Learning through ferroelectric domain dynamics in solid-state synapses View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-04-03

AUTHORS

Sören Boyn, Julie Grollier, Gwendal Lecerf, Bin Xu, Nicolas Locatelli, Stéphane Fusil, Stéphanie Girod, Cécile Carrétéro, Karin Garcia, Stéphane Xavier, Jean Tomas, Laurent Bellaiche, Manuel Bibes, Agnès Barthélémy, Sylvain Saïghi, Vincent Garcia

ABSTRACT

In the brain, learning is achieved through the ability of synapses to reconfigure the strength by which they connect neurons (synaptic plasticity). In promising solid-state synapses called memristors, conductance can be finely tuned by voltage pulses and set to evolve according to a biological learning rule called spike-timing-dependent plasticity (STDP). Future neuromorphic architectures will comprise billions of such nanosynapses, which require a clear understanding of the physical mechanisms responsible for plasticity. Here we report on synapses based on ferroelectric tunnel junctions and show that STDP can be harnessed from inhomogeneous polarization switching. Through combined scanning probe imaging, electrical transport and atomic-scale molecular dynamics, we demonstrate that conductance variations can be modelled by the nucleation-dominated reversal of domains. Based on this physical model, our simulations show that arrays of ferroelectric nanosynapses can autonomously learn to recognize patterns in a predictable way, opening the path towards unsupervised learning in spiking neural networks. More... »

