Learning through ferroelectric domain dynamics in solid-state synapses View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-04-03

AUTHORS

Sören Boyn, Julie Grollier, Gwendal Lecerf, Bin Xu, Nicolas Locatelli, Stéphane Fusil, Stéphanie Girod, Cécile Carrétéro, Karin Garcia, Stéphane Xavier, Jean Tomas, Laurent Bellaiche, Manuel Bibes, Agnès Barthélémy, Sylvain Saïghi, Vincent Garcia

ABSTRACT

In the brain, learning is achieved through the ability of synapses to reconfigure the strength by which they connect neurons (synaptic plasticity). In promising solid-state synapses called memristors, conductance can be finely tuned by voltage pulses and set to evolve according to a biological learning rule called spike-timing-dependent plasticity (STDP). Future neuromorphic architectures will comprise billions of such nanosynapses, which require a clear understanding of the physical mechanisms responsible for plasticity. Here we report on synapses based on ferroelectric tunnel junctions and show that STDP can be harnessed from inhomogeneous polarization switching. Through combined scanning probe imaging, electrical transport and atomic-scale molecular dynamics, we demonstrate that conductance variations can be modelled by the nucleation-dominated reversal of domains. Based on this physical model, our simulations show that arrays of ferroelectric nanosynapses can autonomously learn to recognize patterns in a predictable way, opening the path towards unsupervised learning in spiking neural networks. More... »

