A programmable DNA origami nanospring that reveals force-induced adjacent binding of myosin VI heads View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12-12

AUTHORS

M. Iwaki, S. F. Wickham, K. Ikezaki, T. Yanagida, W. M. Shih

ABSTRACT

Mechanosensitive biological nanomachines such as motor proteins and ion channels regulate diverse cellular behaviour. Combined optical trapping with single-molecule fluorescence imaging provides a powerful methodology to clearly characterize the mechanoresponse, structural dynamics and stability of such nanomachines. However, this system requires complicated experimental geometry, preparation and optics, and is limited by low data-acquisition efficiency. Here we develop a programmable DNA origami nanospring that overcomes these issues. We apply our nanospring to human myosin VI, a mechanosensory motor protein, and demonstrate nanometre-precision single-molecule fluorescence imaging of the individual motor domains (heads) under force. We observe force-induced transitions of myosin VI heads from non-adjacent to adjacent binding, which correspond to adapted roles for low-load and high-load transport, respectively. Our technique extends single-molecule studies under force and clarifies the effect of force on biological processes. More... »

PAGES

13715

References to SciGraph publications

  • 2004-10-21. Simultaneous, coincident optical trapping and single-molecule fluorescence in NATURE METHODS
  • 1994-03. Single myosin molecule mechanics: piconewton forces and nanometre steps in NATURE
  • 2010-10-10. Video imaging of walking myosin V by high-speed atomic force microscopy in NATURE
  • 2016-02-29. Direct observation of intermediate states during the stepping motion of kinesin-1 in NATURE CHEMICAL BIOLOGY
  • 2006-02-22. Local force and geometry sensing regulate cell functions in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2006-10-01. Single-molecule observations of neck linker conformational changes in the kinesin motor protein in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2003-03. Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization in NATURE
  • 2009-05-10. Brownian search-and-catch mechanism for myosin-VI steps in NATURE CHEMICAL BIOLOGY
  • 1993-10. Direct observation of kinesin stepping by optical trapping interferometry in NATURE
  • 2007-06. Mechanosensitive channels in bacteria: signs of closure? in NATURE REVIEWS MICROBIOLOGY
  • 2012-01-08. Dynein achieves processive motion using both stochastic and coordinated stepping in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 1987-04-01. Sliding movement of single actin filaments on one-headed myosin filaments in NATURE
  • 2011-12-07. Walking to work: roles for class V myosins as cargo transporters in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2009-05. Self-assembly of DNA into nanoscale three-dimensional shapes in NATURE
  • 2005-10. Repetitive shuttling of a motor protein on DNA in NATURE
  • 2008-05-30. Long single α-helical tail domains bridge the gap between structure and function of myosin VI in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/ncomms13715

