Microcanonical and resource-theoretic derivations of the thermal state of a quantum system with noncommuting charges View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-07-07

AUTHORS

Nicole Yunger Halpern, Philippe Faist, Jonathan Oppenheim, Andreas Winter

ABSTRACT

The grand canonical ensemble lies at the core of quantum and classical statistical mechanics. A small system thermalizes to this ensemble while exchanging heat and particles with a bath. A quantum system may exchange quantities represented by operators that fail to commute. Whether such a system thermalizes and what form the thermal state has are questions about truly quantum thermodynamics. Here we investigate this thermal state from three perspectives. First, we introduce an approximate microcanonical ensemble. If this ensemble characterizes the system-and-bath composite, tracing out the bath yields the system's thermal state. This state is expected to be the equilibrium point, we argue, of typical dynamics. Finally, we define a resource-theory model for thermodynamic exchanges of noncommuting observables. Complete passivity-the inability to extract work from equilibrium states-implies the thermal state's form, too. Our work opens new avenues into equilibrium in the presence of quantum noncommutation. More... »

PAGES

12051

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ncomms12051

DOI

http://dx.doi.org/10.1038/ncomms12051

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038685164

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27384494


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "California Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Institute for Quantum Information and Matter, Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California 91125, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Halpern", 
        "givenName": "Nicole Yunger", 
        "id": "sg:person.0774206124.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774206124.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Technology in Zurich", 
          "id": "https://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Institute for Theoretical Physics, Department of Physics, ETH Z\u00fcrich, 8093 Z\u00fcrich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Faist", 
        "givenName": "Philippe", 
        "id": "sg:person.01151107345.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151107345.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University College London", 
          "id": "https://www.grid.ac/institutes/grid.83440.3b", 
          "name": [
            "Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oppenheim", 
        "givenName": "Jonathan", 
        "id": "sg:person.01046157753.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046157753.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituci\u00f3 Catalana de Recerca i Estudis Avan\u00e7ats", 
          "id": "https://www.grid.ac/institutes/grid.425902.8", 
          "name": [
            "Departament de F\u00edsica, Grup d'Informaci\u00f3 Qu\u00e1ntica, Universitat Aut\u00f2noma de Barcelona, ES-08193 Barcelona, Spain", 
            "ICREA, Pg. Llu\u00eds Companys 23, 08010 Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Winter", 
        "givenName": "Andreas", 
        "id": "sg:person.01221655300.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221655300.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01614224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001456458", 
          "https://doi.org/10.1007/bf01614224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01614224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001456458", 
          "https://doi.org/10.1007/bf01614224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002548185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002548185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.250404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003755374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.250404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003755374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007779406", 
          "https://doi.org/10.1038/nphys444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007779406", 
          "https://doi.org/10.1038/nphys444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms12049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009719985", 
          "https://doi.org/10.1038/ncomms12049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/49/14/143001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011095890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01011769", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012442699", 
          "https://doi.org/10.1007/bf01011769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-44513-5_18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016516786", 
          "https://doi.org/10.1007/978-3-540-44513-5_18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1411728112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017146799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.117.260601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024885605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.117.260601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024885605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfa.2013.01.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025346763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.79.555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027545945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.79.555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027545945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.79.061103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027919173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.79.061103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027919173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/79/5/056001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031268411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms3059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031347512", 
          "https://doi.org/10.1038/ncomms3059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033051651", 
          "https://doi.org/10.1038/nature04693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033051651", 
          "https://doi.org/10.1038/nature04693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033051651", 
          "https://doi.org/10.1038/nature04693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1026422630734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033215061", 
          "https://doi.org/10.1023/a:1026422630734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.050405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034534467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.050405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034534467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.93.022126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036097542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.93.022126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036097542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00107514.2016.1201896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036938245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.83.863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037152641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.83.863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037152641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.69.052326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038899838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.69.052326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038899838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.2010.0577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041564819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-014-2122-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041709350", 
          "https://doi.org/10.1007/s00220-014-2122-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4838856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043742447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.050403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044123530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.050403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044123530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-conmatphys-031214-014548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046358042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1047515169", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1047515169", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.150402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050543565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.150402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050543565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/18/2/023045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059137299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.106.620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060418970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.106.620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060418970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.108.171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060419623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.108.171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060419623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.155.1428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060434841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.155.1428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060434841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.51.2738", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060490086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.51.2738", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060490086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1257026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062470155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129055x11004412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062898239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/pjm.1981.96.99", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069068143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/aa617f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083929145"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-07-07", 
    "datePublishedReg": "2016-07-07", 
    "description": "The grand canonical ensemble lies at the core of quantum and classical statistical mechanics. A small system thermalizes to this ensemble while exchanging heat and particles with a bath. A quantum system may exchange quantities represented by operators that fail to commute. Whether such a system thermalizes and what form the thermal state has are questions about truly quantum thermodynamics. Here we investigate this thermal state from three perspectives. First, we introduce an approximate microcanonical ensemble. If this ensemble characterizes the system-and-bath composite, tracing out the bath yields the system's thermal state. This state is expected to be the equilibrium point, we argue, of typical dynamics. Finally, we define a resource-theory model for thermodynamic exchanges of noncommuting observables. Complete passivity-the inability to extract work from equilibrium states-implies the thermal state's form, too. Our work opens new avenues into equilibrium in the presence of quantum noncommutation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ncomms12051", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3785413", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2996392", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "type": "Periodical"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Microcanonical and resource-theoretic derivations of the thermal state of a quantum system with noncommuting charges", 
    "pagination": "12051", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b84782493f972800706436d5751315a955d5802a75704fe717a1bdff06e8d397"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27384494"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101528555"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ncomms12051"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038685164"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ncomms12051", 
      "https://app.dimensions.ai/details/publication/pub.1038685164"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000551.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/ncomms12051"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms12051'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms12051'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms12051'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms12051'


