Ontology type: schema:ScholarlyArticle Open Access: True
2017-04-03
AUTHORSSören Boyn, Julie Grollier, Gwendal Lecerf, Bin Xu, Nicolas Locatelli, Stéphane Fusil, Stéphanie Girod, Cécile Carrétéro, Karin Garcia, Stéphane Xavier, Jean Tomas, Laurent Bellaiche, Manuel Bibes, Agnès Barthélémy, Sylvain Saïghi, Vincent Garcia
ABSTRACTIn the brain, learning is achieved through the ability of synapses to reconfigure the strength by which they connect neurons (synaptic plasticity). In promising solid-state synapses called memristors, conductance can be finely tuned by voltage pulses and set to evolve according to a biological learning rule called spike-timing-dependent plasticity (STDP). Future neuromorphic architectures will comprise billions of such nanosynapses, which require a clear understanding of the physical mechanisms responsible for plasticity. Here we report on synapses based on ferroelectric tunnel junctions and show that STDP can be harnessed from inhomogeneous polarization switching. Through combined scanning probe imaging, electrical transport and atomic-scale molecular dynamics, we demonstrate that conductance variations can be modelled by the nucleation-dominated reversal of domains. Based on this physical model, our simulations show that arrays of ferroelectric nanosynapses can autonomously learn to recognize patterns in a predictable way, opening the path towards unsupervised learning in spiking neural networks. More... »
PAGES14736
http://scigraph.springernature.com/pub.10.1038/ncomms14736
DOIhttp://dx.doi.org/10.1038/ncomms14736
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1084508653
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/28368007
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Neurosciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Medical and Health Sciences",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Electricity",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Iron",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Neural Networks (Computer)",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Time Factors",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"name": [
"Unit\u00e9 Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Universit\u00e9 Paris-Saclay, Palaiseau 91767, France"
],
"type": "Organization"
},
"familyName": "Boyn",
"givenName": "S\u00f6ren",
"id": "sg:person.0641437754.50",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641437754.50"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Unit\u00e9 Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Universit\u00e9 Paris-Saclay, Palaiseau 91767, France"
],
"type": "Organization"
},
"familyName": "Grollier",
"givenName": "Julie",
"id": "sg:person.0657026031.15",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657026031.15"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratoire de l'Integration du Materiau au Systeme",
"id": "https://www.grid.ac/institutes/grid.462974.a",
"name": [
"University of Bordeaux, IMS, UMR 5218, Talence F-33405, France"
],
"type": "Organization"
},
"familyName": "Lecerf",
"givenName": "Gwendal",
"id": "sg:person.01262607056.13",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262607056.13"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Arkansas at Fayetteville",
"id": "https://www.grid.ac/institutes/grid.411017.2",
"name": [
"Department of Physics and Institute for Nanoscience and Engineering, University of Arkansas Fayetteville, Arkansas 72701, USA"
],
"type": "Organization"
},
"familyName": "Xu",
"givenName": "Bin",
"id": "sg:person.016627002261.78",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016627002261.78"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Centre de Nanosciences et de Nanotechnologies, CNRS, Univ. Paris Sud, Universit\u00e9 Paris-Saclay, C2N\u2014Orsay, Orsay cedex 91405, France"
],
"type": "Organization"
},
"familyName": "Locatelli",
"givenName": "Nicolas",
"id": "sg:person.0735137430.71",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735137430.71"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Unit\u00e9 Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Universit\u00e9 Paris-Saclay, Palaiseau 91767, France"
],
"type": "Organization"
},
"familyName": "Fusil",
"givenName": "St\u00e9phane",
"id": "sg:person.0651523016.93",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651523016.93"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Unit\u00e9 Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Universit\u00e9 Paris-Saclay, Palaiseau 91767, France"
],
"type": "Organization"
},
"familyName": "Girod",
"givenName": "St\u00e9phanie",
"id": "sg:person.014525605313.85",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014525605313.85"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Unit\u00e9 Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Universit\u00e9 Paris-Saclay, Palaiseau 91767, France"
],
"type": "Organization"
},
"familyName": "Carr\u00e9t\u00e9ro",
"givenName": "C\u00e9cile",
"id": "sg:person.01172123703.87",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172123703.87"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Unit\u00e9 Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Universit\u00e9 Paris-Saclay, Palaiseau 91767, France"
],
"type": "Organization"
},
"familyName": "Garcia",
"givenName": "Karin",
"id": "sg:person.01336660333.05",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336660333.05"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Thales Group (France)",
"id": "https://www.grid.ac/institutes/grid.410363.3",
"name": [
"Thales Research and Technology, 1 Avenue Augustin Fresnel, Campus de I\u2019Ecole Polytechnique, Palaiseau 91767, France"
],
"type": "Organization"
},
"familyName": "Xavier",
"givenName": "St\u00e9phane",
"id": "sg:person.0765225121.16",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765225121.16"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratoire de l'Integration du Materiau au Systeme",
"id": "https://www.grid.ac/institutes/grid.462974.a",
"name": [
"University of Bordeaux, IMS, UMR 5218, Talence F-33405, France"
],
"type": "Organization"
},
"familyName": "Tomas",
"givenName": "Jean",
"id": "sg:person.010660364203.03",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010660364203.03"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Arkansas at Fayetteville",
"id": "https://www.grid.ac/institutes/grid.411017.2",
"name": [
"Department of Physics and Institute for Nanoscience and Engineering, University of Arkansas Fayetteville, Arkansas 72701, USA"
],
"type": "Organization"
},
"familyName": "Bellaiche",
"givenName": "Laurent",
"id": "sg:person.01260054754.81",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260054754.81"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Unit\u00e9 Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Universit\u00e9 Paris-Saclay, Palaiseau 91767, France"
],
"type": "Organization"
},
"familyName": "Bibes",
"givenName": "Manuel",
"id": "sg:person.0612212000.53",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612212000.53"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Unit\u00e9 Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Universit\u00e9 Paris-Saclay, Palaiseau 91767, France"
],
"type": "Organization"
},
"familyName": "Barth\u00e9l\u00e9my",
"givenName": "Agn\u00e8s",
"id": "sg:person.01013423203.54",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013423203.54"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratoire de l'Integration du Materiau au Systeme",
"id": "https://www.grid.ac/institutes/grid.462974.a",
"name": [
"University of Bordeaux, IMS, UMR 5218, Talence F-33405, France"
],
"type": "Organization"
},
"familyName": "Sa\u00efghi",
"givenName": "Sylvain",
"id": "sg:person.0705115506.81",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705115506.81"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Unit\u00e9 Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Universit\u00e9 Paris-Saclay, Palaiseau 91767, France"
],
"type": "Organization"
},
"familyName": "Garcia",
"givenName": "Vincent",
"id": "sg:person.01143725621.06",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143725621.06"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/81453",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001869026",
"https://doi.org/10.1038/81453"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/81453",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001869026",