    DOI

    http://dx.doi.org/10.1038/ncomms13715

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1015922542

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/27941751


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biological Transport", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mechanotransduction, Cellular", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Myosin Heavy Chains", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Optical Imaging", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Graduate School of Frontier Biosciences, Osaka University, 5650871, Suita, Osaka, Japan", 
              "id": "http://www.grid.ac/institutes/grid.136593.b", 
              "name": [
                "Quantitative Biology Center, RIKEN, OLABB, 6-2-3, Furuedai, 5650874, Suita, Osaka, Japan", 
                "Graduate School of Frontier Biosciences, Osaka University, 5650871, Suita, Osaka, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Iwaki", 
            "givenName": "M.", 
            "id": "sg:person.0767337663.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767337663.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Wyss Institute for Biologically Inspired Engineering, Harvard University, 02115, Boston, Massachusetts, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Cancer Biology, Dana-Farber Cancer Institute, 02115, Boston, Massachusetts, USA", 
                "Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 02115, Boston, Massachusetts, USA", 
                "Wyss Institute for Biologically Inspired Engineering, Harvard University, 02115, Boston, Massachusetts, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wickham", 
            "givenName": "S. F.", 
            "id": "sg:person.012457417761.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012457417761.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Frontier Sciences, The University of Tokyo, 2778561, Kashiwa, Chiba, Japan", 
              "id": "http://www.grid.ac/institutes/grid.26999.3d", 
              "name": [
                "School of Frontier Sciences, The University of Tokyo, 2778561, Kashiwa, Chiba, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ikezaki", 
            "givenName": "K.", 
            "id": "sg:person.011505440065.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011505440065.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Information and Neural Networks, NICT, 5650874, Suita, Osaka, Japan", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Quantitative Biology Center, RIKEN, OLABB, 6-2-3, Furuedai, 5650874, Suita, Osaka, Japan", 
                "Graduate School of Frontier Biosciences, Osaka University, 5650871, Suita, Osaka, Japan", 
                "Center for Information and Neural Networks, NICT, 5650874, Suita, Osaka, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yanagida", 
            "givenName": "T.", 
            "id": "sg:person.015141357621.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015141357621.93"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Wyss Institute for Biologically Inspired Engineering, Harvard University, 02115, Boston, Massachusetts, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Cancer Biology, Dana-Farber Cancer Institute, 02115, Boston, Massachusetts, USA", 
                "Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 02115, Boston, Massachusetts, USA", 
                "Wyss Institute for Biologically Inspired Engineering, Harvard University, 02115, Boston, Massachusetts, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shih", 
            "givenName": "W. M.", 
            "id": "sg:person.0627153064.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627153064.21"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nrm3248", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051541952", 
              "https://doi.org/10.1038/nrm3248"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/368113a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049237121", 
              "https://doi.org/10.1038/368113a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/326805a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040356440", 
              "https://doi.org/10.1038/326805a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro1659", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027650810", 
              "https://doi.org/10.1038/nrmicro1659"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000109646", 
              "https://doi.org/10.1038/nature08016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchembio.2028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005575489", 
              "https://doi.org/10.1038/nchembio.2028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm1890", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000545060", 
              "https://doi.org/10.1038/nrm1890"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchembio.171", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025715638", 
              "https://doi.org/10.1038/nchembio.171"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09450", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030990737", 
              "https://doi.org/10.1038/nature09450"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb.1429", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041339361", 
              "https://doi.org/10.1038/nsmb.1429"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb1151", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035825013", 
              "https://doi.org/10.1038/nsmb1151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb.2205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020223331", 
              "https://doi.org/10.1038/nsmb.2205"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01529", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003160992", 
              "https://doi.org/10.1038/nature01529"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027376483", 
              "https://doi.org/10.1038/nature04049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/365721a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026078609", 
              "https://doi.org/10.1038/365721a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth714", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036183656", 
              "https://doi.org/10.1038/nmeth714"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-12-12", 
        "datePublishedReg": "2016-12-12", 
        "description": "Mechanosensitive biological nanomachines such as motor proteins and ion channels regulate diverse cellular behaviour. Combined optical trapping with single-molecule fluorescence imaging provides a powerful methodology to clearly characterize the mechanoresponse, structural dynamics and stability of such nanomachines. However, this system requires complicated experimental geometry, preparation and optics, and is limited by low data-acquisition efficiency. Here we develop a programmable DNA origami nanospring that overcomes these issues. We apply our nanospring to human myosin VI, a mechanosensory motor protein, and demonstrate nanometre-precision single-molecule fluorescence imaging of the individual motor domains (heads) under force. We observe force-induced transitions of myosin VI heads from non-adjacent to adjacent binding, which correspond to adapted roles for low-load and high-load transport, respectively. Our technique extends single-molecule studies under force and clarifies the effect of force on biological processes.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/ncomms13715", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3486327", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6100326", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6140958", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5986854", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "keywords": [
          "motor proteins", 
          "diverse cellular behaviors", 
          "adjacent binding", 
          "single-molecule fluorescence imaging", 
          "single-molecule fluorescence", 
          "single-molecule studies", 
          "force-induced transitions", 
          "optical trapping", 
          "myosin VI", 
          "biological processes", 
          "cellular behavior", 
          "biological nanomachines", 
          "experimental geometry", 
          "ion channels", 
          "such nanomachines", 
          "motor domain", 
          "data acquisition efficiency", 
          "fluorescence imaging", 
          "protein", 
          "nanomachines", 
          "structural dynamics", 
          "binding", 
          "optics", 
          "effect of force", 
          "mechanoresponse", 
          "nanosprings", 
          "trapping", 
          "powerful methodology", 
          "transition", 
          "fluorescence", 
          "domain", 
          "force", 
          "role", 
          "dynamics", 
          "imaging", 
          "geometry", 
          "transport", 
          "channels", 
          "technique", 
          "efficiency", 
          "process", 
          "stability", 
          "system", 
          "effect", 
          "study", 
          "head", 
          "behavior", 
          "clarifies", 
          "preparation", 
          "methodology", 
          "issues"
        ], 
        "name": "A programmable DNA origami nanospring that reveals force-induced adjacent binding of myosin VI heads", 
        "pagination": "13715", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1015922542"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/ncomms13715"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "27941751"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/ncomms13715", 
          "https://app.dimensions.ai/details/publication/pub.1015922542"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T21:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_680.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/ncomms13715"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms13715'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms13715'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms13715'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms13715'


     

    This table displays all metadata directly associated to this object as RDF triples.

