Zero-gap semiconductor to excitonic insulator transition in Ta2NiSe5 View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-02-16

AUTHORS

Y F Lu, H Kono, T I Larkin, A W Rost, T Takayama, A V Boris, B Keimer, H Takagi

ABSTRACT

The excitonic insulator is a long conjectured correlated electron phase of narrow-gap semiconductors and semimetals, driven by weakly screened electron-hole interactions. Having been proposed more than 50 years ago, conclusive experimental evidence for its existence remains elusive. Ta2NiSe5 is a narrow-gap semiconductor with a small one-electron bandgap EG of <50 meV. Below TC=326 K, a putative excitonic insulator is stabilized. Here we report an optical excitation gap Eop ∼0.16 eV below TC comparable to the estimated exciton binding energy EB. Specific heat measurements show the entropy associated with the transition being consistent with a primarily electronic origin. To further explore this physics, we map the TC-EG phase diagram tuning EG via chemical and physical pressure. The dome-like behaviour around EG∼0 combined with our transport, thermodynamic and optical results are fully consistent with an excitonic insulator phase in Ta2NiSe5. More... »

PAGES

14408

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ncomms14408

DOI

http://dx.doi.org/10.1038/ncomms14408

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1083843184

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28205553


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Y F", 
        "id": "sg:person.014321236577.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014321236577.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kono", 
        "givenName": "H", 
        "id": "sg:person.01226520356.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226520356.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Solid State Research", 
          "id": "https://www.grid.ac/institutes/grid.419552.e", 
          "name": [
            "Max Planck Institute for Solid State Research, Heisenbergstrsse 1, 70569 Stuttgart, Germany."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Larkin", 
        "givenName": "T I", 
        "id": "sg:person.010403715201.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010403715201.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Stuttgart", 
          "id": "https://www.grid.ac/institutes/grid.5719.a", 
          "name": [
            "Max Planck Institute for Solid State Research, Heisenbergstrsse 1, 70569 Stuttgart, Germany.", 
            "Institute for Functional Matter and Quantum Technologies, University of Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rost", 
        "givenName": "A W", 
        "id": "sg:person.0601742524.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601742524.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Solid State Research", 
          "id": "https://www.grid.ac/institutes/grid.419552.e", 
          "name": [
            "Max Planck Institute for Solid State Research, Heisenbergstrsse 1, 70569 Stuttgart, Germany."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takayama", 
        "givenName": "T", 
        "id": "sg:person.0741204656.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741204656.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Solid State Research", 
          "id": "https://www.grid.ac/institutes/grid.419552.e", 
          "name": [
            "Max Planck Institute for Solid State Research, Heisenbergstrsse 1, 70569 Stuttgart, Germany."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boris", 
        "givenName": "A V", 
        "id": "sg:person.01345311726.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345311726.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Solid State Research", 
          "id": "https://www.grid.ac/institutes/grid.419552.e", 
          "name": [
            "Max Planck Institute for Solid State Research, Heisenbergstrsse 1, 70569 Stuttgart, Germany."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keimer", 
        "givenName": "B", 
        "id": "sg:person.01337231572.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337231572.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Stuttgart", 
          "id": "https://www.grid.ac/institutes/grid.5719.a", 
          "name": [
            "Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.", 
            "Max Planck Institute for Solid State Research, Heisenbergstrsse 1, 70569 Stuttgart, Germany.", 
            "Institute for Functional Matter and Quantum Technologies, University of Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takagi", 
        "givenName": "H", 
        "id": "sg:person.013173521545.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013173521545.69"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.99.146403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000938457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.146403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000938457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(78)91165-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001696620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(78)91165-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001696620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0925-8388(94)07023-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002191329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0038-1098(01)00202-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009628602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.165107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031707555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.165107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031707555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14786436108243318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039765804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-5088(86)90216-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041540125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-5088(86)90216-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041540125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(77)90133-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043237121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(77)90133-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043237121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.155116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043940969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.155116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043940969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.035121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045293292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.035121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045293292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/400/3/032035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045752440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.176401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049818277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.176401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049818277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr00083a002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054033343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ic00216a027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055547658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-2006-933643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057458474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3719/10/11/009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058956201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.158.462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060435593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.158.462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060435593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.165.605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060437349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.165.605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060437349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.026402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.026402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.19.439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060770350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.19.439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060770350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.2717", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.2717", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.40.755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.40.755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838631"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-02-16", 
    "datePublishedReg": "2017-02-16", 
    "description": "The excitonic insulator is a long conjectured correlated electron phase of narrow-gap semiconductors and semimetals, driven by weakly screened electron-hole interactions. Having been proposed more than 50 years ago, conclusive experimental evidence for its existence remains elusive. Ta2NiSe5 is a narrow-gap semiconductor with a small one-electron bandgap EG of <50\u2009meV. Below TC=326\u2009K, a putative excitonic insulator is stabilized. Here we report an optical excitation gap Eop \u223c0.16\u2009eV below TC comparable to the estimated exciton binding energy EB. Specific heat measurements show the entropy associated with the transition being consistent with a primarily electronic origin. To further explore this physics, we map the TC-EG phase diagram tuning EG via chemical and physical pressure. The dome-like behaviour around EG\u223c0 combined with our transport, thermodynamic and optical results are fully consistent with an excitonic insulator phase in Ta2NiSe5.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ncomms14408", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6083189", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5859379", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5879383", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "type": "Periodical"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Zero-gap semiconductor to excitonic insulator transition in Ta2NiSe5", 
    "pagination": "14408", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "baebc282c1bf88532dc92efa212d38d8c3d59801977dccff15dbea1c6b28210e"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28205553"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101528555"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ncomms14408"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1083843184"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ncomms14408", 
      "https://app.dimensions.ai/details/publication/pub.1083843184"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000575.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/ncomms/2017/170216/ncomms14408/full/ncomms14408.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms14408'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms14408'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms14408'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms14408'


