Complex picture for likelihood of ENSO-driven flood hazard View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-03-15

AUTHORS

R Emerton, H L Cloke, E M Stephens, E Zsoter, S J Woolnough, F Pappenberger

ABSTRACT

El Niño and La Niña events, the extremes of ENSO climate variability, influence river flow and flooding at the global scale. Estimates of the historical probability of extreme (high or low) precipitation are used to provide vital information on the likelihood of adverse impacts during extreme ENSO events. However, the nonlinearity between precipitation and flood magnitude motivates the need for estimation of historical probabilities using analysis of hydrological data sets. Here, this analysis is undertaken using the ERA-20CM-R river flow reconstruction for the twentieth century. Our results show that the likelihood of increased or decreased flood hazard during ENSO events is much more complex than is often perceived and reported; probabilities vary greatly across the globe, with large uncertainties inherent in the data and clear differences when comparing the hydrological analysis to precipitation. More... »

PAGES

14796

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ncomms14796

DOI

http://dx.doi.org/10.1038/ncomms14796

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084129004

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28294113


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "European Centre for Medium-Range Weather Forecasts", 
          "id": "https://www.grid.ac/institutes/grid.42781.38", 
          "name": [
            "Department of Geography and Environmental Science, University of Reading, Reading RG6 6AB, UK.", 
            "Department of Meteorology, University of Reading, Reading RG6 6BB, UK.", 
            "European Centre for Medium-Range Weather Forecasts, Reading RG2 9AX, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Emerton", 
        "givenName": "R", 
        "id": "sg:person.015171131771.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015171131771.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Reading", 
          "id": "https://www.grid.ac/institutes/grid.9435.b", 
          "name": [
            "Department of Geography and Environmental Science, University of Reading, Reading RG6 6AB, UK.", 
            "Department of Meteorology, University of Reading, Reading RG6 6BB, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cloke", 
        "givenName": "H L", 
        "id": "sg:person.010201517621.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010201517621.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Reading", 
          "id": "https://www.grid.ac/institutes/grid.9435.b", 
          "name": [
            "Department of Geography and Environmental Science, University of Reading, Reading RG6 6AB, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stephens", 
        "givenName": "E M", 
        "id": "sg:person.013400744051.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013400744051.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Centre for Medium-Range Weather Forecasts", 
          "id": "https://www.grid.ac/institutes/grid.42781.38", 
          "name": [
            "Department of Geography and Environmental Science, University of Reading, Reading RG6 6AB, UK.", 
            "European Centre for Medium-Range Weather Forecasts, Reading RG2 9AX, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zsoter", 
        "givenName": "E", 
        "id": "sg:person.011145157313.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011145157313.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Reading", 
          "id": "https://www.grid.ac/institutes/grid.9435.b", 
          "name": [
            "National Centre for Atmospheric Science, Department of Meteorology, University of Reading, Reading RG6 6BB, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Woolnough", 
        "givenName": "S J", 
        "id": "sg:person.01326421200.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326421200.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Centre for Medium-Range Weather Forecasts", 
          "id": "https://www.grid.ac/institutes/grid.42781.38", 
          "name": [
            "European Centre for Medium-Range Weather Forecasts, Reading RG2 9AX, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pappenberger", 
        "givenName": "F", 
        "id": "sg:person.013576170771.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013576170771.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.5194/hess-18-47-2014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006174011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1132588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015053580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0477(1997)078<2771:tdoeno>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016455407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0477(2001)082<0619:ppaawe>2.3.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016664116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate2100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017951288", 
          "https://doi.org/10.1038/nclimate2100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/essd-5-71-2013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022210229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/533179b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025420966", 
          "https://doi.org/10.1038/533179b"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-17-1161-2013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027046019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/wat2.1137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027074638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.2528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029368932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02626660209492950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030020788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate2743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034203996", 
          "https://doi.org/10.1038/nclimate2743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2015gl066779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034343341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-d-13-00117.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037472830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2016.05.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039955209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2016.05.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039955209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2016.05.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039955209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2016.05.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039955209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jhm-d-15-0138.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040265192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1409822111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041121708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/327497a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042452886", 
          "https://doi.org/10.1038/327497a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crm.2013.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043064909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2010wr009726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050434950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate2492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050620869", 
          "https://doi.org/10.1038/nclimate2492"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-03-15", 
    "datePublishedReg": "2017-03-15", 
    "description": "El Ni\u00f1o and La Ni\u00f1a events, the extremes of ENSO climate variability, influence river flow and flooding at the global scale. Estimates of the historical probability of extreme (high or low) precipitation are used to provide vital information on the likelihood of adverse impacts during extreme ENSO events. However, the nonlinearity between precipitation and flood magnitude motivates the need for estimation of historical probabilities using analysis of hydrological data sets. Here, this analysis is undertaken using the ERA-20CM-R river flow reconstruction for the twentieth century. Our results show that the likelihood of increased or decreased flood hazard during ENSO events is much more complex than is often perceived and reported; probabilities vary greatly across the globe, with large uncertainties inherent in the data and clear differences when comparing the hydrological analysis to precipitation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ncomms14796", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2773199", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2776361", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4057329", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2753275", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "type": "Periodical"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Complex picture for likelihood of ENSO-driven flood hazard", 
    "pagination": "14796", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6cbf8215634a213c69fd06cce92c15f6d3b493c7e7aa1136136a222acd0cc479"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28294113"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101528555"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ncomms14796"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084129004"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ncomms14796", 
      "https://app.dimensions.ai/details/publication/pub.1084129004"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000575.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/ncomms/2017/170315/ncomms14796/full/ncomms14796.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms14796'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms14796'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms14796'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms14796'


 

This table displays all metadata directly associated to this object as RDF triples.