    257 TRIPLES      21 PREDICATES      100 URIs      74 LITERALS      13 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/ncomms13715 schema:about N067317559eee435eae917b8029c22bd0
    2 N634dc1aed4bd46cdaf0b73bbb8807c1e
    3 N66536076ab6e4ff3968dd6bec338c832
    4 N6b6efb5fefe64d1885bcd6da980b532e
    5 N79699b92c90d4fe28ceb647d1436700c
    6 Nf2c1d41492634b0191cfc603fd9d6789
    7 anzsrc-for:02
    8 anzsrc-for:0299
    9 anzsrc-for:06
    10 anzsrc-for:0601
    11 schema:author N39d1d166d9ec4132a2c95d776a3f7bfa
    12 schema:citation sg:pub.10.1038/326805a0
    13 sg:pub.10.1038/365721a0
    14 sg:pub.10.1038/368113a0
    15 sg:pub.10.1038/nature01529
    16 sg:pub.10.1038/nature04049
    17 sg:pub.10.1038/nature08016
    18 sg:pub.10.1038/nature09450
    19 sg:pub.10.1038/nchembio.171
    20 sg:pub.10.1038/nchembio.2028
    21 sg:pub.10.1038/nmeth714
    22 sg:pub.10.1038/nrm1890
    23 sg:pub.10.1038/nrm3248
    24 sg:pub.10.1038/nrmicro1659
    25 sg:pub.10.1038/nsmb.1429
    26 sg:pub.10.1038/nsmb.2205
    27 sg:pub.10.1038/nsmb1151
    28 schema:datePublished 2016-12-12
    29 schema:datePublishedReg 2016-12-12
    30 schema:description Mechanosensitive biological nanomachines such as motor proteins and ion channels regulate diverse cellular behaviour. Combined optical trapping with single-molecule fluorescence imaging provides a powerful methodology to clearly characterize the mechanoresponse, structural dynamics and stability of such nanomachines. However, this system requires complicated experimental geometry, preparation and optics, and is limited by low data-acquisition efficiency. Here we develop a programmable DNA origami nanospring that overcomes these issues. We apply our nanospring to human myosin VI, a mechanosensory motor protein, and demonstrate nanometre-precision single-molecule fluorescence imaging of the individual motor domains (heads) under force. We observe force-induced transitions of myosin VI heads from non-adjacent to adjacent binding, which correspond to adapted roles for low-load and high-load transport, respectively. Our technique extends single-molecule studies under force and clarifies the effect of force on biological processes.
    31 schema:genre article
    32 schema:isAccessibleForFree true
    33 schema:isPartOf N1607449192a84cd6a165088b5477fa27
    34 N6aa3b5259a784d31a885fcdab000e78d
    35 sg:journal.1043282
    36 schema:keywords adjacent binding
    37 behavior
    38 binding
    39 biological nanomachines
    40 biological processes
    41 cellular behavior
    42 channels
    43 clarifies
    44 data acquisition efficiency
    45 diverse cellular behaviors
    46 domain
    47 dynamics
    48 effect
    49 effect of force
    50 efficiency
    51 experimental geometry
    52 fluorescence
    53 fluorescence imaging
    54 force
    55 force-induced transitions
    56 geometry
    57 head
    58 imaging
    59 ion channels
    60 issues
    61 mechanoresponse
    62 methodology
    63 motor domain
    64 motor proteins
    65 myosin VI
    66 nanomachines
    67 nanosprings
    68 optical trapping
    69 optics
    70 powerful methodology
    71 preparation
    72 process
    73 protein
    74 role
    75 single-molecule fluorescence
    76 single-molecule fluorescence imaging
    77 single-molecule studies
    78 stability
    79 structural dynamics
    80 study
    81 such nanomachines
    82 system
    83 technique
    84 transition
    85 transport
    86 trapping
    87 schema:name A programmable DNA origami nanospring that reveals force-induced adjacent binding of myosin VI heads
    88 schema:pagination 13715
    89 schema:productId N7702f54c81d4464bbffbdfde565b4c64
    90 N9987a203e0464582a2475d083a83a265
    91 Nf1512bc5275944399566dca56f37c291
    92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015922542
    93 https://doi.org/10.1038/ncomms13715
    94 schema:sdDatePublished 2022-11-24T21:00
    95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    96 schema:sdPublisher N4955c1856e51456cabcbe32f3bf16794
    97 schema:url https://doi.org/10.1038/ncomms13715
    98 sgo:license sg:explorer/license/
    99 sgo:sdDataset articles
    100 rdf:type schema:ScholarlyArticle
    101 N067317559eee435eae917b8029c22bd0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    102 schema:name Humans
    103 rdf:type schema:DefinedTerm
    104 N1607449192a84cd6a165088b5477fa27 schema:volumeNumber 7