PAGES

14736

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ncomms14736

DOI

http://dx.doi.org/10.1038/ncomms14736

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084508653

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28368007


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electricity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Iron", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neural Networks (Computer)", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Unit\u00e9 Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Universit\u00e9 Paris-Saclay, Palaiseau 91767, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boyn", 
        "givenName": "S\u00f6ren", 
        "id": "sg:person.0641437754.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641437754.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Unit\u00e9 Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Universit\u00e9 Paris-Saclay, Palaiseau 91767, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grollier", 
        "givenName": "Julie", 
        "id": "sg:person.0657026031.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657026031.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de l'Integration du Materiau au Systeme", 
          "id": "https://www.grid.ac/institutes/grid.462974.a", 
          "name": [
            "University of Bordeaux, IMS, UMR 5218, Talence F-33405, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lecerf", 
        "givenName": "Gwendal", 
        "id": "sg:person.01262607056.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262607056.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Arkansas at Fayetteville", 
          "id": "https://www.grid.ac/institutes/grid.411017.2", 
          "name": [
            "Department of Physics and Institute for Nanoscience and Engineering, University of Arkansas Fayetteville, Arkansas 72701, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Bin", 
        "id": "sg:person.016627002261.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016627002261.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Centre de Nanosciences et de Nanotechnologies, CNRS, Univ. Paris Sud, Universit\u00e9 Paris-Saclay, C2N\u2014Orsay, Orsay cedex 91405, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Locatelli", 
        "givenName": "Nicolas", 
        "id": "sg:person.0735137430.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735137430.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Unit\u00e9 Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Universit\u00e9 Paris-Saclay, Palaiseau 91767, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fusil", 
        "givenName": "St\u00e9phane", 
        "id": "sg:person.0651523016.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651523016.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Unit\u00e9 Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Universit\u00e9 Paris-Saclay, Palaiseau 91767, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Girod", 
        "givenName": "St\u00e9phanie", 
        "id": "sg:person.014525605313.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014525605313.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Unit\u00e9 Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Universit\u00e9 Paris-Saclay, Palaiseau 91767, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carr\u00e9t\u00e9ro", 
        "givenName": "C\u00e9cile", 
        "id": "sg:person.01172123703.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172123703.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Unit\u00e9 Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Universit\u00e9 Paris-Saclay, Palaiseau 91767, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garcia", 
        "givenName": "Karin", 
        "id": "sg:person.01336660333.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336660333.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Thales Group (France)", 
          "id": "https://www.grid.ac/institutes/grid.410363.3", 
          "name": [
            "Thales Research and Technology, 1 Avenue Augustin Fresnel, Campus de I\u2019Ecole Polytechnique, Palaiseau 91767, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xavier", 
        "givenName": "St\u00e9phane", 
        "id": "sg:person.0765225121.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765225121.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de l'Integration du Materiau au Systeme", 
          "id": "https://www.grid.ac/institutes/grid.462974.a", 
          "name": [
            "University of Bordeaux, IMS, UMR 5218, Talence F-33405, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tomas", 
        "givenName": "Jean", 
        "id": "sg:person.010660364203.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010660364203.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Arkansas at Fayetteville", 
          "id": "https://www.grid.ac/institutes/grid.411017.2", 
          "name": [
            "Department of Physics and Institute for Nanoscience and Engineering, University of Arkansas Fayetteville, Arkansas 72701, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bellaiche", 
        "givenName": "Laurent", 
        "id": "sg:person.01260054754.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260054754.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Unit\u00e9 Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Universit\u00e9 Paris-Saclay, Palaiseau 91767, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bibes", 
        "givenName": "Manuel", 
        "id": "sg:person.0612212000.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612212000.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Unit\u00e9 Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Universit\u00e9 Paris-Saclay, Palaiseau 91767, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barth\u00e9l\u00e9my", 
        "givenName": "Agn\u00e8s", 
        "id": "sg:person.01013423203.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013423203.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de l'Integration du Materiau au Systeme", 
          "id": "https://www.grid.ac/institutes/grid.462974.a", 
          "name": [
            "University of Bordeaux, IMS, UMR 5218, Talence F-33405, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sa\u00efghi", 
        "givenName": "Sylvain", 
        "id": "sg:person.0705115506.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705115506.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Unit\u00e9 Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Universit\u00e9 Paris-Saclay, Palaiseau 91767, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garcia", 
        "givenName": "Vincent", 
        "id": "sg:person.01143725621.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143725621.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/81453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001869026", 
          "https://doi.org/10.1038/81453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/81453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001869026", 
          "https://doi.org/10.1038/81453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.5b00104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004464123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.267602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005949313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.267602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005949313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl201040y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006456676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/22/25/254023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009312937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010020120", 