 

This table displays all metadata directly associated to this object as RDF triples.

194 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ncomms14408 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N5d63f9845c5b4b1fa0f710b188fceb6d
4 schema:citation https://doi.org/10.1016/0022-5088(86)90216-x
5 https://doi.org/10.1016/0038-1098(77)90133-8
6 https://doi.org/10.1016/0038-1098(78)91165-1
7 https://doi.org/10.1016/0925-8388(94)07023-7
8 https://doi.org/10.1016/s0038-1098(01)00202-2
9 https://doi.org/10.1021/cr00083a002
10 https://doi.org/10.1021/ic00216a027
11 https://doi.org/10.1055/s-2006-933643
12 https://doi.org/10.1080/14786436108243318
13 https://doi.org/10.1088/0022-3719/10/11/009
14 https://doi.org/10.1088/1742-6596/400/3/032035
15 https://doi.org/10.1103/physrev.158.462
16 https://doi.org/10.1103/physrev.165.605
17 https://doi.org/10.1103/physrevb.74.165107
18 https://doi.org/10.1103/physrevb.87.035121
19 https://doi.org/10.1103/physrevb.90.155116
20 https://doi.org/10.1103/physrevlett.103.026402
21 https://doi.org/10.1103/physrevlett.105.176401
22 https://doi.org/10.1103/physrevlett.19.439
23 https://doi.org/10.1103/physrevlett.67.2717
24 https://doi.org/10.1103/physrevlett.99.146403
25 https://doi.org/10.1103/revmodphys.40.755
26 schema:datePublished 2017-02-16
27 schema:datePublishedReg 2017-02-16
28 schema:description The excitonic insulator is a long conjectured correlated electron phase of narrow-gap semiconductors and semimetals, driven by weakly screened electron-hole interactions. Having been proposed more than 50 years ago, conclusive experimental evidence for its existence remains elusive. Ta<sub>2</sub>NiSe<sub>5</sub> is a narrow-gap semiconductor with a small one-electron bandgap E<sub>G</sub> of &lt;50 meV. Below T<sub>C</sub>=326 K, a putative excitonic insulator is stabilized. Here we report an optical excitation gap E<sub>op</sub> ∼0.16 eV below T<sub>C</sub> comparable to the estimated exciton binding energy E<sub>B</sub>. Specific heat measurements show the entropy associated with the transition being consistent with a primarily electronic origin. To further explore this physics, we map the T<sub>C</sub>-E<sub>G</sub> phase diagram tuning E<sub>G</sub> via chemical and physical pressure. The dome-like behaviour around E<sub>G</sub>∼0 combined with our transport, thermodynamic and optical results are fully consistent with an excitonic insulator phase in Ta<sub>2</sub>NiSe<sub>5</sub>.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree true
32 schema:isPartOf N5f8419e394e4417e82775030e9599c9a
33 sg:journal.1043282
34 schema:name Zero-gap semiconductor to excitonic insulator transition in Ta2NiSe5
35 schema:pagination 14408
36 schema:productId N27026064462e4fb78f30b3fc1768cafc
37 N314bb769b4de491bad1b0412ffb10195
38 N7e60f17e33c744908b676ef4726f37b7
39 Nba199161c76542b39391c8169be77f2c
40 Nf3f4ff96b00b47d2931f1e86363d3ab6
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083843184
42 https://doi.org/10.1038/ncomms14408
43 schema:sdDatePublished 2019-04-10T21:48
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher Nda886c49549c4392822f69a304499d06
46 schema:url http://www.nature.com/ncomms/2017/170216/ncomms14408/full/ncomms14408.html
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N27026064462e4fb78f30b3fc1768cafc schema:name doi
51 schema:value 10.1038/ncomms14408
52 rdf:type schema:PropertyValue
53 N314bb769b4de491bad1b0412ffb10195 schema:name nlm_unique_id
54 schema:value 101528555
55 rdf:type schema:PropertyValue
56 N4c72eb2ff3664c54aec0dc77fc3a8bdd rdf:first sg:person.01345311726.44
57 rdf:rest Ncd36fd73380143a09baa3aa49c1cbb0d
58 N52d2d35ed95a4f21855550fd75268e4d rdf:first sg:person.013173521545.69
59 rdf:rest rdf:nil
60 N5d63f9845c5b4b1fa0f710b188fceb6d rdf:first sg:person.014321236577.15
