Analysis of renal cancer cell lines from two major resources enables genomics-guided cell line selection View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-05-10

AUTHORS

Rileen Sinha, Andrew G. Winer, Michael Chevinsky, Christopher Jakubowski, Ying-Bei Chen, Yiyu Dong, Satish K. Tickoo, Victor E. Reuter, Paul Russo, Jonathan A. Coleman, Chris Sander, James J. Hsieh, A. Ari Hakimi

ABSTRACT

The utility of cancer cell lines is affected by the similarity to endogenous tumour cells. Here we compare genomic data from 65 kidney-derived cell lines from the Cancer Cell Line Encyclopedia and the COSMIC Cell Lines Project to three renal cancer subtypes from The Cancer Genome Atlas: clear cell renal cell carcinoma (ccRCC, also known as kidney renal clear cell carcinoma), papillary (pRCC, also known as kidney papillary) and chromophobe (chRCC, also known as kidney chromophobe) renal cell carcinoma. Clustering copy number alterations shows that most cell lines resemble ccRCC, a few (including some often used as models of ccRCC) resemble pRCC, and none resemble chRCC. Human ccRCC tumours clustering with cell lines display clinical and genomic features of more aggressive disease, suggesting that cell lines best represent aggressive tumours. We stratify mutations and copy number alterations for important kidney cancer genes by the consistency between databases, and classify cell lines into established gene expression-based indolent and aggressive subtypes. Our results could aid investigators in analysing appropriate renal cancer cell lines. More... »

