f51417b8a80710496021996 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Nitrates
    142 rdf:type schema:DefinedTerm
    143 N603583ef620346b4a7343e35bc152bf6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Metagenomics
    145 rdf:type schema:DefinedTerm
    146 N67e48ec5e478418cb7e9ee33232810d7 schema:name dimensions_id
    147 schema:value pub.1085726259
    148 rdf:type schema:PropertyValue
    149 N6b489eba0aeb4fafb18d64eb07ff7cdd rdf:first sg:person.016567600467.56
    150 rdf:rest N80f1327c465b4565bb00ec00619009fd
    151 N7105d4c9777f493faaeb4d2077ded982 rdf:first sg:person.014445372267.75
    152 rdf:rest N3381c356dc684bbaa8873486108ccd47
    153 N7c410b95bed345cea4504ce761c6c9b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name Metabolic Networks and Pathways
    155 rdf:type schema:DefinedTerm
    156 N80f1327c465b4565bb00ec00619009fd rdf:first sg:person.01313650431.87
    157 rdf:rest N89113a64cb984646a75be5546a117bab
    158 N881df7afafc44db793af6ee9d6a0ca85 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Bioreactors
    160 rdf:type schema:DefinedTerm
    161 N89113a64cb984646a75be5546a117bab rdf:first sg:person.011572157757.91
    162 rdf:rest N9fee4a03493947b4a824b72cabaef0b4
    163 N8bd335e188764adf9f3db20939ae6795 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Ammonium Compounds
    165 rdf:type schema:DefinedTerm
    166 N9f82584804924c438b7170f2490da0a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    167 schema:name Nitrites
    168 rdf:type schema:DefinedTerm
    169 N9fee4a03493947b4a824b72cabaef0b4 rdf:first sg:person.01007375500.45
    170 rdf:rest N7105d4c9777f493faaeb4d2077ded982
    171 Nc2a79df182994237a45c882819d9bc04 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    172 schema:name Nitrogen
    173 rdf:type schema:DefinedTerm
    174 Nc8d15b198a524bffba095d646decc89d schema:issueNumber 1
    175 rdf:type schema:PublicationIssue
    176 Ncf4f5320232549349b074f6f50b28cd6 schema:name pubmed_id
    177 schema:value 28561030
    178 rdf:type schema:PropertyValue
    179 Nd0b263bb6d6146b9a63fe166a1285303 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    180 schema:name Microbial Interactions
    181 rdf:type schema:DefinedTerm
    182 Nd980f60602d94524934793c95574d69e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    183 schema:name Heterotrophic Processes
    184 rdf:type schema:DefinedTerm
    185 Neb0a44b8c90f4f2ab878162274c06942 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    186 schema:name Genome, Bacterial
    187 rdf:type schema:DefinedTerm
    188 Nff19f7c53e3a4690bf4fe17c91b2c207 rdf:first sg:person.010064527267.48
    189 rdf:rest N6b489eba0aeb4fafb18d64eb07ff7cdd
    190 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    191 schema:name Biological Sciences
    192 rdf:type schema:DefinedTerm
    193 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    194 schema:name Microbiology
    195 rdf:type schema:DefinedTerm
    196 sg:grant.3849448 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms15416
    197 rdf:type schema:MonetaryGrant
    198 sg:grant.4179650 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms15416
    199 rdf:type schema:MonetaryGrant
    200 sg:journal.1043282 schema:issn 2041-1723
    201 schema:name Nature Communications
    202 schema:publisher Springer Nature
    203 rdf:type schema:Periodical
    204 sg:person.010064527267.48 schema:affiliation grid-institutes:grid.14003.36
    205 schema:familyName Lawson
    206 schema:givenName Christopher E.
    207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010064527267.48
    208 rdf:type schema:Person
    209 sg:person.01007375500.45 schema:affiliation grid-institutes:grid.14003.36
    210 schema:familyName McMahon
    211 schema:givenName Katherine D.