61 rdf:rest Naa7e27724253478ea8893b31c3b3f8a8
62 N5f8419e394e4417e82775030e9599c9a schema:volumeNumber 8
63 rdf:type schema:PublicationVolume
64 N7053f8a9189b4cd4b0073779a706aed3 rdf:first sg:person.0741204656.49
65 rdf:rest N4c72eb2ff3664c54aec0dc77fc3a8bdd
66 N7e60f17e33c744908b676ef4726f37b7 schema:name pubmed_id
67 schema:value 28205553
68 rdf:type schema:PropertyValue
69 N86224545de67400d84b2dc6a6481eca1 rdf:first sg:person.0601742524.45
70 rdf:rest N7053f8a9189b4cd4b0073779a706aed3
71 Naa7e27724253478ea8893b31c3b3f8a8 rdf:first sg:person.01226520356.21
72 rdf:rest Necb0fcc7d3274eaab426d7d7711af456
73 Nba199161c76542b39391c8169be77f2c schema:name dimensions_id
74 schema:value pub.1083843184
75 rdf:type schema:PropertyValue
76 Ncd36fd73380143a09baa3aa49c1cbb0d rdf:first sg:person.01337231572.49
77 rdf:rest N52d2d35ed95a4f21855550fd75268e4d
78 Nda886c49549c4392822f69a304499d06 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 Necb0fcc7d3274eaab426d7d7711af456 rdf:first sg:person.010403715201.07
81 rdf:rest N86224545de67400d84b2dc6a6481eca1
82 Nf3f4ff96b00b47d2931f1e86363d3ab6 schema:name readcube_id
83 schema:value baebc282c1bf88532dc92efa212d38d8c3d59801977dccff15dbea1c6b28210e
84 rdf:type schema:PropertyValue
85 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
86 schema:name Physical Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
89 schema:name Other Physical Sciences
90 rdf:type schema:DefinedTerm
91 sg:grant.5859379 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms14408
92 rdf:type schema:MonetaryGrant
93 sg:grant.5879383 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms14408
94 rdf:type schema:MonetaryGrant
95 sg:grant.6083189 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms14408
96 rdf:type schema:MonetaryGrant
97 sg:journal.1043282 schema:issn 2041-1723
98 schema:name Nature Communications
99 rdf:type schema:Periodical
100 sg:person.010403715201.07 schema:affiliation https://www.grid.ac/institutes/grid.419552.e
101 schema:familyName Larkin
102 schema:givenName T I
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010403715201.07
104 rdf:type schema:Person
105 sg:person.01226520356.21 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
106 schema:familyName Kono
107 schema:givenName H
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226520356.21
109 rdf:type schema:Person
110 sg:person.013173521545.69 schema:affiliation https://www.grid.ac/institutes/grid.5719.a
111 schema:familyName Takagi
112 schema:givenName H
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013173521545.69
114 rdf:type schema:Person
115 sg:person.01337231572.49 schema:affiliation https://www.grid.ac/institutes/grid.419552.e
116 schema:familyName Keimer
117 schema:givenName B
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337231572.49
119 rdf:type schema:Person
120 sg:person.01345311726.44 schema:affiliation https://www.grid.ac/institutes/grid.419552.e
121 schema:familyName Boris
122 schema:givenName A V
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345311726.44
124 rdf:type schema:Person
125 sg:person.014321236577.15 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
126 schema:familyName Lu
127 schema:givenName Y F
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014321236577.15
129 rdf:type schema:Person
130 sg:person.0601742524.45 schema:affiliation https://www.grid.ac/institutes/grid.5719.a
131 schema:familyName Rost
132 schema:givenName A W
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601742524.45
134 rdf:type schema:Person
135 sg:person.0741204656.49 schema:affiliation https://www.grid.ac/institutes/grid.419552.e
136 schema:familyName Takayama
137 schema:givenName T
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741204656.49
139 rdf:type schema:Person