PAGES

15165

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ncomms15165

DOI

http://dx.doi.org/10.1038/ncomms15165

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085378076

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28489074


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carcinoma, Renal Cell", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Line, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Human", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kidney", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kidney Neoplasms", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Icahn School of Medicine at Mount Sinai", 
          "id": "https://www.grid.ac/institutes/grid.59734.3c", 
          "name": [
            "Department of Computational Biology, Memorial Sloan-Kettering Cancer Center, 417 E 68th St, New York, New York 10065, USA", 
            "Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York, New York 10029, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sinha", 
        "givenName": "Rileen", 
        "id": "sg:person.0740326163.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740326163.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Urology Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, 417 E 68th St, New York, New York 10065, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Winer", 
        "givenName": "Andrew G.", 
        "id": "sg:person.0655036135.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655036135.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Urology Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, 417 E 68th St, New York, New York 10065, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chevinsky", 
        "givenName": "Michael", 
        "id": "sg:person.0646600014.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646600014.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Urology Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, 417 E 68th St, New York, New York 10065, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jakubowski", 
        "givenName": "Christopher", 
        "id": "sg:person.0623365032.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623365032.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Department of Pathology, Memorial Sloan-Kettering Cancer Center, 417 E 68th St, New York, New York 10065, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Ying-Bei", 
        "id": "sg:person.0707173104.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707173104.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, 417 E 68th St, New York, New York 10065, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dong", 
        "givenName": "Yiyu", 
        "id": "sg:person.01227253441.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227253441.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Department of Pathology, Memorial Sloan-Kettering Cancer Center, 417 E 68th St, New York, New York 10065, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tickoo", 
        "givenName": "Satish K.", 
        "id": "sg:person.01115422372.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115422372.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Department of Pathology, Memorial Sloan-Kettering Cancer Center, 417 E 68th St, New York, New York 10065, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reuter", 
        "givenName": "Victor E.", 
        "id": "sg:person.014005711417.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014005711417.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Urology Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, 417 E 68th St, New York, New York 10065, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Russo", 
        "givenName": "Paul", 
        "id": "sg:person.01024627340.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024627340.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Urology Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, 417 E 68th St, New York, New York 10065, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coleman", 
        "givenName": "Jonathan A.", 
        "id": "sg:person.01144254715.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144254715.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "cBio Center, Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Compbio Collaboratory, Department of Cell Biology, Harvard Medical School, 450 Brookline Avenue, Boston, Massachusetts 02215-5450, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sander", 
        "givenName": "Chris", 
        "id": "sg:person.01265512777.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265512777.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Washington University in St. Louis", 
          "id": "https://www.grid.ac/institutes/grid.4367.6", 
          "name": [
            "Molecular Oncology, Department of Medicine, Siteman Cancer Center, Washington University, St. Louis, Missouri 63110, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hsieh", 
        "givenName": "James J.", 
        "id": "sg:person.0631053106.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631053106.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Department of Computational Biology, Memorial Sloan-Kettering Cancer Center, 417 E 68th St, New York, New York 10065, USA", 
            "Urology Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, 417 E 68th St, New York, New York 10065, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hakimi", 
        "givenName": "A. Ari", 
        "id": "sg:person.0742156567.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742156567.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cell.2016.06.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000636814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1476-4598-5-55", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002743293", 
          "https://doi.org/10.1186/1476-4598-5-55"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.urolonc.2013.06.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005500139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0408105102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007202718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2407-12-310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007633523", 
          "https://doi.org/10.1186/1471-2407-12-310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-14-1020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008138883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008312342", 
          "https://doi.org/10.1038/nature11005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.25516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008443664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.25516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008443664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ccr.2014.07.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009109480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1947601909359929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009973851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1947601909359929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009973851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.85.5.1571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010004049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gcc.2870030403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010288653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-7-166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010693402", 
          "https://doi.org/10.1186/1471-2164-7-166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0002-9440(10)65147-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011459136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.27947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011807880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/2159-8290.cd-12-0095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011831914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1111840108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016078211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/kxj037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016217055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gku1057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019715884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1505917", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020388973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/ddt539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021938669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.2699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023979397", 
          "https://doi.org/10.1038/ng.2699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025078414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btv428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027447499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.1014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031490994", 
          "https://doi.org/10.1038/ng.1014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eururo.2014.06.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033040797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/2159-8290.cd-11-0098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034129589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng0597-68", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035254306", 
          "https://doi.org/10.1038/ng0597-68"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eururo.2011.10.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036020196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036060000", 
          "https://doi.org/10.1038/nature11003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.082099299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037994416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1541-7786.mcr-13-0396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039078887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1541-7786.mcr-13-0396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039078887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-03-3383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039985972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-08-1229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040451967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms3126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043513580", 
          "https://doi.org/10.1038/ncomms3126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.urolonc.2014.02.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043661121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci86120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043994167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-13-2345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045936722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/kxp045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046814516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eururo.2005.11.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050591199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050842404", 
          "https://doi.org/10.1038/nature12222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btw325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051615528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1541-7786.mcr-12-0117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052399562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0142(19970901)80:5<987::aid-cncr24>3.0.co;2-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052797786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pbc.21099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053417149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075753458", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078943201", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079840843", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079921433", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082172258", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083106612", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrdp.2017.9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084129661", 
          "https://doi.org/10.1038/nrdp.2017.9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-05-10", 
    "datePublishedReg": "2017-05-10", 
    "description": "The utility of cancer cell lines is affected by the similarity to endogenous tumour cells. Here we compare genomic data from 65 kidney-derived cell lines from the Cancer Cell Line Encyclopedia and the COSMIC Cell Lines Project to three renal cancer subtypes from The Cancer Genome Atlas: clear cell renal cell carcinoma (ccRCC, also known as kidney renal clear cell carcinoma), papillary (pRCC, also known as kidney papillary) and chromophobe (chRCC, also known as kidney chromophobe) renal cell carcinoma. Clustering copy number alterations shows that most cell lines resemble ccRCC, a few (including some often used as models of ccRCC) resemble pRCC, and none resemble chRCC. Human ccRCC tumours clustering with cell lines display clinical and genomic features of more aggressive disease, suggesting that cell lines best represent aggressive tumours. We stratify mutations and copy number alterations for important kidney cancer genes by the consistency between databases, and classify cell lines into established gene expression-based indolent and aggressive subtypes. Our results could aid investigators in analysing appropriate renal cancer cell lines.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ncomms15165", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2438793", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2696332", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "type": "Periodical"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Analysis of renal cancer cell lines from two major resources enables genomics-guided cell line selection", 
    "pagination": "15165", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e2a07b709ffe8d7da39eb1be2e35641b81e9c98d77b34ed3dc12a21d5c1ab55d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28489074"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101528555"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ncomms15165"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085378076"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ncomms15165", 
      "https://app.dimensions.ai/details/publication/pub.1085378076"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000356_0000000356/records_57883_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/ncomms15165"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms15165'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms15165'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms15165'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms15165'


 

This table displays all metadata directly associated to this object as RDF triples.