PAGES

14736

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ncomms14736

DOI

http://dx.doi.org/10.1038/ncomms14736

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084508653

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28368007


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electricity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Iron", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neural Networks (Computer)", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Unit\u00e9 Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Universit\u00e9 Paris-Saclay, Palaiseau 91767, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boyn", 
        "givenName": "S\u00f6ren", 
        "id": "sg:person.0641437754.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641437754.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Unit\u00e9 Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Universit\u00e9 Paris-Saclay, Palaiseau 91767, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grollier", 
        "givenName": "Julie", 
        "id": "sg:person.0657026031.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657026031.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de l'Integration du Materiau au Systeme", 
          "id": "https://www.grid.ac/institutes/grid.462974.a", 
          "name": [
            "University of Bordeaux, IMS, UMR 5218, Talence F-33405, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lecerf", 
        "givenName": "Gwendal", 
        "id": "sg:person.01262607056.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262607056.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Arkansas at Fayetteville", 
          "id": "https://www.grid.ac/institutes/grid.411017.2", 
          "name": [
            "Department of Physics and Institute for Nanoscience and Engineering, University of Arkansas Fayetteville, Arkansas 72701, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Bin", 
        "id": "sg:person.016627002261.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016627002261.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Centre de Nanosciences et de Nanotechnologies, CNRS, Univ. Paris Sud, Universit\u00e9 Paris-Saclay, C2N\u2014Orsay, Orsay cedex 91405, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Locatelli", 
        "givenName": "Nicolas", 
        "id": "sg:person.0735137430.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735137430.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Unit\u00e9 Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Universit\u00e9 Paris-Saclay, Palaiseau 91767, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fusil", 
        "givenName": "St\u00e9phane", 
        "id": "sg:person.0651523016.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651523016.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Unit\u00e9 Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Universit\u00e9 Paris-Saclay, Palaiseau 91767, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Girod", 
        "givenName": "St\u00e9phanie", 
        "id": "sg:person.014525605313.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014525605313.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Unit\u00e9 Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Universit\u00e9 Paris-Saclay, Palaiseau 91767, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carr\u00e9t\u00e9ro", 
        "givenName": "C\u00e9cile", 
        "id": "sg:person.01172123703.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172123703.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Unit\u00e9 Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Universit\u00e9 Paris-Saclay, Palaiseau 91767, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garcia", 
        "givenName": "Karin", 
        "id": "sg:person.01336660333.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336660333.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Thales Group (France)", 
          "id": "https://www.grid.ac/institutes/grid.410363.3", 
          "name": [
            "Thales Research and Technology, 1 Avenue Augustin Fresnel, Campus de I\u2019Ecole Polytechnique, Palaiseau 91767, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xavier", 
        "givenName": "St\u00e9phane", 
        "id": "sg:person.0765225121.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765225121.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de l'Integration du Materiau au Systeme", 
          "id": "https://www.grid.ac/institutes/grid.462974.a", 
          "name": [
            "University of Bordeaux, IMS, UMR 5218, Talence F-33405, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tomas", 
        "givenName": "Jean", 
        "id": "sg:person.010660364203.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010660364203.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Arkansas at Fayetteville", 
          "id": "https://www.grid.ac/institutes/grid.411017.2", 
          "name": [
            "Department of Physics and Institute for Nanoscience and Engineering, University of Arkansas Fayetteville, Arkansas 72701, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bellaiche", 
        "givenName": "Laurent", 
        "id": "sg:person.01260054754.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260054754.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Unit\u00e9 Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Universit\u00e9 Paris-Saclay, Palaiseau 91767, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bibes", 
        "givenName": "Manuel", 
        "id": "sg:person.0612212000.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612212000.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Unit\u00e9 Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Universit\u00e9 Paris-Saclay, Palaiseau 91767, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barth\u00e9l\u00e9my", 
        "givenName": "Agn\u00e8s", 
        "id": "sg:person.01013423203.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013423203.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de l'Integration du Materiau au Systeme", 
          "id": "https://www.grid.ac/institutes/grid.462974.a", 
          "name": [
            "University of Bordeaux, IMS, UMR 5218, Talence F-33405, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sa\u00efghi", 
        "givenName": "Sylvain", 
        "id": "sg:person.0705115506.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705115506.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Unit\u00e9 Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Universit\u00e9 Paris-Saclay, Palaiseau 91767, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garcia", 
        "givenName": "Vincent", 
        "id": "sg:person.01143725621.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143725621.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/81453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001869026", 
          "https://doi.org/10.1038/81453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/81453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001869026", 
          "https://doi.org/10.1038/81453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.5b00104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004464123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.267602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005949313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.267602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005949313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl201040y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006456676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/22/25/254023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009312937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010020120", 