183 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ncomms14796 schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author N1a06787d6c864d7084cb2976d5d25d5b
4 schema:citation sg:pub.10.1038/327497a0
5 sg:pub.10.1038/533179b
6 sg:pub.10.1038/nclimate2100
7 sg:pub.10.1038/nclimate2492
8 sg:pub.10.1038/nclimate2743
9 https://doi.org/10.1002/2015gl066779
10 https://doi.org/10.1002/qj.2528
11 https://doi.org/10.1002/wat2.1137
12 https://doi.org/10.1016/j.crm.2013.12.002
13 https://doi.org/10.1016/j.jhydrol.2016.05.045
14 https://doi.org/10.1029/2010wr009726
15 https://doi.org/10.1073/pnas.1409822111
16 https://doi.org/10.1080/02626660209492950
17 https://doi.org/10.1126/science.1132588
18 https://doi.org/10.1175/1520-0477(1997)078<2771:tdoeno>2.0.co;2
19 https://doi.org/10.1175/1520-0477(2001)082<0619:ppaawe>2.3.co;2
20 https://doi.org/10.1175/bams-d-13-00117.1
21 https://doi.org/10.1175/jhm-d-15-0138.1
22 https://doi.org/10.5194/essd-5-71-2013
23 https://doi.org/10.5194/hess-17-1161-2013
24 https://doi.org/10.5194/hess-18-47-2014
25 schema:datePublished 2017-03-15
26 schema:datePublishedReg 2017-03-15
27 schema:description El Niño and La Niña events, the extremes of ENSO climate variability, influence river flow and flooding at the global scale. Estimates of the historical probability of extreme (high or low) precipitation are used to provide vital information on the likelihood of adverse impacts during extreme ENSO events. However, the nonlinearity between precipitation and flood magnitude motivates the need for estimation of historical probabilities using analysis of hydrological data sets. Here, this analysis is undertaken using the ERA-20CM-R river flow reconstruction for the twentieth century. Our results show that the likelihood of increased or decreased flood hazard during ENSO events is much more complex than is often perceived and reported; probabilities vary greatly across the globe, with large uncertainties inherent in the data and clear differences when comparing the hydrological analysis to precipitation.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf N47170745e2804a56a37f5cadd67b0552
32 sg:journal.1043282
33 schema:name Complex picture for likelihood of ENSO-driven flood hazard
34 schema:pagination 14796
35 schema:productId N1adda331734c4fe290d4c0813f01f01c
36 N1c24973bf8e744bfa95077e8fcf9716f
37 N2afb7184c74547b5b147677b65f9fc42
38 N50cf4d031bd44f70bb0b59c47f7c461a
39 Nf9ac24c631944a2e9e4211238cac0403
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084129004
41 https://doi.org/10.1038/ncomms14796
42 schema:sdDatePublished 2019-04-10T22:43
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher Nc3276282f9044419b1a9514af788e0f6
45 schema:url http://www.nature.com/ncomms/2017/170315/ncomms14796/full/ncomms14796.html
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N0342930b02d941fb883758d15da6b401 rdf:first sg:person.013576170771.53
50 rdf:rest rdf:nil
51 N1a06787d6c864d7084cb2976d5d25d5b rdf:first sg:person.015171131771.41
52 rdf:rest N70f425437b2541e49c191f2807894540
53 N1adda331734c4fe290d4c0813f01f01c schema:name doi
54 schema:value 10.1038/ncomms14796
55 rdf:type schema:PropertyValue
56 N1c24973bf8e744bfa95077e8fcf9716f schema:name readcube_id
57 schema:value 6cbf8215634a213c69fd06cce92c15f6d3b493c7e7aa1136136a222acd0cc479
58 rdf:type schema:PropertyValue
59 N25f3115191e548aa9359a0689c47c095 rdf:first sg:person.013400744051.63
60 rdf:rest Ne7f30aa45130495d882958042e5f9915
61 N2afb7184c74547b5b147677b65f9fc42 schema:name nlm_unique_id
62 schema:value 101528555
63 rdf:type schema:PropertyValue
64 N47170745e2804a56a37f5cadd67b0552 schema:volumeNumber 8
65 rdf:type schema:PublicationVolume
66 N50cf4d031bd44f70bb0b59c47f7c461a schema:name dimensions_id
67 schema:value pub.1084129004
68 rdf:type schema:PropertyValue
69 N70f425437b2541e49c191f2807894540 rdf:first sg:person.010201517621.46
70 rdf:rest N25f3115191e548aa9359a0689c47c095
71 Nb4aecb2c1727492792db2cc333300cf4 rdf:first sg:person.01326421200.02
72 rdf:rest N0342930b02d941fb883758d15da6b401
73 Nc3276282f9044419b1a9514af788e0f6 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 Ne7f30aa45130495d882958042e5f9915 rdf:first sg:person.011145157313.34
76 rdf:rest Nb4aecb2c1727492792db2cc333300cf4
77 Nf9ac24c631944a2e9e4211238cac0403 schema:name pubmed_id
78 schema:value 28294113
79 rdf:type schema:PropertyValue
80 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
81 schema:name Earth Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
84 schema:name Physical Geography and Environmental Geoscience
85 rdf:type schema:DefinedTerm
86 sg:grant.2753275 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms14796
87 rdf:type schema:MonetaryGrant
88 sg:grant.2773199 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms14796
89 rdf:type schema:MonetaryGrant
90 sg:grant.2776361 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms14796
91 rdf:type schema:MonetaryGrant
92 sg:grant.4057329 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms14796
93 rdf:type schema:MonetaryGrant
94 sg:journal.1043282 schema:issn 2041-1723
95 schema:name Nature Communications
96 rdf:type schema:Periodical
97 sg:person.010201517621.46 schema:affiliation https://www.grid.ac/institutes/grid.9435.b