          "https://doi.org/10.1038/nature14539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.275.5297.213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010157370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.147601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012296451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.147601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012296451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnins.2011.00026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017196895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4864100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017220023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl073225h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021056823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl073225h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021056823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep10150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024044550", 
          "https://doi.org/10.1038/srep10150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.201101935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025203329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1126230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030509924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn401378t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033826362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl904092h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036030317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl904092h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036030317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep10492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036778361", 
          "https://doi.org/10.1038/srep10492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037542087", 
          "https://doi.org/10.1038/nature14441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.2008.06-08-804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039891861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039892598", 
          "https://doi.org/10.1038/nmat3415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms5289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040067292", 
          "https://doi.org/10.1038/ncomms5289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040755767", 
          "https://doi.org/10.1038/nmat3070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep05333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041459761", 
          "https://doi.org/10.1038/srep05333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/22/25/254001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042704754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045168777", 
          "https://doi.org/10.1038/nnano.2012.240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4324/9781410612403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045501890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0906949106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050934503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052714473", 
          "https://doi.org/10.1038/nature06932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep01619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052977312", 
          "https://doi.org/10.1038/srep01619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2010605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057835792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.66.214109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060605116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.66.214109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060605116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.140401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060632242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.140401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060632242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.067203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.067203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.227602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.227602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tct.1971.1083337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061579020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ted.2013.2263000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061595544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.18-24-10464.1998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083361411"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-04-03", 
    "datePublishedReg": "2017-04-03", 
    "description": "In the brain, learning is achieved through the ability of synapses to reconfigure the strength by which they connect neurons (synaptic plasticity). In promising solid-state synapses called memristors, conductance can be finely tuned by voltage pulses and set to evolve according to a biological learning rule called spike-timing-dependent plasticity (STDP). Future neuromorphic architectures will comprise billions of such nanosynapses, which require a clear understanding of the physical mechanisms responsible for plasticity. Here we report on synapses based on ferroelectric tunnel junctions and show that STDP can be harnessed from inhomogeneous polarization switching. Through combined scanning probe imaging, electrical transport and atomic-scale molecular dynamics, we demonstrate that conductance variations can be modelled by the nucleation-dominated reversal of domains. Based on this physical model, our simulations show that arrays of ferroelectric nanosynapses can autonomously learn to recognize patterns in a predictable way, opening the path towards unsupervised learning in spiking neural networks.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ncomms14736", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4379742", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3781260", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6493690", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "type": "Periodical"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Learning through ferroelectric domain dynamics in solid-state synapses", 
    "pagination": "14736", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c07f0ea78a780f9d861bc9cfd4d6d00f58c54b0059d4fc6774c32b20ac1348f0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28368007"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101528555"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ncomms14736"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084508653"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ncomms14736", 
      "https://app.dimensions.ai/details/publication/pub.1084508653"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000608.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/ncomms14736"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms14736'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms14736'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms14736'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms14736'