 

This table displays all metadata directly associated to this object as RDF triples.

222 TRIPLES      21 PREDICATES      65 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ncomms12051 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author Nef5c9f18edd64499a6ca7086fda050da
4 schema:citation sg:pub.10.1007/978-3-540-44513-5_18
5 sg:pub.10.1007/bf01011769
6 sg:pub.10.1007/bf01614224
7 sg:pub.10.1007/s00220-014-2122-x
8 sg:pub.10.1023/a:1026422630734
9 sg:pub.10.1038/nature04693
10 sg:pub.10.1038/ncomms12049
11 sg:pub.10.1038/ncomms3059
12 sg:pub.10.1038/nphys444
13 https://app.dimensions.ai/details/publication/pub.1047515169
14 https://doi.org/10.1016/j.jfa.2013.01.021
15 https://doi.org/10.1063/1.4838856
16 https://doi.org/10.1073/pnas.1411728112
17 https://doi.org/10.1080/00107514.2016.1201896
18 https://doi.org/10.1088/0034-4885/79/5/056001
19 https://doi.org/10.1088/1367-2630/18/2/023045
20 https://doi.org/10.1088/1367-2630/aa617f
21 https://doi.org/10.1088/1751-8113/49/14/143001
22 https://doi.org/10.1098/rspa.2010.0577
23 https://doi.org/10.1103/physrev.106.620
24 https://doi.org/10.1103/physrev.108.171
25 https://doi.org/10.1103/physrev.155.1428
26 https://doi.org/10.1103/physreva.51.2738
27 https://doi.org/10.1103/physreva.69.052326
28 https://doi.org/10.1103/physreve.79.061103
29 https://doi.org/10.1103/physreve.93.022126
30 https://doi.org/10.1103/physrevlett.111.250404
31 https://doi.org/10.1103/physrevlett.113.150402
32 https://doi.org/10.1103/physrevlett.117.260601
33 https://doi.org/10.1103/physrevlett.96.050403
34 https://doi.org/10.1103/physrevlett.98.050405
35 https://doi.org/10.1103/revmodphys.79.555
36 https://doi.org/10.1103/revmodphys.81.865
37 https://doi.org/10.1103/revmodphys.83.863
38 https://doi.org/10.1126/science.1257026
39 https://doi.org/10.1142/s0129055x11004412
40 https://doi.org/10.1146/annurev-conmatphys-031214-014548
41 https://doi.org/10.2140/pjm.1981.96.99
42 schema:datePublished 2016-07-07
43 schema:datePublishedReg 2016-07-07
44 schema:description The grand canonical ensemble lies at the core of quantum and classical statistical mechanics. A small system thermalizes to this ensemble while exchanging heat and particles with a bath. A quantum system may exchange quantities represented by operators that fail to commute. Whether such a system thermalizes and what form the thermal state has are questions about truly quantum thermodynamics. Here we investigate this thermal state from three perspectives. First, we introduce an approximate microcanonical ensemble. If this ensemble characterizes the system-and-bath composite, tracing out the bath yields the system's thermal state. This state is expected to be the equilibrium point, we argue, of typical dynamics. Finally, we define a resource-theory model for thermodynamic exchanges of noncommuting observables. Complete passivity-the inability to extract work from equilibrium states-implies the thermal state's form, too. Our work opens new avenues into equilibrium in the presence of quantum noncommutation.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree true
48 schema:isPartOf N9e7c36995dd945ccbc8602ac49a67b57
49 sg:journal.1043282
50 schema:name Microcanonical and resource-theoretic derivations of the thermal state of a quantum system with noncommuting charges
51 schema:pagination 12051
52 schema:productId N0022dd69670f4fc8bae3e22b198bb180
53 N1a8f82a31edc4a4aa7c3368f14799ab1
54 N34dd4c7a135c4b26813ae634d1a145cc
55 N6d51989be9d3445287625fc381f778d9
56 N91fcb72bfd68404e9f00126f47a79048
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038685164
58 https://doi.org/10.1038/ncomms12051
59 schema:sdDatePublished 2019-04-10T18:26
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N7d12d967170d43e3a20a72a40bdc51af
62 schema:url https://www.nature.com/articles/ncomms12051
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N0022dd69670f4fc8bae3e22b198bb180 schema:name doi
67 schema:value 10.1038/ncomms12051
68 rdf:type schema:PropertyValue
69 N09917bfbfd1a49cd90863ee0792f5e6c rdf:first sg:person.01046157753.65
70 rdf:rest Na6946184b1174a5cae10d84764d7bd8c
71 N1a8f82a31edc4a4aa7c3368f14799ab1 schema:name nlm_unique_id
72 schema:value 101528555
73 rdf:type schema:PropertyValue
74 N34dd4c7a135c4b26813ae634d1a145cc schema:name pubmed_id
75 schema:value 27384494
76 rdf:type schema:PropertyValue
77 N6d51989be9d3445287625fc381f778d9 schema:name readcube_id