355 TRIPLES      21 PREDICATES      86 URIs      26 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ncomms15165 schema:about N519eba74c7a34301bc0e42e9f7647bf7
2 Nc4991ee1b61346a6ad3a074907d64ed9
3 Ncae00d68226a47ffa0802cdd35ba7820
4 Ncdf91f77f6a043489d3fc96ef3fa9375
5 Ndfbceacc78d04893917013231e18030c
6 Ne133af8f3a4c48e2ba6ce83ae01d2fc1
7 Neef7cb26552b47b58f0cc2adf33df7bf
8 anzsrc-for:11
9 anzsrc-for:1112
10 schema:author N949d277b66044b16965137b9a5f87018
11 schema:citation sg:pub.10.1038/nature11003
12 sg:pub.10.1038/nature11005
13 sg:pub.10.1038/nature12222
14 sg:pub.10.1038/ncomms3126
15 sg:pub.10.1038/ng.1014
16 sg:pub.10.1038/ng.2699
17 sg:pub.10.1038/ng0597-68
18 sg:pub.10.1038/nrdp.2017.9
19 sg:pub.10.1186/1471-2164-7-166
20 sg:pub.10.1186/1471-2407-12-310
21 sg:pub.10.1186/1476-4598-5-55
22 https://app.dimensions.ai/details/publication/pub.1075753458
23 https://app.dimensions.ai/details/publication/pub.1078943201
24 https://app.dimensions.ai/details/publication/pub.1079840843
25 https://app.dimensions.ai/details/publication/pub.1079921433
26 https://app.dimensions.ai/details/publication/pub.1082172258
27 https://app.dimensions.ai/details/publication/pub.1083106612
28 https://doi.org/10.1002/(sici)1097-0142(19970901)80:5<987::aid-cncr24>3.0.co;2-r
29 https://doi.org/10.1002/cncr.27947
30 https://doi.org/10.1002/gcc.2870030403
31 https://doi.org/10.1002/ijc.25516
32 https://doi.org/10.1002/pbc.21099
33 https://doi.org/10.1016/j.ccr.2014.07.014
34 https://doi.org/10.1016/j.cell.2016.06.017
35 https://doi.org/10.1016/j.eururo.2005.11.035
36 https://doi.org/10.1016/j.eururo.2011.10.007
37 https://doi.org/10.1016/j.eururo.2014.06.053
38 https://doi.org/10.1016/j.urolonc.2013.06.011
39 https://doi.org/10.1016/j.urolonc.2014.02.021
40 https://doi.org/10.1016/s0002-9440(10)65147-4
41 https://doi.org/10.1056/nejmoa1505917
42 https://doi.org/10.1073/pnas.0408105102
43 https://doi.org/10.1073/pnas.082099299
44 https://doi.org/10.1073/pnas.1111840108
45 https://doi.org/10.1073/pnas.85.5.1571
46 https://doi.org/10.1093/bioinformatics/bts034
47 https://doi.org/10.1093/bioinformatics/btv428
48 https://doi.org/10.1093/bioinformatics/btw325
49 https://doi.org/10.1093/biostatistics/kxj037
50 https://doi.org/10.1093/biostatistics/kxp045
51 https://doi.org/10.1093/hmg/ddt539
52 https://doi.org/10.1093/nar/gku1057
53 https://doi.org/10.1158/0008-5472.can-03-3383
54 https://doi.org/10.1158/0008-5472.can-14-1020
55 https://doi.org/10.1158/1078-0432.ccr-08-1229
56 https://doi.org/10.1158/1078-0432.ccr-13-2345
57 https://doi.org/10.1158/1541-7786.mcr-12-0117
58 https://doi.org/10.1158/1541-7786.mcr-13-0396
59 https://doi.org/10.1158/2159-8290.cd-11-0098
60 https://doi.org/10.1158/2159-8290.cd-12-0095
61 https://doi.org/10.1172/jci86120
62 https://doi.org/10.1177/1947601909359929
63 schema:datePublished 2017-05-10
64 schema:datePublishedReg 2017-05-10
65 schema:description The utility of cancer cell lines is affected by the similarity to endogenous tumour cells. Here we compare genomic data from 65 kidney-derived cell lines from the Cancer Cell Line Encyclopedia and the COSMIC Cell Lines Project to three renal cancer subtypes from The Cancer Genome Atlas: clear cell renal cell carcinoma (ccRCC, also known as kidney renal clear cell carcinoma), papillary (pRCC, also known as kidney papillary) and chromophobe (chRCC, also known as kidney chromophobe) renal cell carcinoma. Clustering copy number alterations shows that most cell lines resemble ccRCC, a few (including some often used as models of ccRCC) resemble pRCC, and none resemble chRCC. Human ccRCC tumours clustering with cell lines display clinical and genomic features of more aggressive disease, suggesting that cell lines best represent aggressive tumours. We stratify mutations and copy number alterations for important kidney cancer genes by the consistency between databases, and classify cell lines into established gene expression-based indolent and aggressive subtypes. Our results could aid investigators in analysing appropriate renal cancer cell lines.
66 schema:genre research_article
67 schema:inLanguage en
68 schema:isAccessibleForFree true