    212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007375500.45
    213 rdf:type schema:Person
    214 sg:person.01040656401.68 schema:affiliation grid-institutes:grid.14003.36
    215 schema:familyName Noguera
    216 schema:givenName Daniel R.
    217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040656401.68
    218 rdf:type schema:Person
    219 sg:person.011572157757.91 schema:affiliation grid-institutes:grid.14003.36
    220 schema:familyName Hamilton
    221 schema:givenName Joshua J.
    222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011572157757.91
    223 rdf:type schema:Person
    224 sg:person.01313650431.87 schema:affiliation grid-institutes:grid.223827.e
    225 schema:familyName Bhattacharjee
    226 schema:givenName Ananda S.
    227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313650431.87
    228 rdf:type schema:Person
    229 sg:person.014445372267.75 schema:affiliation grid-institutes:grid.223827.e
    230 schema:familyName Goel
    231 schema:givenName Ramesh
    232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014445372267.75
    233 rdf:type schema:Person
    234 sg:person.016567600467.56 schema:affiliation grid-institutes:grid.223827.e
    235 schema:familyName Wu
    236 schema:givenName Sha
    237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016567600467.56
    238 rdf:type schema:Person
    239 sg:pub.10.1007/bf00871633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037982579
    240 https://doi.org/10.1007/bf00871633
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1007/s00248-014-0546-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011248640
    243 https://doi.org/10.1007/s00248-014-0546-7
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1007/s00449-014-1289-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1010336694
    246 https://doi.org/10.1007/s00449-014-1289-z
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1038/22749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010580643
    249 https://doi.org/10.1038/22749
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1038/ismej.2011.189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011324081
    252 https://doi.org/10.1038/ismej.2011.189
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1038/ismej.2015.243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041063288
    255 https://doi.org/10.1038/ismej.2015.243
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1038/nature04647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036758210
    258 https://doi.org/10.1038/nature04647
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1038/nature10453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001273287
    261 https://doi.org/10.1038/nature10453
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1038/ncomms11172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044991453
    264 https://doi.org/10.1038/ncomms11172
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1038/ncomms11965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002310529
    267 https://doi.org/10.1038/ncomms11965
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1038/nmeth.1226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045381177
    270 https://doi.org/10.1038/nmeth.1226
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1038/srep27576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028223903
    273 https://doi.org/10.1038/srep27576
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1186/1471-2105-11-119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026423599
    276 https://doi.org/10.1186/1471-2105-11-119
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1186/1471-2105-14-202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017016864
    279 https://doi.org/10.1186/1471-2105-14-202
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1186/1471-2180-13-265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028345775
    282 https://doi.org/10.1186/1471-2180-13-265
    283 rdf:type schema:CreativeWork
    284 sg:pub.10.4056/sigs.1794338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003520644
    285 https://doi.org/10.4056/sigs.1794338
    286 rdf:type schema:CreativeWork
    287 grid-institutes:grid.14003.36 schema:alternateName Department of Bacteriology, University of Wisconsin–Madison, 53706, Madison, Wisconsin, USA
    288 Department of Civil and Environmental Engineering, University of Wisconsin–Madison, 53706, Madison, Wisconsin, USA
    289 Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin–Madison, 53726, Madison, Wisconsin, USA
    290 schema:name Department of Bacteriology, University of Wisconsin–Madison, 53706, Madison, Wisconsin, USA
    291 Department of Civil and Environmental Engineering, University of Wisconsin–Madison, 53706, Madison, Wisconsin, USA
    292 Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin–Madison, 53726, Madison, Wisconsin, USA
    293 rdf:type schema:Organization
    294 grid-institutes:grid.223827.e schema:alternateName Department of Civil and Environmental Engineering, University of Utah, 84112, Salt Lake City, Utah, USA
    295 schema:name Department of Civil and Environmental Engineering, University of Utah, 84112, Salt Lake City, Utah, USA
    296 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...