Experimental magic state distillation for fault-tolerant quantum computing View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-09

AUTHORS

Alexandre M. Souza, Jingfu Zhang, Colm A. Ryan, Raymond Laflamme

ABSTRACT

Any physical quantum device for quantum information processing (QIP) is subject to errors in implementation. In order to be reliable and efficient, quantum computers will need error-correcting or error-avoiding methods. Fault-tolerance achieved through quantum error correction will be an integral part of quantum computers. Of the many methods that have been discovered to implement it, a highly successful approach has been to use transversal gates and specific initial states. A critical element for its implementation is the availability of high-fidelity initial states, such as |0〉 and the 'magic state'. Here, we report an experiment, performed in a nuclear magnetic resonance (NMR) quantum processor, showing sufficient quantum control to improve the fidelity of imperfect initial magic states by distilling five of them into one with higher fidelity. More... »

PAGES

169

References to SciGraph publications

  • 2005-03. Quantum computing with realistically noisy devices in NATURE
  • 2000-03. An algorithmic benchmark for quantum information processing in NATURE
  • 2009. On the Structure of Protocols for Magic State Distillation in THEORY OF QUANTUM COMPUTATION, COMMUNICATION, AND CRYPTOGRAPHY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/ncomms1166

    DOI

    http://dx.doi.org/10.1038/ncomms1166

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1006516086

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/21266968


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Quantum Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Waterloo", 
              "id": "https://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "Department of Physics and Astronomy, Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Souza", 
            "givenName": "Alexandre M.", 
            "id": "sg:person.01106005472.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106005472.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Waterloo", 
              "id": "https://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "Department of Physics and Astronomy, Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Jingfu", 
            "id": "sg:person.0717711057.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717711057.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Waterloo", 
              "id": "https://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "Department of Physics and Astronomy, Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ryan", 
            "givenName": "Colm A.", 
            "id": "sg:person.01031367163.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031367163.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Perimeter Institute", 
              "id": "https://www.grid.ac/institutes/grid.420198.6", 
              "name": [
                "Department of Physics and Astronomy, Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.", 
                "Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2J 2W9, Canada."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Laflamme", 
            "givenName": "Raymond", 
            "id": "sg:person.01201156072.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201156072.19"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1002/1521-3978(200009)48:9/11<909::aid-prop909>3.0.co;2-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001412504"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspa.1998.0167", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002498567"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmr.2004.11.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003417053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.78.012328", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004747683"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.78.012328", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004747683"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/258533.258579", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026458435"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35006012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032730401", 
              "https://doi.org/10.1038/35006012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35006012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032730401", 
              "https://doi.org/10.1038/35006012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032975547", 
              "https://doi.org/10.1038/nature03350"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032975547", 
              "https://doi.org/10.1038/nature03350"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.78.012353", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035917080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.78.012353", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035917080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.104.030503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036779245"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.104.030503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036779245"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.71.022316", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042360261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.71.022316", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042360261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-10698-9_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050539186", 
              "https://doi.org/10.1007/978-3-642-10698-9_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-10698-9_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050539186", 
              "https://doi.org/10.1007/978-3-642-10698-9_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.103.170504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052845950"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.103.170504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052845950"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1070/rm1997v052n06abeh002155", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058196987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.69.052302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060499901"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.69.052302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060499901"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.77.198", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060813763"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.77.198", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060813763"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tit.2011.2161917", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061653448"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.279.5349.342", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062559315"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-09", 
        "datePublishedReg": "2011-09-01", 
        "description": "Any physical quantum device for quantum information processing (QIP) is subject to errors in implementation. In order to be reliable and efficient, quantum computers will need error-correcting or error-avoiding methods. Fault-tolerance achieved through quantum error correction will be an integral part of quantum computers. Of the many methods that have been discovered to implement it, a highly successful approach has been to use transversal gates and specific initial states. A critical element for its implementation is the availability of high-fidelity initial states, such as |0\u3009 and the 'magic state'. Here, we report an experiment, performed in a nuclear magnetic resonance (NMR) quantum processor, showing sufficient quantum control to improve the fidelity of imperfect initial magic states by distilling five of them into one with higher fidelity.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/ncomms1166", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2"
          }
        ], 
        "name": "Experimental magic state distillation for fault-tolerant quantum computing", 
        "pagination": "169", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "1f097a3ba53498a00fee103310e7fc3bff98db7b66deab406032ff81dd7660be"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "21266968"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101528555"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/ncomms1166"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1006516086"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/ncomms1166", 
          "https://app.dimensions.ai/details/publication/pub.1006516086"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T21:25", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000435.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/ncomms1166"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms1166'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms1166'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms1166'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms1166'