          "https://doi.org/10.1038/nature14539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.275.5297.213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010157370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.147601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012296451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.147601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012296451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnins.2011.00026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017196895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4864100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017220023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl073225h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021056823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl073225h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021056823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep10150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024044550", 
          "https://doi.org/10.1038/srep10150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.201101935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025203329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1126230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030509924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn401378t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033826362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl904092h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036030317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl904092h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036030317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep10492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036778361", 
          "https://doi.org/10.1038/srep10492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037542087", 
          "https://doi.org/10.1038/nature14441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.2008.06-08-804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039891861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039892598", 
          "https://doi.org/10.1038/nmat3415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms5289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040067292", 
          "https://doi.org/10.1038/ncomms5289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040755767", 
          "https://doi.org/10.1038/nmat3070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep05333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041459761", 
          "https://doi.org/10.1038/srep05333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/22/25/254001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042704754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045168777", 
          "https://doi.org/10.1038/nnano.2012.240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4324/9781410612403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045501890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0906949106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050934503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052714473", 
          "https://doi.org/10.1038/nature06932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep01619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052977312", 
          "https://doi.org/10.1038/srep01619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2010605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057835792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.66.214109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060605116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.66.214109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060605116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.140401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060632242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.140401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060632242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.067203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.067203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.227602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.227602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tct.1971.1083337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061579020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ted.2013.2263000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061595544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.18-24-10464.1998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083361411"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-04-03", 
    "datePublishedReg": "2017-04-03", 
    "description": "In the brain, learning is achieved through the ability of synapses to reconfigure the strength by which they connect neurons (synaptic plasticity). In promising solid-state synapses called memristors, conductance can be finely tuned by voltage pulses and set to evolve according to a biological learning rule called spike-timing-dependent plasticity (STDP). Future neuromorphic architectures will comprise billions of such nanosynapses, which require a clear understanding of the physical mechanisms responsible for plasticity. Here we report on synapses based on ferroelectric tunnel junctions and show that STDP can be harnessed from inhomogeneous polarization switching. Through combined scanning probe imaging, electrical transport and atomic-scale molecular dynamics, we demonstrate that conductance variations can be modelled by the nucleation-dominated reversal of domains. Based on this physical model, our simulations show that arrays of ferroelectric nanosynapses can autonomously learn to recognize patterns in a predictable way, opening the path towards unsupervised learning in spiking neural networks.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ncomms14736", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4379742", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3781260", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6493690", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "type": "Periodical"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Learning through ferroelectric domain dynamics in solid-state synapses", 
    "pagination": "14736", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c07f0ea78a780f9d861bc9cfd4d6d00f58c54b0059d4fc6774c32b20ac1348f0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28368007"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101528555"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ncomms14736"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084508653"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ncomms14736", 
      "https://app.dimensions.ai/details/publication/pub.1084508653"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000608.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/ncomms14736"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms14736'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms14736'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms14736'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms14736'