 

This table displays all metadata directly associated to this object as RDF triples.

341 TRIPLES      21 PREDICATES      68 URIs      23 LITERALS      12 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ncomms14736 schema:about N1c57372e5d5a46dea86e1da23101ffe0
2 N85770c3808d449d3b6dd19d192202c75
3 Nda9d7ff810584f228cb89901a7d8aa7c
4 Nf7056e70ca91416db96ea9779de944f5
5 anzsrc-for:11
6 anzsrc-for:1109
7 schema:author N6e5cc8f561694677b5591831509718b1
8 schema:citation sg:pub.10.1038/81453
9 sg:pub.10.1038/nature06932
10 sg:pub.10.1038/nature14441
11 sg:pub.10.1038/nature14539
12 sg:pub.10.1038/ncomms5289
13 sg:pub.10.1038/nmat3070
14 sg:pub.10.1038/nmat3415
15 sg:pub.10.1038/nnano.2012.240
16 sg:pub.10.1038/srep01619
17 sg:pub.10.1038/srep05333
18 sg:pub.10.1038/srep10150
19 sg:pub.10.1038/srep10492
20 https://doi.org/10.1002/adfm.201101935
21 https://doi.org/10.1021/acs.nanolett.5b00104
22 https://doi.org/10.1021/nl073225h
23 https://doi.org/10.1021/nl201040y
24 https://doi.org/10.1021/nl904092h
25 https://doi.org/10.1021/nn401378t
26 https://doi.org/10.1063/1.2010605
27 https://doi.org/10.1063/1.4864100
28 https://doi.org/10.1073/pnas.0906949106
29 https://doi.org/10.1088/0957-4484/22/25/254001
30 https://doi.org/10.1088/0957-4484/22/25/254023
31 https://doi.org/10.1103/physrevb.66.214109
32 https://doi.org/10.1103/physrevb.81.140401
33 https://doi.org/10.1103/physrevlett.109.067203
34 https://doi.org/10.1103/physrevlett.112.147601
35 https://doi.org/10.1103/physrevlett.99.227602
36 https://doi.org/10.1103/physrevlett.99.267602
37 https://doi.org/10.1109/tct.1971.1083337
38 https://doi.org/10.1109/ted.2013.2263000
39 https://doi.org/10.1126/science.1126230
40 https://doi.org/10.1126/science.275.5297.213
41 https://doi.org/10.1162/neco.2008.06-08-804
42 https://doi.org/10.1523/jneurosci.18-24-10464.1998
43 https://doi.org/10.3389/fnins.2011.00026
44 https://doi.org/10.4324/9781410612403
45 schema:datePublished 2017-04-03
46 schema:datePublishedReg 2017-04-03
47 schema:description In the brain, learning is achieved through the ability of synapses to reconfigure the strength by which they connect neurons (synaptic plasticity). In promising solid-state synapses called memristors, conductance can be finely tuned by voltage pulses and set to evolve according to a biological learning rule called spike-timing-dependent plasticity (STDP). Future neuromorphic architectures will comprise billions of such nanosynapses, which require a clear understanding of the physical mechanisms responsible for plasticity. Here we report on synapses based on ferroelectric tunnel junctions and show that STDP can be harnessed from inhomogeneous polarization switching. Through combined scanning probe imaging, electrical transport and atomic-scale molecular dynamics, we demonstrate that conductance variations can be modelled by the nucleation-dominated reversal of domains. Based on this physical model, our simulations show that arrays of ferroelectric nanosynapses can autonomously learn to recognize patterns in a predictable way, opening the path towards unsupervised learning in spiking neural networks.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree true
51 schema:isPartOf N84e74c8864374833a8000465e7feab56
52 sg:journal.1043282
53 schema:name Learning through ferroelectric domain dynamics in solid-state synapses
54 schema:pagination 14736
55 schema:productId N2486a25a2a754373a857c10389052754
56 N35e50a37284f49189d70913f98a06d8e
57 N5f1bffc688574b838cdd546569e51a39
58 Nca86721d49454bc69a22bddad6bd607b
59 Nf34a03856ce54549bd478533fd2387e2
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084508653
61 https://doi.org/10.1038/ncomms14736
62 schema:sdDatePublished 2019-04-10T21:55
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher Nb4194cfc8f244d8d9e94e7af7944bac4
65 schema:url https://www.nature.com/articles/ncomms14736
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N06ff0f4350cb45e0a717fb503bdf0873 schema:name Unité Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, Palaiseau 91767, France
70 rdf:type schema:Organization
71 N09c42d62fdf049459660f87ff6ef0e56 rdf:first sg:person.01013423203.54
72 rdf:rest N623e32ad8c1a401db8c21d1c390311ae
73 N0cda923d5eb74fb5b1364bc5a0aec066 rdf:first sg:person.01143725621.06
74 rdf:rest rdf:nil
75 N1c57372e5d5a46dea86e1da23101ffe0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Time Factors
77 rdf:type schema:DefinedTerm
78 N2486a25a2a754373a857c10389052754 schema:name nlm_unique_id
79 schema:value 101528555
80 rdf:type schema:PropertyValue
81 N248b572073514b90ba56d24eb037142a rdf:first sg:person.0612212000.53
82 rdf:rest N09c42d62fdf049459660f87ff6ef0e56
83 N2e696c91720a4db49c091430acf45cfb rdf:first sg:person.010660364203.03
84 rdf:rest N8482e4f8dc414fddba66f017a71278f8
85 N35e50a37284f49189d70913f98a06d8e schema:name pubmed_id
86 schema:value 28368007
87 rdf:type schema:PropertyValue