    105 rdf:type schema:PublicationVolume
    106 N2d8e958273ed4d79ba329c54e75a0422 rdf:first sg:person.011505440065.04
    107 rdf:rest Nfe9628b7aece4823bffbb29f68452f0d
    108 N39d1d166d9ec4132a2c95d776a3f7bfa rdf:first sg:person.0767337663.65
    109 rdf:rest Nef063871d65344fdb616fca11ab19e1d
    110 N4955c1856e51456cabcbe32f3bf16794 schema:name Springer Nature - SN SciGraph project
    111 rdf:type schema:Organization
    112 N634dc1aed4bd46cdaf0b73bbb8807c1e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Biological Transport
    114 rdf:type schema:DefinedTerm
    115 N66536076ab6e4ff3968dd6bec338c832 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Mechanotransduction, Cellular
    117 rdf:type schema:DefinedTerm
    118 N6aa3b5259a784d31a885fcdab000e78d schema:issueNumber 1
    119 rdf:type schema:PublicationIssue
    120 N6b6efb5fefe64d1885bcd6da980b532e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Optical Imaging
    122 rdf:type schema:DefinedTerm
    123 N7702f54c81d4464bbffbdfde565b4c64 schema:name doi
    124 schema:value 10.1038/ncomms13715
    125 rdf:type schema:PropertyValue
    126 N79699b92c90d4fe28ceb647d1436700c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Nanotechnology
    128 rdf:type schema:DefinedTerm
    129 N9987a203e0464582a2475d083a83a265 schema:name dimensions_id
    130 schema:value pub.1015922542
    131 rdf:type schema:PropertyValue
    132 Na016fd20fa9d4b2d9012884a0647c044 rdf:first sg:person.0627153064.21
    133 rdf:rest rdf:nil
    134 Nef063871d65344fdb616fca11ab19e1d rdf:first sg:person.012457417761.24
    135 rdf:rest N2d8e958273ed4d79ba329c54e75a0422
    136 Nf1512bc5275944399566dca56f37c291 schema:name pubmed_id
    137 schema:value 27941751
    138 rdf:type schema:PropertyValue
    139 Nf2c1d41492634b0191cfc603fd9d6789 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Myosin Heavy Chains
    141 rdf:type schema:DefinedTerm
    142 Nfe9628b7aece4823bffbb29f68452f0d rdf:first sg:person.015141357621.93
    143 rdf:rest Na016fd20fa9d4b2d9012884a0647c044
    144 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    145 schema:name Physical Sciences
    146 rdf:type schema:DefinedTerm
    147 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    148 schema:name Other Physical Sciences
    149 rdf:type schema:DefinedTerm
    150 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    151 schema:name Biological Sciences
    152 rdf:type schema:DefinedTerm
    153 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    154 schema:name Biochemistry and Cell Biology
    155 rdf:type schema:DefinedTerm
    156 sg:grant.3486327 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms13715
    157 rdf:type schema:MonetaryGrant
    158 sg:grant.5986854 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms13715
    159 rdf:type schema:MonetaryGrant
    160 sg:grant.6100326 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms13715
    161 rdf:type schema:MonetaryGrant
    162 sg:grant.6140958 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms13715
    163 rdf:type schema:MonetaryGrant
    164 sg:journal.1043282 schema:issn 2041-1723
    165 schema:name Nature Communications
    166 schema:publisher Springer Nature
    167 rdf:type schema:Periodical
    168 sg:person.011505440065.04 schema:affiliation grid-institutes:grid.26999.3d
    169 schema:familyName Ikezaki
    170 schema:givenName K.
    171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011505440065.04
    172 rdf:type schema:Person
    173 sg:person.012457417761.24 schema:affiliation grid-institutes:grid.38142.3c
    174 schema:familyName Wickham
    175 schema:givenName S. F.
    176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012457417761.24
    177 rdf:type schema:Person
    178 sg:person.015141357621.93 schema:affiliation grid-institutes:None
    179 schema:familyName Yanagida
    180 schema:givenName T.
    181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015141357621.93
    182 rdf:type schema:Person
    183 sg:person.0627153064.21 schema:affiliation grid-institutes:grid.38142.3c
    184 schema:familyName Shih
    185 schema:givenName W. M.
    186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627153064.21
    187 rdf:type schema:Person
    188 sg:person.0767337663.65 schema:affiliation grid-institutes:grid.136593.b
    189 schema:familyName Iwaki
    190 schema:givenName M.
    191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767337663.65