69 schema:isPartOf Nf9a64b00a0f145dd9e532349203e1a3b
70 sg:journal.1043282
71 schema:name Analysis of renal cancer cell lines from two major resources enables genomics-guided cell line selection
72 schema:pagination 15165
73 schema:productId N1f7cfaee85434e9bbcd8cbaa939bd1ec
74 N483873147906481985c030c3df56cafb
75 N871dcab80b4d420db479155731f77a5b
76 Ne50b5df51e56483c922661b3cb1f9775
77 Ne8b2d2584291408ba9e36ddc5a88fdbb
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085378076
79 https://doi.org/10.1038/ncomms15165
80 schema:sdDatePublished 2019-04-11T11:26
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher Nbb72416925fc43bf8b2c8a0fb6281a4a
83 schema:url http://www.nature.com/articles/ncomms15165
84 sgo:license sg:explorer/license/
85 sgo:sdDataset articles
86 rdf:type schema:ScholarlyArticle
87 N06e2abfec849413bb56fd9e924833c5f rdf:first sg:person.0707173104.58
88 rdf:rest N1fc2dbaf20074f82b3d1eaa4ff8f3076
89 N118d1b0374e649cc98d4d8551363a64e rdf:first sg:person.0623365032.53
90 rdf:rest N06e2abfec849413bb56fd9e924833c5f
91 N1f7cfaee85434e9bbcd8cbaa939bd1ec schema:name doi
92 schema:value 10.1038/ncomms15165
93 rdf:type schema:PropertyValue
94 N1fc2dbaf20074f82b3d1eaa4ff8f3076 rdf:first sg:person.01227253441.35
95 rdf:rest Nc3c1707c575042a79a67f2d98d5ed998
96 N3901dd4068084c1cbc794195deb71f2e rdf:first sg:person.0655036135.12
97 rdf:rest Nda091491f802484e8417f3868db5ead6
98 N483873147906481985c030c3df56cafb schema:name readcube_id
99 schema:value e2a07b709ffe8d7da39eb1be2e35641b81e9c98d77b34ed3dc12a21d5c1ab55d
100 rdf:type schema:PropertyValue
101 N519eba74c7a34301bc0e42e9f7647bf7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Humans
103 rdf:type schema:DefinedTerm
104 N6257b37aa5a044cd94e327dc2cf058bd rdf:first sg:person.0742156567.08
105 rdf:rest rdf:nil
106 N64f0571c3c314db7afef34f67aa3e6ff rdf:first sg:person.0631053106.24
107 rdf:rest N6257b37aa5a044cd94e327dc2cf058bd
108 N871dcab80b4d420db479155731f77a5b schema:name pubmed_id
109 schema:value 28489074
110 rdf:type schema:PropertyValue
111 N8bf9333b77234ef693b4d7940c1f5a09 rdf:first sg:person.01144254715.36
112 rdf:rest Ncb8a4d176a9e4d5da4927664a5198b40
113 N949d277b66044b16965137b9a5f87018 rdf:first sg:person.0740326163.34
114 rdf:rest N3901dd4068084c1cbc794195deb71f2e
115 N9928a3bd17974ce2bbce43f547265086 rdf:first sg:person.014005711417.01
116 rdf:rest Nebbd451b400a4a7681d6de9b40190d6d
117 Nbb72416925fc43bf8b2c8a0fb6281a4a schema:name Springer Nature - SN SciGraph project
118 rdf:type schema:Organization
119 Nc3c1707c575042a79a67f2d98d5ed998 rdf:first sg:person.01115422372.71
120 rdf:rest N9928a3bd17974ce2bbce43f547265086
121 Nc4991ee1b61346a6ad3a074907d64ed9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Kidney Neoplasms
123 rdf:type schema:DefinedTerm
124 Ncae00d68226a47ffa0802cdd35ba7820 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Kidney
126 rdf:type schema:DefinedTerm
127 Ncb8a4d176a9e4d5da4927664a5198b40 rdf:first sg:person.01265512777.31
128 rdf:rest N64f0571c3c314db7afef34f67aa3e6ff
129 Ncdf91f77f6a043489d3fc96ef3fa9375 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Carcinoma, Renal Cell
131 rdf:type schema:DefinedTerm
132 Nda091491f802484e8417f3868db5ead6 rdf:first sg:person.0646600014.27
133 rdf:rest N118d1b0374e649cc98d4d8551363a64e
134 Ndfbceacc78d04893917013231e18030c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Cell Line, Tumor
136 rdf:type schema:DefinedTerm
137 Ne133af8f3a4c48e2ba6ce83ae01d2fc1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Genomics
139 rdf:type schema:DefinedTerm
140 Ne50b5df51e56483c922661b3cb1f9775 schema:name nlm_unique_id
141 schema:value 101528555
142 rdf:type schema:PropertyValue
143 Ne8b2d2584291408ba9e36ddc5a88fdbb schema:name dimensions_id
144 schema:value pub.1085378076
145 rdf:type schema:PropertyValue
146 Nebbd451b400a4a7681d6de9b40190d6d rdf:first sg:person.01024627340.52
147 rdf:rest N8bf9333b77234ef693b4d7940c1f5a09
148 Neef7cb26552b47b58f0cc2adf33df7bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Genome, Human
150 rdf:type schema:DefinedTerm
151 Nf9a64b00a0f145dd9e532349203e1a3b schema:volumeNumber 8
152 rdf:type schema:PublicationVolume