88 N3bdc07a2a921474cb6f10dead265a6c4 schema:name Unité Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, Palaiseau 91767, France
89 rdf:type schema:Organization
90 N5f1bffc688574b838cdd546569e51a39 schema:name readcube_id
91 schema:value c07f0ea78a780f9d861bc9cfd4d6d00f58c54b0059d4fc6774c32b20ac1348f0
92 rdf:type schema:PropertyValue
93 N617f8a3a4b8a47aca3c9d6dea7c0fdc1 rdf:first sg:person.0735137430.71
94 rdf:rest N765cbcdcf9f143698b99db05329c35bb
95 N623e32ad8c1a401db8c21d1c390311ae rdf:first sg:person.0705115506.81
96 rdf:rest N0cda923d5eb74fb5b1364bc5a0aec066
97 N6c90678ac3ec40e29e4ae212bccab9eb schema:name Unité Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, Palaiseau 91767, France
98 rdf:type schema:Organization
99 N6e5cc8f561694677b5591831509718b1 rdf:first sg:person.0641437754.50
100 rdf:rest Ndaf66d7e54954b18bdd0974d3736b462
101 N765cbcdcf9f143698b99db05329c35bb rdf:first sg:person.0651523016.93
102 rdf:rest Nc061a6ad172d45709e4eddaed28add10
103 N80b73069d7344885857d69ea2ee768e7 rdf:first sg:person.0765225121.16
104 rdf:rest N2e696c91720a4db49c091430acf45cfb
105 N8482e4f8dc414fddba66f017a71278f8 rdf:first sg:person.01260054754.81
106 rdf:rest N248b572073514b90ba56d24eb037142a
107 N84e74c8864374833a8000465e7feab56 schema:volumeNumber 8
108 rdf:type schema:PublicationVolume
109 N85770c3808d449d3b6dd19d192202c75 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Neural Networks (Computer)
111 rdf:type schema:DefinedTerm
112 Na0796502852b46d49d14900e0b9bc978 schema:name Centre de Nanosciences et de Nanotechnologies, CNRS, Univ. Paris Sud, Université Paris-Saclay, C2N—Orsay, Orsay cedex 91405, France
113 rdf:type schema:Organization
114 Nb4194cfc8f244d8d9e94e7af7944bac4 schema:name Springer Nature - SN SciGraph project
115 rdf:type schema:Organization
116 Nb702d4dcd661451398cb4e3a36797dc1 schema:name Unité Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, Palaiseau 91767, France
117 rdf:type schema:Organization
118 Nbaeac7c22bc649b2a69ad2146b513272 rdf:first sg:person.01262607056.13
119 rdf:rest Nd1f07bcc4aa940f58e60975611f7d6b4
120 Nc061a6ad172d45709e4eddaed28add10 rdf:first sg:person.014525605313.85
121 rdf:rest Ncd39eee7984c420092fe3b5af391175b
122 Nca86721d49454bc69a22bddad6bd607b schema:name dimensions_id
123 schema:value pub.1084508653
124 rdf:type schema:PropertyValue
125 Ncca6e752525e421790e7cb1ce66c3a73 schema:name Unité Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, Palaiseau 91767, France
126 rdf:type schema:Organization
127 Ncd39eee7984c420092fe3b5af391175b rdf:first sg:person.01172123703.87
128 rdf:rest Ndd93ee72d27d4a54b025d582d5d31534
129 Nd1f07bcc4aa940f58e60975611f7d6b4 rdf:first sg:person.016627002261.78
130 rdf:rest N617f8a3a4b8a47aca3c9d6dea7c0fdc1
131 Nda9d7ff810584f228cb89901a7d8aa7c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Electricity
133 rdf:type schema:DefinedTerm
134 Ndaf66d7e54954b18bdd0974d3736b462 rdf:first sg:person.0657026031.15
135 rdf:rest Nbaeac7c22bc649b2a69ad2146b513272
136 Ndd93ee72d27d4a54b025d582d5d31534 rdf:first sg:person.01336660333.05
137 rdf:rest N80b73069d7344885857d69ea2ee768e7
138 Ne13eb2d426ad4a87b7c4876fdb8db686 schema:name Unité Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, Palaiseau 91767, France
139 rdf:type schema:Organization
140 Nf34a03856ce54549bd478533fd2387e2 schema:name doi
141 schema:value 10.1038/ncomms14736
142 rdf:type schema:PropertyValue
143 Nf4d2e024d0a04664bbc4604f01131b8b schema:name Unité Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, Palaiseau 91767, France
144 rdf:type schema:Organization
145 Nf7056e70ca91416db96ea9779de944f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Iron
147 rdf:type schema:DefinedTerm
148 Nf7636c34cfb340f1b737846d23e2c678 schema:name Unité Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, Palaiseau 91767, France
149 rdf:type schema:Organization
150 Nfc9705b7eff34e2cb6428c6bc49a7afc schema:name Unité Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, Palaiseau 91767, France
151 rdf:type schema:Organization
152 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
153 schema:name Medical and Health Sciences
154 rdf:type schema:DefinedTerm
155 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
156 schema:name Neurosciences
157 rdf:type schema:DefinedTerm
158 sg:grant.3781260 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms14736
159 rdf:type schema:MonetaryGrant
160 sg:grant.4379742 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms14736
161 rdf:type schema:MonetaryGrant
162 sg:grant.6493690 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms14736
163 rdf:type schema:MonetaryGrant
164 sg:journal.1043282 schema:issn 2041-1723
165 schema:name Nature Communications
166 rdf:type schema:Periodical
167 sg:person.01013423203.54 schema:affiliation Nfc9705b7eff34e2cb6428c6bc49a7afc
168 schema:familyName Barthélémy
169 schema:givenName Agnès
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013423203.54