 

This table displays all metadata directly associated to this object as RDF triples.

341 TRIPLES      21 PREDICATES      68 URIs      23 LITERALS      12 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ncomms14736 schema:about N563c20348d7e4444b1780c86be3ff095
2 N95338bb95f32423f933dbcd750d289ba
3 Nb0cf8e2177494f05a8bef8dc899e23f3
4 Ne8ce7d68b7494b448c20df3ec3f3eddb
5 anzsrc-for:11
6 anzsrc-for:1109
7 schema:author N53f5089e37e64117a6d89f927dd544bc
8 schema:citation sg:pub.10.1038/81453
9 sg:pub.10.1038/nature06932
10 sg:pub.10.1038/nature14441
11 sg:pub.10.1038/nature14539
12 sg:pub.10.1038/ncomms5289
13 sg:pub.10.1038/nmat3070
14 sg:pub.10.1038/nmat3415
15 sg:pub.10.1038/nnano.2012.240
16 sg:pub.10.1038/srep01619
17 sg:pub.10.1038/srep05333
18 sg:pub.10.1038/srep10150
19 sg:pub.10.1038/srep10492
20 https://doi.org/10.1002/adfm.201101935
21 https://doi.org/10.1021/acs.nanolett.5b00104
22 https://doi.org/10.1021/nl073225h
23 https://doi.org/10.1021/nl201040y
24 https://doi.org/10.1021/nl904092h
25 https://doi.org/10.1021/nn401378t
26 https://doi.org/10.1063/1.2010605
27 https://doi.org/10.1063/1.4864100
28 https://doi.org/10.1073/pnas.0906949106
29 https://doi.org/10.1088/0957-4484/22/25/254001
30 https://doi.org/10.1088/0957-4484/22/25/254023
31 https://doi.org/10.1103/physrevb.66.214109
32 https://doi.org/10.1103/physrevb.81.140401
33 https://doi.org/10.1103/physrevlett.109.067203
34 https://doi.org/10.1103/physrevlett.112.147601
35 https://doi.org/10.1103/physrevlett.99.227602
36 https://doi.org/10.1103/physrevlett.99.267602
37 https://doi.org/10.1109/tct.1971.1083337
38 https://doi.org/10.1109/ted.2013.2263000
39 https://doi.org/10.1126/science.1126230
40 https://doi.org/10.1126/science.275.5297.213
41 https://doi.org/10.1162/neco.2008.06-08-804
42 https://doi.org/10.1523/jneurosci.18-24-10464.1998
43 https://doi.org/10.3389/fnins.2011.00026
44 https://doi.org/10.4324/9781410612403
45 schema:datePublished 2017-04-03
46 schema:datePublishedReg 2017-04-03
47 schema:description In the brain, learning is achieved through the ability of synapses to reconfigure the strength by which they connect neurons (synaptic plasticity). In promising solid-state synapses called memristors, conductance can be finely tuned by voltage pulses and set to evolve according to a biological learning rule called spike-timing-dependent plasticity (STDP). Future neuromorphic architectures will comprise billions of such nanosynapses, which require a clear understanding of the physical mechanisms responsible for plasticity. Here we report on synapses based on ferroelectric tunnel junctions and show that STDP can be harnessed from inhomogeneous polarization switching. Through combined scanning probe imaging, electrical transport and atomic-scale molecular dynamics, we demonstrate that conductance variations can be modelled by the nucleation-dominated reversal of domains. Based on this physical model, our simulations show that arrays of ferroelectric nanosynapses can autonomously learn to recognize patterns in a predictable way, opening the path towards unsupervised learning in spiking neural networks.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree true
51 schema:isPartOf Na05344b0356641ee96d4370880f250c3
52 sg:journal.1043282
53 schema:name Learning through ferroelectric domain dynamics in solid-state synapses
54 schema:pagination 14736
55 schema:productId N3f3dd1bc3ab54d65ac43840c7699243c
56 N503e75ed55bf4a03b4bdd5b154e66b21
57 N68fec01874dd4f2ab50e6b50172ffa3a
58 Naa1fecf14f5a4542ac69dbfed55c9180
59 Ned6da3b6bdfe45d2a09311e52cf2de7a
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084508653
61 https://doi.org/10.1038/ncomms14736
62 schema:sdDatePublished 2019-04-10T21:55
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher Nbe485740c85440e0b0523cf18dfd93b3
65 schema:url https://www.nature.com/articles/ncomms14736
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N0692c5bcbde94c69aacf437557d2f5a0 rdf:first sg:person.016627002261.78
70 rdf:rest N74ebced1449f4bcdb0ef7fcaf38c7941
71 N08ede2a61085414b91ed50fbd7d9257c schema:name Unité Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, Palaiseau 91767, France
72 rdf:type schema:Organization
73 N1983de56ef9348c6bb11e9b325f061ed rdf:first sg:person.01336660333.05
74 rdf:rest N78e98c24b5a544349ce7e0b7a6df2d5c
75 N3143bdb622d54544a07ceaad9c47af37 rdf:first sg:person.0705115506.81
76 rdf:rest Neb73f381556b499a80af4719cd88cd7b
77 N3e862e168ebb42d9b9b9f7ef45db0b0f schema:name Centre de Nanosciences et de Nanotechnologies, CNRS, Univ. Paris Sud, Université Paris-Saclay, C2N—Orsay, Orsay cedex 91405, France
78 rdf:type schema:Organization
79 N3e8a2b3522ca4cf28a50a5b828e51652 rdf:first sg:person.010660364203.03
80 rdf:rest N93f4a5f8669b4be6b695ce010aeb4487
81 N3f3dd1bc3ab54d65ac43840c7699243c schema:name doi
82 schema:value 10.1038/ncomms14736
83 rdf:type schema:PropertyValue