153 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
154 schema:name Medical and Health Sciences
155 rdf:type schema:DefinedTerm
156 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
157 schema:name Oncology and Carcinogenesis
158 rdf:type schema:DefinedTerm
159 sg:grant.2438793 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms15165
160 rdf:type schema:MonetaryGrant
161 sg:grant.2696332 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms15165
162 rdf:type schema:MonetaryGrant
163 sg:journal.1043282 schema:issn 2041-1723
164 schema:name Nature Communications
165 rdf:type schema:Periodical
166 sg:person.01024627340.52 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
167 schema:familyName Russo
168 schema:givenName Paul
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024627340.52
170 rdf:type schema:Person
171 sg:person.01115422372.71 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
172 schema:familyName Tickoo
173 schema:givenName Satish K.
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115422372.71
175 rdf:type schema:Person
176 sg:person.01144254715.36 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
177 schema:familyName Coleman
178 schema:givenName Jonathan A.
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144254715.36
180 rdf:type schema:Person
181 sg:person.01227253441.35 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
182 schema:familyName Dong
183 schema:givenName Yiyu
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227253441.35
185 rdf:type schema:Person
186 sg:person.01265512777.31 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
187 schema:familyName Sander
188 schema:givenName Chris
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265512777.31
190 rdf:type schema:Person
191 sg:person.014005711417.01 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
192 schema:familyName Reuter
193 schema:givenName Victor E.
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014005711417.01
195 rdf:type schema:Person
196 sg:person.0623365032.53 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
197 schema:familyName Jakubowski
198 schema:givenName Christopher
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623365032.53
200 rdf:type schema:Person
201 sg:person.0631053106.24 schema:affiliation https://www.grid.ac/institutes/grid.4367.6
202 schema:familyName Hsieh
203 schema:givenName James J.
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631053106.24
205 rdf:type schema:Person
206 sg:person.0646600014.27 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
207 schema:familyName Chevinsky
208 schema:givenName Michael
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646600014.27
210 rdf:type schema:Person
211 sg:person.0655036135.12 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
212 schema:familyName Winer
213 schema:givenName Andrew G.
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655036135.12
215 rdf:type schema:Person
216 sg:person.0707173104.58 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
217 schema:familyName Chen
218 schema:givenName Ying-Bei
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707173104.58
220 rdf:type schema:Person
221 sg:person.0740326163.34 schema:affiliation https://www.grid.ac/institutes/grid.59734.3c
222 schema:familyName Sinha
223 schema:givenName Rileen
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740326163.34
225 rdf:type schema:Person
226 sg:person.0742156567.08 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
227 schema:familyName Hakimi
228 schema:givenName A. Ari
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742156567.08
230 rdf:type schema:Person
231 sg:pub.10.1038/nature11003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036060000
232 https://doi.org/10.1038/nature11003
233 rdf:type schema:CreativeWork
234 sg:pub.10.1038/nature11005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008312342
235 https://doi.org/10.1038/nature11005
236 rdf:type schema:CreativeWork
237 sg:pub.10.1038/nature12222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050842404
238 https://doi.org/10.1038/nature12222
239 rdf:type schema:CreativeWork