"https://doi.org/10.1038/81453"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/acs.nanolett.5b00104",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004464123"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.99.267602",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005949313"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.99.267602",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005949313"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/nl201040y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006456676"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/0957-4484/22/25/254023",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009312937"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature14539",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010020120",
"https://doi.org/10.1038/nature14539"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/science.275.5297.213",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010157370"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.112.147601",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012296451"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.112.147601",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012296451"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.3389/fnins.2011.00026",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017196895"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.4864100",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017220023"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/nl073225h",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021056823"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/nl073225h",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021056823"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/srep10150",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024044550",
"https://doi.org/10.1038/srep10150"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/adfm.201101935",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025203329"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/science.1126230",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030509924"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/nn401378t",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033826362"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/nl904092h",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036030317"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/nl904092h",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036030317"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/srep10492",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036778361",
"https://doi.org/10.1038/srep10492"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature14441",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037542087",
"https://doi.org/10.1038/nature14441"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1162/neco.2008.06-08-804",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039891861"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nmat3415",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039892598",
"https://doi.org/10.1038/nmat3415"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/ncomms5289",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040067292",
"https://doi.org/10.1038/ncomms5289"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nmat3070",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040755767",
"https://doi.org/10.1038/nmat3070"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/srep05333",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041459761",
"https://doi.org/10.1038/srep05333"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/0957-4484/22/25/254001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042704754"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nnano.2012.240",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045168777",
"https://doi.org/10.1038/nnano.2012.240"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4324/9781410612403",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045501890"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1073/pnas.0906949106",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050934503"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature06932",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052714473",
"https://doi.org/10.1038/nature06932"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/srep01619",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052977312",
"https://doi.org/10.1038/srep01619"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.2010605",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1057835792"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.66.214109",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060605116"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.66.214109",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060605116"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.81.140401",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060632242"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.81.140401",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060632242"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.109.067203",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060760173"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.109.067203",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060760173"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.99.227602",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060834974"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.99.227602",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060834974"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tct.1971.1083337",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061579020"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/ted.2013.2263000",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061595544"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1523/jneurosci.18-24-10464.1998",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1083361411"
],
"type": "CreativeWork"
}
],
"datePublished": "2017-04-03",
"datePublishedReg": "2017-04-03",
"description": "In the brain, learning is achieved through the ability of synapses to reconfigure the strength by which they connect neurons (synaptic plasticity). In promising solid-state synapses called memristors, conductance can be finely tuned by voltage pulses and set to evolve according to a biological learning rule called spike-timing-dependent plasticity (STDP). Future neuromorphic architectures will comprise billions of such nanosynapses, which require a clear understanding of the physical mechanisms responsible for plasticity. Here we report on synapses based on ferroelectric tunnel junctions and show that STDP can be harnessed from inhomogeneous polarization switching. Through combined scanning probe imaging, electrical transport and atomic-scale molecular dynamics, we demonstrate that conductance variations can be modelled by the nucleation-dominated reversal of domains. Based on this physical model, our simulations show that arrays of ferroelectric nanosynapses can autonomously learn to recognize patterns in a predictable way, opening the path towards unsupervised learning in spiking neural networks.",
"genre": "research_article",
"id": "sg:pub.10.1038/ncomms14736",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.4379742",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.3781260",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.6493690",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1043282",
"issn": [
"2041-1723"
],
"name": "Nature Communications",
"type": "Periodical"
},
{
"type": "PublicationVolume",
"volumeNumber": "8"
}
],
"name": "Learning through ferroelectric domain dynamics in solid-state synapses",
"pagination": "14736",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"c07f0ea78a780f9d861bc9cfd4d6d00f58c54b0059d4fc6774c32b20ac1348f0"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"28368007"
]
},
{
"name": "nlm_unique_id",
"type": "PropertyValue",
"value": [
"101528555"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/ncomms14736"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1084508653"
]
}
],
"sameAs": [
"https://doi.org/10.1038/ncomms14736",
"https://app.dimensions.ai/details/publication/pub.1084508653"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T21:55",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000608.jsonl",
"type": "ScholarlyArticle",
"url": "https://www.nature.com/articles/ncomms14736"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms14736'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms14736'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms14736'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms14736'
This table displays all metadata directly associated to this object as RDF triples.
341 TRIPLES
21 PREDICATES
68 URIs
23 LITERALS
12 BLANK NODES