    192 rdf:type schema:Person
    193 sg:pub.10.1038/326805a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040356440
    194 https://doi.org/10.1038/326805a0
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1038/365721a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026078609
    197 https://doi.org/10.1038/365721a0
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/368113a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049237121
    200 https://doi.org/10.1038/368113a0
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/nature01529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003160992
    203 https://doi.org/10.1038/nature01529
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/nature04049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027376483
    206 https://doi.org/10.1038/nature04049
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1038/nature08016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000109646
    209 https://doi.org/10.1038/nature08016
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/nature09450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030990737
    212 https://doi.org/10.1038/nature09450
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/nchembio.171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025715638
    215 https://doi.org/10.1038/nchembio.171
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/nchembio.2028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005575489
    218 https://doi.org/10.1038/nchembio.2028
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/nmeth714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036183656
    221 https://doi.org/10.1038/nmeth714
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/nrm1890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000545060
    224 https://doi.org/10.1038/nrm1890
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1038/nrm3248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051541952
    227 https://doi.org/10.1038/nrm3248
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1038/nrmicro1659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027650810
    230 https://doi.org/10.1038/nrmicro1659
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1038/nsmb.1429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041339361
    233 https://doi.org/10.1038/nsmb.1429
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1038/nsmb.2205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020223331
    236 https://doi.org/10.1038/nsmb.2205
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1038/nsmb1151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035825013
    239 https://doi.org/10.1038/nsmb1151
    240 rdf:type schema:CreativeWork
    241 grid-institutes:None schema:alternateName Center for Information and Neural Networks, NICT, 5650874, Suita, Osaka, Japan
    242 schema:name Center for Information and Neural Networks, NICT, 5650874, Suita, Osaka, Japan
    243 Graduate School of Frontier Biosciences, Osaka University, 5650871, Suita, Osaka, Japan
    244 Quantitative Biology Center, RIKEN, OLABB, 6-2-3, Furuedai, 5650874, Suita, Osaka, Japan
    245 rdf:type schema:Organization
    246 grid-institutes:grid.136593.b schema:alternateName Graduate School of Frontier Biosciences, Osaka University, 5650871, Suita, Osaka, Japan
    247 schema:name Graduate School of Frontier Biosciences, Osaka University, 5650871, Suita, Osaka, Japan
    248 Quantitative Biology Center, RIKEN, OLABB, 6-2-3, Furuedai, 5650874, Suita, Osaka, Japan
    249 rdf:type schema:Organization
    250 grid-institutes:grid.26999.3d schema:alternateName School of Frontier Sciences, The University of Tokyo, 2778561, Kashiwa, Chiba, Japan
    251 schema:name School of Frontier Sciences, The University of Tokyo, 2778561, Kashiwa, Chiba, Japan
    252 rdf:type schema:Organization
    253 grid-institutes:grid.38142.3c schema:alternateName Wyss Institute for Biologically Inspired Engineering, Harvard University, 02115, Boston, Massachusetts, USA
    254 schema:name Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 02115, Boston, Massachusetts, USA
    255 Department of Cancer Biology, Dana-Farber Cancer Institute, 02115, Boston, Massachusetts, USA
    256 Wyss Institute for Biologically Inspired Engineering, Harvard University, 02115, Boston, Massachusetts, USA
    257 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...