84 N3f44c5d1fc714535a7fa57f33472de80 schema:name Unité Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, Palaiseau 91767, France
85 rdf:type schema:Organization
86 N4076109e468a4a2e9ee96e3f83008885 rdf:first sg:person.014525605313.85
87 rdf:rest N6aeca398864e4c0d98b75558309b7aed
88 N41acae9b71c0410da58670972702f6d6 schema:name Unité Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, Palaiseau 91767, France
89 rdf:type schema:Organization
90 N4a6e3656ce4f4d72a61e7238f15d15d5 schema:name Unité Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, Palaiseau 91767, France
91 rdf:type schema:Organization
92 N503e75ed55bf4a03b4bdd5b154e66b21 schema:name pubmed_id
93 schema:value 28368007
94 rdf:type schema:PropertyValue
95 N53f5089e37e64117a6d89f927dd544bc rdf:first sg:person.0641437754.50
96 rdf:rest N8c34f3edbde244ac9fcebc6d23a60ed4
97 N563c20348d7e4444b1780c86be3ff095 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Iron
99 rdf:type schema:DefinedTerm
100 N68fec01874dd4f2ab50e6b50172ffa3a schema:name nlm_unique_id
101 schema:value 101528555
102 rdf:type schema:PropertyValue
103 N6aeca398864e4c0d98b75558309b7aed rdf:first sg:person.01172123703.87
104 rdf:rest N1983de56ef9348c6bb11e9b325f061ed
105 N73536e2f136c4a2aa001b5b7f2cd53b1 schema:name Unité Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, Palaiseau 91767, France
106 rdf:type schema:Organization
107 N74ebced1449f4bcdb0ef7fcaf38c7941 rdf:first sg:person.0735137430.71
108 rdf:rest Nf65b5c5359574987b76dd8eec9c87d8b
109 N78e98c24b5a544349ce7e0b7a6df2d5c rdf:first sg:person.0765225121.16
110 rdf:rest N3e8a2b3522ca4cf28a50a5b828e51652
111 N8c34f3edbde244ac9fcebc6d23a60ed4 rdf:first sg:person.0657026031.15
112 rdf:rest Nb25839f7e4644f98b6ad8759d4dae5ee
113 N93f4a5f8669b4be6b695ce010aeb4487 rdf:first sg:person.01260054754.81
114 rdf:rest Nfe64da9a3c76422faaf646dad6914422
115 N95338bb95f32423f933dbcd750d289ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Electricity
117 rdf:type schema:DefinedTerm
118 N95f4bb285041414999afc81c9ce6aeb1 rdf:first sg:person.01013423203.54
119 rdf:rest N3143bdb622d54544a07ceaad9c47af37
120 N9bdda0482a634bca82e20968f2e2adeb schema:name Unité Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, Palaiseau 91767, France
121 rdf:type schema:Organization
122 Na05344b0356641ee96d4370880f250c3 schema:volumeNumber 8
123 rdf:type schema:PublicationVolume
124 Naa1fecf14f5a4542ac69dbfed55c9180 schema:name dimensions_id
125 schema:value pub.1084508653
126 rdf:type schema:PropertyValue
127 Naa94821e56b94a5b8465588cf4da6ed4 schema:name Unité Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, Palaiseau 91767, France
128 rdf:type schema:Organization
129 Nb0cf8e2177494f05a8bef8dc899e23f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Time Factors
131 rdf:type schema:DefinedTerm
132 Nb25839f7e4644f98b6ad8759d4dae5ee rdf:first sg:person.01262607056.13
133 rdf:rest N0692c5bcbde94c69aacf437557d2f5a0
134 Nb8cfcfd26a284d949a8a75acc36b1ba4 schema:name Unité Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, Palaiseau 91767, France
135 rdf:type schema:Organization
136 Nbe485740c85440e0b0523cf18dfd93b3 schema:name Springer Nature - SN SciGraph project
137 rdf:type schema:Organization
138 Nd8283cd345e545a995387d4fbbb6004c schema:name Unité Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, Palaiseau 91767, France
139 rdf:type schema:Organization
140 Ne8ce7d68b7494b448c20df3ec3f3eddb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Neural Networks (Computer)
142 rdf:type schema:DefinedTerm
143 Neb73f381556b499a80af4719cd88cd7b rdf:first sg:person.01143725621.06
144 rdf:rest rdf:nil
145 Ned6da3b6bdfe45d2a09311e52cf2de7a schema:name readcube_id
146 schema:value c07f0ea78a780f9d861bc9cfd4d6d00f58c54b0059d4fc6774c32b20ac1348f0
147 rdf:type schema:PropertyValue
148 Nf65b5c5359574987b76dd8eec9c87d8b rdf:first sg:person.0651523016.93
149 rdf:rest N4076109e468a4a2e9ee96e3f83008885
150 Nfe64da9a3c76422faaf646dad6914422 rdf:first sg:person.0612212000.53
151 rdf:rest N95f4bb285041414999afc81c9ce6aeb1
152 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
153 schema:name Medical and Health Sciences
154 rdf:type schema:DefinedTerm
155 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
156 schema:name Neurosciences
157 rdf:type schema:DefinedTerm
158 sg:grant.3781260 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms14736
159 rdf:type schema:MonetaryGrant
160 sg:grant.4379742 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms14736
161 rdf:type schema:MonetaryGrant
162 sg:grant.6493690 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms14736
163 rdf:type schema:MonetaryGrant
164 sg:journal.1043282 schema:issn 2041-1723
165 schema:name Nature Communications
166 rdf:type schema:Periodical
167 sg:person.01013423203.54 schema:affiliation N73536e2f136c4a2aa001b5b7f2cd53b1
168 schema:familyName Barthélémy
169 schema:givenName Agnès
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013423203.54