240 sg:pub.10.1038/ncomms3126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043513580
241 https://doi.org/10.1038/ncomms3126
242 rdf:type schema:CreativeWork
243 sg:pub.10.1038/ng.1014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031490994
244 https://doi.org/10.1038/ng.1014
245 rdf:type schema:CreativeWork
246 sg:pub.10.1038/ng.2699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023979397
247 https://doi.org/10.1038/ng.2699
248 rdf:type schema:CreativeWork
249 sg:pub.10.1038/ng0597-68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035254306
250 https://doi.org/10.1038/ng0597-68
251 rdf:type schema:CreativeWork
252 sg:pub.10.1038/nrdp.2017.9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084129661
253 https://doi.org/10.1038/nrdp.2017.9
254 rdf:type schema:CreativeWork
255 sg:pub.10.1186/1471-2164-7-166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010693402
256 https://doi.org/10.1186/1471-2164-7-166
257 rdf:type schema:CreativeWork
258 sg:pub.10.1186/1471-2407-12-310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007633523
259 https://doi.org/10.1186/1471-2407-12-310
260 rdf:type schema:CreativeWork
261 sg:pub.10.1186/1476-4598-5-55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002743293
262 https://doi.org/10.1186/1476-4598-5-55
263 rdf:type schema:CreativeWork
264 https://app.dimensions.ai/details/publication/pub.1075753458 schema:CreativeWork
265 https://app.dimensions.ai/details/publication/pub.1078943201 schema:CreativeWork
266 https://app.dimensions.ai/details/publication/pub.1079840843 schema:CreativeWork
267 https://app.dimensions.ai/details/publication/pub.1079921433 schema:CreativeWork
268 https://app.dimensions.ai/details/publication/pub.1082172258 schema:CreativeWork
269 https://app.dimensions.ai/details/publication/pub.1083106612 schema:CreativeWork
270 https://doi.org/10.1002/(sici)1097-0142(19970901)80:5<987::aid-cncr24>3.0.co;2-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1052797786
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1002/cncr.27947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011807880
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1002/gcc.2870030403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010288653
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1002/ijc.25516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008443664
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1002/pbc.21099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053417149
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1016/j.ccr.2014.07.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009109480
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1016/j.cell.2016.06.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000636814
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1016/j.eururo.2005.11.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050591199
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1016/j.eururo.2011.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036020196
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1016/j.eururo.2014.06.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033040797
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1016/j.urolonc.2013.06.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005500139
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1016/j.urolonc.2014.02.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043661121
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1016/s0002-9440(10)65147-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011459136
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1056/nejmoa1505917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020388973
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1073/pnas.0408105102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007202718
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1073/pnas.082099299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037994416
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1073/pnas.1111840108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016078211