     

    This table displays all metadata directly associated to this object as RDF triples.

    147 TRIPLES      21 PREDICATES      46 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/ncomms1166 schema:about anzsrc-for:02
    2 anzsrc-for:0206
    3 schema:author N06efc757166348dd844297441afaf13a
    4 schema:citation sg:pub.10.1007/978-3-642-10698-9_3
    5 sg:pub.10.1038/35006012
    6 sg:pub.10.1038/nature03350
    7 https://doi.org/10.1002/1521-3978(200009)48:9/11<909::aid-prop909>3.0.co;2-2
    8 https://doi.org/10.1016/j.jmr.2004.11.004
    9 https://doi.org/10.1070/rm1997v052n06abeh002155
    10 https://doi.org/10.1098/rspa.1998.0167
    11 https://doi.org/10.1103/physreva.69.052302
    12 https://doi.org/10.1103/physreva.71.022316
    13 https://doi.org/10.1103/physreva.78.012328
    14 https://doi.org/10.1103/physreva.78.012353
    15 https://doi.org/10.1103/physrevlett.103.170504
    16 https://doi.org/10.1103/physrevlett.104.030503
    17 https://doi.org/10.1103/physrevlett.77.198
    18 https://doi.org/10.1109/tit.2011.2161917
    19 https://doi.org/10.1126/science.279.5349.342
    20 https://doi.org/10.1145/258533.258579
    21 schema:datePublished 2011-09
    22 schema:datePublishedReg 2011-09-01
    23 schema:description Any physical quantum device for quantum information processing (QIP) is subject to errors in implementation. In order to be reliable and efficient, quantum computers will need error-correcting or error-avoiding methods. Fault-tolerance achieved through quantum error correction will be an integral part of quantum computers. Of the many methods that have been discovered to implement it, a highly successful approach has been to use transversal gates and specific initial states. A critical element for its implementation is the availability of high-fidelity initial states, such as |0〉 and the 'magic state'. Here, we report an experiment, performed in a nuclear magnetic resonance (NMR) quantum processor, showing sufficient quantum control to improve the fidelity of imperfect initial magic states by distilling five of them into one with higher fidelity.
    24 schema:genre research_article
    25 schema:inLanguage en
    26 schema:isAccessibleForFree true
    27 schema:isPartOf N6f60ab97b62946e6991c2cda50e62bb1
    28 Nb1f7d0a4225f4fddb71a0a4371e02385
    29 sg:journal.1043282
    30 schema:name Experimental magic state distillation for fault-tolerant quantum computing
    31 schema:pagination 169
    32 schema:productId N40bae038296447b6b16302efdbd25387
    33 N9f4f217da14a41e7b8949686ed45e500
    34 Nad53b458c33c43f285d17c2386186f31
    35 Nc1ef4abf653e47ec810958355e799306
    36 Nc73238740696411b8f781f545d118c62
    37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006516086
    38 https://doi.org/10.1038/ncomms1166
    39 schema:sdDatePublished 2019-04-10T21:25
    40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    41 schema:sdPublisher N954888c1aaf34efb8e56697e49410c55
    42 schema:url https://www.nature.com/articles/ncomms1166
    43 sgo:license sg:explorer/license/
    44 sgo:sdDataset articles
    45 rdf:type schema:ScholarlyArticle
    46 N049cc4c1d1cd4d5eb0f624f3776f12fb rdf:first sg:person.01031367163.50
    47 rdf:rest N60038e537b7f41b8a929e525a4663af7
    48 N06efc757166348dd844297441afaf13a rdf:first sg:person.01106005472.01
    49 rdf:rest Nd0fecb4122ac4d06862f8fe92a502139
    50 N40bae038296447b6b16302efdbd25387 schema:name readcube_id
    51 schema:value 1f097a3ba53498a00fee103310e7fc3bff98db7b66deab406032ff81dd7660be
    52 rdf:type schema:PropertyValue
    53 N60038e537b7f41b8a929e525a4663af7 rdf:first sg:person.01201156072.19
    54 rdf:rest rdf:nil
    55 N6f60ab97b62946e6991c2cda50e62bb1 schema:issueNumber 1
    56 rdf:type schema:PublicationIssue