171 rdf:type schema:Person
172 sg:person.010660364203.03 schema:affiliation https://www.grid.ac/institutes/grid.462974.a
173 schema:familyName Tomas
174 schema:givenName Jean
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010660364203.03
176 rdf:type schema:Person
177 sg:person.01143725621.06 schema:affiliation Ncca6e752525e421790e7cb1ce66c3a73
178 schema:familyName Garcia
179 schema:givenName Vincent
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143725621.06
181 rdf:type schema:Person
182 sg:person.01172123703.87 schema:affiliation Nf7636c34cfb340f1b737846d23e2c678
183 schema:familyName Carrétéro
184 schema:givenName Cécile
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172123703.87
186 rdf:type schema:Person
187 sg:person.01260054754.81 schema:affiliation https://www.grid.ac/institutes/grid.411017.2
188 schema:familyName Bellaiche
189 schema:givenName Laurent
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260054754.81
191 rdf:type schema:Person
192 sg:person.01262607056.13 schema:affiliation https://www.grid.ac/institutes/grid.462974.a
193 schema:familyName Lecerf
194 schema:givenName Gwendal
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262607056.13
196 rdf:type schema:Person
197 sg:person.01336660333.05 schema:affiliation N6c90678ac3ec40e29e4ae212bccab9eb
198 schema:familyName Garcia
199 schema:givenName Karin
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336660333.05
201 rdf:type schema:Person
202 sg:person.014525605313.85 schema:affiliation Nf4d2e024d0a04664bbc4604f01131b8b
203 schema:familyName Girod
204 schema:givenName Stéphanie
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014525605313.85
206 rdf:type schema:Person
207 sg:person.016627002261.78 schema:affiliation https://www.grid.ac/institutes/grid.411017.2
208 schema:familyName Xu
209 schema:givenName Bin
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016627002261.78
211 rdf:type schema:Person
212 sg:person.0612212000.53 schema:affiliation N06ff0f4350cb45e0a717fb503bdf0873
213 schema:familyName Bibes
214 schema:givenName Manuel
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612212000.53
216 rdf:type schema:Person
217 sg:person.0641437754.50 schema:affiliation Nb702d4dcd661451398cb4e3a36797dc1
218 schema:familyName Boyn
219 schema:givenName Sören
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641437754.50
221 rdf:type schema:Person
222 sg:person.0651523016.93 schema:affiliation Ne13eb2d426ad4a87b7c4876fdb8db686
223 schema:familyName Fusil
224 schema:givenName Stéphane
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651523016.93
226 rdf:type schema:Person
227 sg:person.0657026031.15 schema:affiliation N3bdc07a2a921474cb6f10dead265a6c4
228 schema:familyName Grollier
229 schema:givenName Julie
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657026031.15
231 rdf:type schema:Person
232 sg:person.0705115506.81 schema:affiliation https://www.grid.ac/institutes/grid.462974.a
233 schema:familyName Saïghi
234 schema:givenName Sylvain
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705115506.81
236 rdf:type schema:Person
237 sg:person.0735137430.71 schema:affiliation Na0796502852b46d49d14900e0b9bc978
238 schema:familyName Locatelli
239 schema:givenName Nicolas
240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735137430.71
241 rdf:type schema:Person
242 sg:person.0765225121.16 schema:affiliation https://www.grid.ac/institutes/grid.410363.3
243 schema:familyName Xavier
244 schema:givenName Stéphane
245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765225121.16
246 rdf:type schema:Person
247 sg:pub.10.1038/81453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001869026
248 https://doi.org/10.1038/81453
249 rdf:type schema:CreativeWork
250 sg:pub.10.1038/nature06932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052714473
251 https://doi.org/10.1038/nature06932
252 rdf:type schema:CreativeWork
253 sg:pub.10.1038/nature14441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037542087
254 https://doi.org/10.1038/nature14441
255 rdf:type schema:CreativeWork
256 sg:pub.10.1038/nature14539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010020120
257 https://doi.org/10.1038/nature14539
258 rdf:type schema:CreativeWork
259 sg:pub.10.1038/ncomms5289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040067292
260 https://doi.org/10.1038/ncomms5289
261 rdf:type schema:CreativeWork
262 sg:pub.10.1038/nmat3070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040755767
263 https://doi.org/10.1038/nmat3070
264 rdf:type schema:CreativeWork
265 sg:pub.10.1038/nmat3415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039892598
266 https://doi.org/10.1038/nmat3415
267 rdf:type schema:CreativeWork
268 sg:pub.10.1038/nnano.2012.240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045168777
269 https://doi.org/10.1038/nnano.2012.240
270 rdf:type schema:CreativeWork
271 sg:pub.10.1038/srep01619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052977312