171 rdf:type schema:Person
172 sg:person.010660364203.03 schema:affiliation https://www.grid.ac/institutes/grid.462974.a
173 schema:familyName Tomas
174 schema:givenName Jean
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010660364203.03
176 rdf:type schema:Person
177 sg:person.01143725621.06 schema:affiliation N4a6e3656ce4f4d72a61e7238f15d15d5
178 schema:familyName Garcia
179 schema:givenName Vincent
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143725621.06
181 rdf:type schema:Person
182 sg:person.01172123703.87 schema:affiliation Nd8283cd345e545a995387d4fbbb6004c
183 schema:familyName Carrétéro
184 schema:givenName Cécile
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172123703.87
186 rdf:type schema:Person
187 sg:person.01260054754.81 schema:affiliation https://www.grid.ac/institutes/grid.411017.2
188 schema:familyName Bellaiche
189 schema:givenName Laurent
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260054754.81
191 rdf:type schema:Person
192 sg:person.01262607056.13 schema:affiliation https://www.grid.ac/institutes/grid.462974.a
193 schema:familyName Lecerf
194 schema:givenName Gwendal
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262607056.13
196 rdf:type schema:Person
197 sg:person.01336660333.05 schema:affiliation N41acae9b71c0410da58670972702f6d6
198 schema:familyName Garcia
199 schema:givenName Karin
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336660333.05
201 rdf:type schema:Person
202 sg:person.014525605313.85 schema:affiliation N3f44c5d1fc714535a7fa57f33472de80
203 schema:familyName Girod
204 schema:givenName Stéphanie
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014525605313.85
206 rdf:type schema:Person
207 sg:person.016627002261.78 schema:affiliation https://www.grid.ac/institutes/grid.411017.2
208 schema:familyName Xu
209 schema:givenName Bin
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016627002261.78
211 rdf:type schema:Person
212 sg:person.0612212000.53 schema:affiliation Naa94821e56b94a5b8465588cf4da6ed4
213 schema:familyName Bibes
214 schema:givenName Manuel
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612212000.53
216 rdf:type schema:Person
217 sg:person.0641437754.50 schema:affiliation N08ede2a61085414b91ed50fbd7d9257c
218 schema:familyName Boyn
219 schema:givenName Sören
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641437754.50
221 rdf:type schema:Person
222 sg:person.0651523016.93 schema:affiliation Nb8cfcfd26a284d949a8a75acc36b1ba4
223 schema:familyName Fusil
224 schema:givenName Stéphane
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651523016.93
226 rdf:type schema:Person
227 sg:person.0657026031.15 schema:affiliation N9bdda0482a634bca82e20968f2e2adeb
228 schema:familyName Grollier
229 schema:givenName Julie
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657026031.15
231 rdf:type schema:Person
232 sg:person.0705115506.81 schema:affiliation https://www.grid.ac/institutes/grid.462974.a
233 schema:familyName Saïghi
234 schema:givenName Sylvain
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705115506.81
236 rdf:type schema:Person
237 sg:person.0735137430.71 schema:affiliation N3e862e168ebb42d9b9b9f7ef45db0b0f
238 schema:familyName Locatelli
239 schema:givenName Nicolas
240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735137430.71
241 rdf:type schema:Person
242 sg:person.0765225121.16 schema:affiliation https://www.grid.ac/institutes/grid.410363.3
243 schema:familyName Xavier
244 schema:givenName Stéphane
245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765225121.16
246 rdf:type schema:Person
247 sg:pub.10.1038/81453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001869026
248 https://doi.org/10.1038/81453
249 rdf:type schema:CreativeWork
250 sg:pub.10.1038/nature06932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052714473
251 https://doi.org/10.1038/nature06932
252 rdf:type schema:CreativeWork
253 sg:pub.10.1038/nature14441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037542087
254 https://doi.org/10.1038/nature14441
255 rdf:type schema:CreativeWork
256 sg:pub.10.1038/nature14539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010020120
257 https://doi.org/10.1038/nature14539
258 rdf:type schema:CreativeWork
259 sg:pub.10.1038/ncomms5289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040067292
260 https://doi.org/10.1038/ncomms5289
261 rdf:type schema:CreativeWork
262 sg:pub.10.1038/nmat3070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040755767
263 https://doi.org/10.1038/nmat3070
264 rdf:type schema:CreativeWork
265 sg:pub.10.1038/nmat3415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039892598
266 https://doi.org/10.1038/nmat3415
267 rdf:type schema:CreativeWork
268 sg:pub.10.1038/nnano.2012.240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045168777
269 https://doi.org/10.1038/nnano.2012.240
270 rdf:type schema:CreativeWork
271 sg:pub.10.1038/srep01619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052977312