140 https://doi.org/10.1016/0022-5088(86)90216-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041540125
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/0038-1098(77)90133-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043237121
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/0038-1098(78)91165-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001696620
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/0925-8388(94)07023-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002191329
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/s0038-1098(01)00202-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009628602
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1021/cr00083a002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054033343
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1021/ic00216a027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055547658
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1055/s-2006-933643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057458474
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1080/14786436108243318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039765804
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1088/0022-3719/10/11/009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058956201
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1088/1742-6596/400/3/032035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045752440
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physrev.158.462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060435593
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1103/physrev.165.605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060437349
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1103/physrevb.74.165107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031707555
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physrevb.87.035121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045293292
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1103/physrevb.90.155116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043940969
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physrevlett.103.026402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060755657
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physrevlett.105.176401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049818277
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physrevlett.19.439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060770350
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physrevlett.67.2717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060803481
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physrevlett.99.146403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000938457
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/revmodphys.40.755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838631
183 rdf:type schema:CreativeWork
184 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
185 schema:name Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
186 rdf:type schema:Organization
187 https://www.grid.ac/institutes/grid.419552.e schema:alternateName Max Planck Institute for Solid State Research
188 schema:name Max Planck Institute for Solid State Research, Heisenbergstrsse 1, 70569 Stuttgart, Germany.
189 rdf:type schema:Organization
190 https://www.grid.ac/institutes/grid.5719.a schema:alternateName University of Stuttgart
191 schema:name Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
192 Institute for Functional Matter and Quantum Technologies, University of Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany.
193 Max Planck Institute for Solid State Research, Heisenbergstrsse 1, 70569 Stuttgart, Germany.
194 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...