272 https://doi.org/10.1038/srep01619
273 rdf:type schema:CreativeWork
274 sg:pub.10.1038/srep05333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041459761
275 https://doi.org/10.1038/srep05333
276 rdf:type schema:CreativeWork
277 sg:pub.10.1038/srep10150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024044550
278 https://doi.org/10.1038/srep10150
279 rdf:type schema:CreativeWork
280 sg:pub.10.1038/srep10492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036778361
281 https://doi.org/10.1038/srep10492
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1002/adfm.201101935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025203329
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1021/acs.nanolett.5b00104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004464123
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1021/nl073225h schema:sameAs https://app.dimensions.ai/details/publication/pub.1021056823
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1021/nl201040y schema:sameAs https://app.dimensions.ai/details/publication/pub.1006456676
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1021/nl904092h schema:sameAs https://app.dimensions.ai/details/publication/pub.1036030317
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1021/nn401378t schema:sameAs https://app.dimensions.ai/details/publication/pub.1033826362
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1063/1.2010605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057835792
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1063/1.4864100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017220023
298 rdf:type schema:CreativeWork
299 https://doi.org/10.1073/pnas.0906949106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050934503
300 rdf:type schema:CreativeWork
301 https://doi.org/10.1088/0957-4484/22/25/254001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042704754
302 rdf:type schema:CreativeWork
303 https://doi.org/10.1088/0957-4484/22/25/254023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009312937
304 rdf:type schema:CreativeWork
305 https://doi.org/10.1103/physrevb.66.214109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060605116
306 rdf:type schema:CreativeWork
307 https://doi.org/10.1103/physrevb.81.140401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060632242
308 rdf:type schema:CreativeWork
309 https://doi.org/10.1103/physrevlett.109.067203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060760173
310 rdf:type schema:CreativeWork
311 https://doi.org/10.1103/physrevlett.112.147601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012296451
312 rdf:type schema:CreativeWork
313 https://doi.org/10.1103/physrevlett.99.227602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060834974
314 rdf:type schema:CreativeWork
315 https://doi.org/10.1103/physrevlett.99.267602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005949313
316 rdf:type schema:CreativeWork
317 https://doi.org/10.1109/tct.1971.1083337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061579020
318 rdf:type schema:CreativeWork
319 https://doi.org/10.1109/ted.2013.2263000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061595544
320 rdf:type schema:CreativeWork
321 https://doi.org/10.1126/science.1126230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030509924
322 rdf:type schema:CreativeWork
323 https://doi.org/10.1126/science.275.5297.213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010157370
324 rdf:type schema:CreativeWork
325 https://doi.org/10.1162/neco.2008.06-08-804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039891861
326 rdf:type schema:CreativeWork
327 https://doi.org/10.1523/jneurosci.18-24-10464.1998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083361411
328 rdf:type schema:CreativeWork
329 https://doi.org/10.3389/fnins.2011.00026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017196895
330 rdf:type schema:CreativeWork
331 https://doi.org/10.4324/9781410612403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045501890
332 rdf:type schema:CreativeWork
333 https://www.grid.ac/institutes/grid.410363.3 schema:alternateName Thales Group (France)
334 schema:name Thales Research and Technology, 1 Avenue Augustin Fresnel, Campus de I’Ecole Polytechnique, Palaiseau 91767, France
335 rdf:type schema:Organization
336 https://www.grid.ac/institutes/grid.411017.2 schema:alternateName University of Arkansas at Fayetteville
337 schema:name Department of Physics and Institute for Nanoscience and Engineering, University of Arkansas Fayetteville, Arkansas 72701, USA
338 rdf:type schema:Organization
339 https://www.grid.ac/institutes/grid.462974.a schema:alternateName Laboratoire de l'Integration du Materiau au Systeme
340 schema:name University of Bordeaux, IMS, UMR 5218, Talence F-33405, France
341 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...