272 https://doi.org/10.1038/srep01619
273 rdf:type schema:CreativeWork
274 sg:pub.10.1038/srep05333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041459761
275 https://doi.org/10.1038/srep05333
276 rdf:type schema:CreativeWork
277 sg:pub.10.1038/srep10150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024044550
278 https://doi.org/10.1038/srep10150
279 rdf:type schema:CreativeWork
280 sg:pub.10.1038/srep10492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036778361
281 https://doi.org/10.1038/srep10492
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1002/adfm.201101935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025203329
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1021/acs.nanolett.5b00104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004464123
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1021/nl073225h schema:sameAs https://app.dimensions.ai/details/publication/pub.1021056823
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1021/nl201040y schema:sameAs https://app.dimensions.ai/details/publication/pub.1006456676
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1021/nl904092h schema:sameAs https://app.dimensions.ai/details/publication/pub.1036030317
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1021/nn401378t schema:sameAs https://app.dimensions.ai/details/publication/pub.1033826362
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1063/1.2010605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057835792
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1063/1.4864100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017220023
298 rdf:type schema:CreativeWork
299 https://doi.org/10.1073/pnas.0906949106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050934503
300 rdf:type schema:CreativeWork
301 https://doi.org/10.1088/0957-4484/22/25/254001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042704754
302 rdf:type schema:CreativeWork
303 https://doi.org/10.1088/0957-4484/22/25/254023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009312937
304 rdf:type schema:CreativeWork
305 https://doi.org/10.1103/physrevb.66.214109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060605116
306 rdf:type schema:CreativeWork
307 https://doi.org/10.1103/physrevb.81.140401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060632242
308 rdf:type schema:CreativeWork
309 https://doi.org/10.1103/physrevlett.109.067203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060760173
310 rdf:type schema:CreativeWork
311 https://doi.org/10.1103/physrevlett.112.147601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012296451
312 rdf:type schema:CreativeWork
313 https://doi.org/10.1103/physrevlett.99.227602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060834974
314 rdf:type schema:CreativeWork
315 https://doi.org/10.1103/physrevlett.99.267602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005949313
316 rdf:type schema:CreativeWork
317 https://doi.org/10.1109/tct.1971.1083337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061579020
318 rdf:type schema:CreativeWork
319 https://doi.org/10.1109/ted.2013.2263000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061595544
320 rdf:type schema:CreativeWork
321 https://doi.org/10.1126/science.1126230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030509924
322 rdf:type schema:CreativeWork
323 https://doi.org/10.1126/science.275.5297.213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010157370
324 rdf:type schema:CreativeWork
325 https://doi.org/10.1162/neco.2008.06-08-804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039891861
326 rdf:type schema:CreativeWork
327 https://doi.org/10.1523/jneurosci.18-24-10464.1998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083361411
328 rdf:type schema:CreativeWork
329 https://doi.org/10.3389/fnins.2011.00026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017196895
330 rdf:type schema:CreativeWork
331 https://doi.org/10.4324/9781410612403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045501890
332 rdf:type schema:CreativeWork
333 https://www.grid.ac/institutes/grid.410363.3 schema:alternateName Thales Group (France)
334 schema:name Thales Research and Technology, 1 Avenue Augustin Fresnel, Campus de I’Ecole Polytechnique, Palaiseau 91767, France
335 rdf:type schema:Organization
336 https://www.grid.ac/institutes/grid.411017.2 schema:alternateName University of Arkansas at Fayetteville
337 schema:name Department of Physics and Institute for Nanoscience and Engineering, University of Arkansas Fayetteville, Arkansas 72701, USA
338 rdf:type schema:Organization
339 https://www.grid.ac/institutes/grid.462974.a schema:alternateName Laboratoire de l'Integration du Materiau au Systeme
340 schema:name University of Bordeaux, IMS, UMR 5218, Talence F-33405, France
341 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...