98 schema:familyName Cloke
99 schema:givenName H L
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010201517621.46
101 rdf:type schema:Person
102 sg:person.011145157313.34 schema:affiliation https://www.grid.ac/institutes/grid.42781.38
103 schema:familyName Zsoter
104 schema:givenName E
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011145157313.34
106 rdf:type schema:Person
107 sg:person.01326421200.02 schema:affiliation https://www.grid.ac/institutes/grid.9435.b
108 schema:familyName Woolnough
109 schema:givenName S J
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326421200.02
111 rdf:type schema:Person
112 sg:person.013400744051.63 schema:affiliation https://www.grid.ac/institutes/grid.9435.b
113 schema:familyName Stephens
114 schema:givenName E M
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013400744051.63
116 rdf:type schema:Person
117 sg:person.013576170771.53 schema:affiliation https://www.grid.ac/institutes/grid.42781.38
118 schema:familyName Pappenberger
119 schema:givenName F
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013576170771.53
121 rdf:type schema:Person
122 sg:person.015171131771.41 schema:affiliation https://www.grid.ac/institutes/grid.42781.38
123 schema:familyName Emerton
124 schema:givenName R
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015171131771.41
126 rdf:type schema:Person
127 sg:pub.10.1038/327497a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042452886
128 https://doi.org/10.1038/327497a0
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/533179b schema:sameAs https://app.dimensions.ai/details/publication/pub.1025420966
131 https://doi.org/10.1038/533179b
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/nclimate2100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017951288
134 https://doi.org/10.1038/nclimate2100
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/nclimate2492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050620869
137 https://doi.org/10.1038/nclimate2492
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/nclimate2743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034203996
140 https://doi.org/10.1038/nclimate2743
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1002/2015gl066779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034343341
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1002/qj.2528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029368932
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1002/wat2.1137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027074638
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.crm.2013.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043064909
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.jhydrol.2016.05.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039955209
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1029/2010wr009726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050434950
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1073/pnas.1409822111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041121708
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1080/02626660209492950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030020788
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1126/science.1132588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015053580
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1175/1520-0477(1997)078<2771:tdoeno>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016455407
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1175/1520-0477(2001)082<0619:ppaawe>2.3.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016664116
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1175/bams-d-13-00117.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037472830
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1175/jhm-d-15-0138.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040265192
167 rdf:type schema:CreativeWork
168 https://doi.org/10.5194/essd-5-71-2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022210229
169 rdf:type schema:CreativeWork
170 https://doi.org/10.5194/hess-17-1161-2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027046019
171 rdf:type schema:CreativeWork
172 https://doi.org/10.5194/hess-18-47-2014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006174011
173 rdf:type schema:CreativeWork
174 https://www.grid.ac/institutes/grid.42781.38 schema:alternateName European Centre for Medium-Range Weather Forecasts
175 schema:name Department of Geography and Environmental Science, University of Reading, Reading RG6 6AB, UK.
176 Department of Meteorology, University of Reading, Reading RG6 6BB, UK.
177 European Centre for Medium-Range Weather Forecasts, Reading RG2 9AX, UK.
178 rdf:type schema:Organization
179 https://www.grid.ac/institutes/grid.9435.b schema:alternateName University of Reading
180 schema:name Department of Geography and Environmental Science, University of Reading, Reading RG6 6AB, UK.
181 Department of Meteorology, University of Reading, Reading RG6 6BB, UK.
182 National Centre for Atmospheric Science, Department of Meteorology, University of Reading, Reading RG6 6BB, UK.
183 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...