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1073/pnas.85.5.1571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010004049
305 rdf:type schema:CreativeWork
306 https://doi.org/10.1093/bioinformatics/bts034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025078414
307 rdf:type schema:CreativeWork
308 https://doi.org/10.1093/bioinformatics/btv428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027447499
309 rdf:type schema:CreativeWork
310 https://doi.org/10.1093/bioinformatics/btw325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051615528
311 rdf:type schema:CreativeWork
312 https://doi.org/10.1093/biostatistics/kxj037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016217055
313 rdf:type schema:CreativeWork
314 https://doi.org/10.1093/biostatistics/kxp045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046814516
315 rdf:type schema:CreativeWork
316 https://doi.org/10.1093/hmg/ddt539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021938669
317 rdf:type schema:CreativeWork
318 https://doi.org/10.1093/nar/gku1057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019715884
319 rdf:type schema:CreativeWork
320 https://doi.org/10.1158/0008-5472.can-03-3383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039985972
321 rdf:type schema:CreativeWork
322 https://doi.org/10.1158/0008-5472.can-14-1020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008138883
323 rdf:type schema:CreativeWork
324 https://doi.org/10.1158/1078-0432.ccr-08-1229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040451967
325 rdf:type schema:CreativeWork
326 https://doi.org/10.1158/1078-0432.ccr-13-2345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045936722
327 rdf:type schema:CreativeWork
328 https://doi.org/10.1158/1541-7786.mcr-12-0117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052399562
329 rdf:type schema:CreativeWork
330 https://doi.org/10.1158/1541-7786.mcr-13-0396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039078887
331 rdf:type schema:CreativeWork
332 https://doi.org/10.1158/2159-8290.cd-11-0098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034129589
333 rdf:type schema:CreativeWork
334 https://doi.org/10.1158/2159-8290.cd-12-0095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011831914
335 rdf:type schema:CreativeWork
336 https://doi.org/10.1172/jci86120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043994167
337 rdf:type schema:CreativeWork
338 https://doi.org/10.1177/1947601909359929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009973851
339 rdf:type schema:CreativeWork
340 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
341 schema:name cBio Center, Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Compbio Collaboratory, Department of Cell Biology, Harvard Medical School, 450 Brookline Avenue, Boston, Massachusetts 02215-5450, USA
342 rdf:type schema:Organization
343 https://www.grid.ac/institutes/grid.4367.6 schema:alternateName Washington University in St. Louis
344 schema:name Molecular Oncology, Department of Medicine, Siteman Cancer Center, Washington University, St. Louis, Missouri 63110, USA
345 rdf:type schema:Organization
346 https://www.grid.ac/institutes/grid.51462.34 schema:alternateName Memorial Sloan Kettering Cancer Center
347 schema:name Department of Computational Biology, Memorial Sloan-Kettering Cancer Center, 417 E 68th St, New York, New York 10065, USA
348 Department of Pathology, Memorial Sloan-Kettering Cancer Center, 417 E 68th St, New York, New York 10065, USA
349 Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, 417 E 68th St, New York, New York 10065, USA
350 Urology Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, 417 E 68th St, New York, New York 10065, USA
351 rdf:type schema:Organization
352 https://www.grid.ac/institutes/grid.59734.3c schema:alternateName Icahn School of Medicine at Mount Sinai
353 schema:name Department of Computational Biology, Memorial Sloan-Kettering Cancer Center, 417 E 68th St, New York, New York 10065, USA
354 Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1498, New York, New York 10029, USA
355 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...