78 schema:value b84782493f972800706436d5751315a955d5802a75704fe717a1bdff06e8d397
79 rdf:type schema:PropertyValue
80 N7d12d967170d43e3a20a72a40bdc51af schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 N91fcb72bfd68404e9f00126f47a79048 schema:name dimensions_id
83 schema:value pub.1038685164
84 rdf:type schema:PropertyValue
85 N9e7c36995dd945ccbc8602ac49a67b57 schema:volumeNumber 7
86 rdf:type schema:PublicationVolume
87 Na6946184b1174a5cae10d84764d7bd8c rdf:first sg:person.01221655300.13
88 rdf:rest rdf:nil
89 Nbe85327393cf4a0391caadba84555b14 rdf:first sg:person.01151107345.22
90 rdf:rest N09917bfbfd1a49cd90863ee0792f5e6c
91 Nef5c9f18edd64499a6ca7086fda050da rdf:first sg:person.0774206124.62
92 rdf:rest Nbe85327393cf4a0391caadba84555b14
93 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
94 schema:name Physical Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
97 schema:name Quantum Physics
98 rdf:type schema:DefinedTerm
99 sg:grant.2996392 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms12051
100 rdf:type schema:MonetaryGrant
101 sg:grant.3785413 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms12051
102 rdf:type schema:MonetaryGrant
103 sg:journal.1043282 schema:issn 2041-1723
104 schema:name Nature Communications
105 rdf:type schema:Periodical
106 sg:person.01046157753.65 schema:affiliation https://www.grid.ac/institutes/grid.83440.3b
107 schema:familyName Oppenheim
108 schema:givenName Jonathan
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046157753.65
110 rdf:type schema:Person
111 sg:person.01151107345.22 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
112 schema:familyName Faist
113 schema:givenName Philippe
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151107345.22
115 rdf:type schema:Person
116 sg:person.01221655300.13 schema:affiliation https://www.grid.ac/institutes/grid.425902.8
117 schema:familyName Winter
118 schema:givenName Andreas
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221655300.13
120 rdf:type schema:Person
121 sg:person.0774206124.62 schema:affiliation https://www.grid.ac/institutes/grid.20861.3d
122 schema:familyName Halpern
123 schema:givenName Nicole Yunger
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774206124.62
125 rdf:type schema:Person
126 sg:pub.10.1007/978-3-540-44513-5_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016516786
127 https://doi.org/10.1007/978-3-540-44513-5_18
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/bf01011769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012442699
130 https://doi.org/10.1007/bf01011769
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/bf01614224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001456458
133 https://doi.org/10.1007/bf01614224
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s00220-014-2122-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041709350
136 https://doi.org/10.1007/s00220-014-2122-x
137 rdf:type schema:CreativeWork
138 sg:pub.10.1023/a:1026422630734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033215061
139 https://doi.org/10.1023/a:1026422630734
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/nature04693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033051651
142 https://doi.org/10.1038/nature04693
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/ncomms12049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009719985
145 https://doi.org/10.1038/ncomms12049
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/ncomms3059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031347512
148 https://doi.org/10.1038/ncomms3059
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/nphys444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007779406
151 https://doi.org/10.1038/nphys444
152 rdf:type schema:CreativeWork
153 https://app.dimensions.ai/details/publication/pub.1047515169 schema:CreativeWork
154 https://doi.org/10.1016/j.jfa.2013.01.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025346763
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1063/1.4838856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043742447
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1073/pnas.1411728112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017146799
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1080/00107514.2016.1201896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036938245
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1088/0034-4885/79/5/056001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031268411
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1088/1367-2630/18/2/023045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059137299
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1088/1367-2630/aa617f schema:sameAs https://app.dimensions.ai/details/publication/pub.1083929145
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1088/1751-8113/49/14/143001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011095890
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1098/rspa.2010.0577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041564819
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physrev.106.620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060418970
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physrev.108.171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060419623
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physrev.155.1428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060434841
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physreva.51.2738 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060490086
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physreva.69.052326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038899838
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physreve.79.061103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027919173
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physreve.93.022126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036097542
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physrevlett.111.250404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003755374
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physrevlett.113.150402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050543565
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrevlett.117.260601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024885605
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physrevlett.96.050403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044123530
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physrevlett.98.050405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034534467
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1103/revmodphys.79.555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027545945
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1103/revmodphys.81.865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002548185
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1103/revmodphys.83.863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037152641
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1126/science.1257026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062470155
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1142/s0129055x11004412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062898239
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1146/annurev-conmatphys-031214-014548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046358042
207 rdf:type schema:CreativeWork
208 https://doi.org/10.2140/pjm.1981.96.99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069068143
209 rdf:type schema:CreativeWork
210 https://www.grid.ac/institutes/grid.20861.3d schema:alternateName California Institute of Technology
211 schema:name Institute for Quantum Information and Matter, Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California 91125, USA
212 rdf:type schema:Organization
213 https://www.grid.ac/institutes/grid.425902.8 schema:alternateName Institució Catalana de Recerca i Estudis Avançats
214 schema:name Departament de Física, Grup d'Informació Quántica, Universitat Autònoma de Barcelona, ES-08193 Barcelona, Spain
215 ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
216 rdf:type schema:Organization
217 https://www.grid.ac/institutes/grid.5801.c schema:alternateName Swiss Federal Institute of Technology in Zurich
218 schema:name Institute for Theoretical Physics, Department of Physics, ETH Zürich, 8093 Zürich, Switzerland
219 rdf:type schema:Organization
220 https://www.grid.ac/institutes/grid.83440.3b schema:alternateName University College London
221 schema:name Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
222 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...