    57 N954888c1aaf34efb8e56697e49410c55 schema:name Springer Nature - SN SciGraph project
    58 rdf:type schema:Organization
    59 N9f4f217da14a41e7b8949686ed45e500 schema:name doi
    60 schema:value 10.1038/ncomms1166
    61 rdf:type schema:PropertyValue
    62 Nad53b458c33c43f285d17c2386186f31 schema:name pubmed_id
    63 schema:value 21266968
    64 rdf:type schema:PropertyValue
    65 Nb1f7d0a4225f4fddb71a0a4371e02385 schema:volumeNumber 2
    66 rdf:type schema:PublicationVolume
    67 Nc1ef4abf653e47ec810958355e799306 schema:name dimensions_id
    68 schema:value pub.1006516086
    69 rdf:type schema:PropertyValue
    70 Nc73238740696411b8f781f545d118c62 schema:name nlm_unique_id
    71 schema:value 101528555
    72 rdf:type schema:PropertyValue
    73 Nd0fecb4122ac4d06862f8fe92a502139 rdf:first sg:person.0717711057.44
    74 rdf:rest N049cc4c1d1cd4d5eb0f624f3776f12fb
    75 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Physical Sciences
    77 rdf:type schema:DefinedTerm
    78 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Quantum Physics
    80 rdf:type schema:DefinedTerm
    81 sg:journal.1043282 schema:issn 2041-1723
    82 schema:name Nature Communications
    83 rdf:type schema:Periodical
    84 sg:person.01031367163.50 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
    85 schema:familyName Ryan
    86 schema:givenName Colm A.
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031367163.50
    88 rdf:type schema:Person
    89 sg:person.01106005472.01 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
    90 schema:familyName Souza
    91 schema:givenName Alexandre M.
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106005472.01
    93 rdf:type schema:Person
    94 sg:person.01201156072.19 schema:affiliation https://www.grid.ac/institutes/grid.420198.6
    95 schema:familyName Laflamme
    96 schema:givenName Raymond
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201156072.19
    98 rdf:type schema:Person
    99 sg:person.0717711057.44 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
    100 schema:familyName Zhang
    101 schema:givenName Jingfu
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717711057.44
    103 rdf:type schema:Person
    104 sg:pub.10.1007/978-3-642-10698-9_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050539186
    105 https://doi.org/10.1007/978-3-642-10698-9_3
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1038/35006012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032730401
    108 https://doi.org/10.1038/35006012
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1038/nature03350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032975547
    111 https://doi.org/10.1038/nature03350
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1002/1521-3978(200009)48:9/11<909::aid-prop909>3.0.co;2-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001412504
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/j.jmr.2004.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003417053
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1070/rm1997v052n06abeh002155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058196987
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1098/rspa.1998.0167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002498567
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1103/physreva.69.052302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060499901
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1103/physreva.71.022316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042360261
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1103/physreva.78.012328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004747683
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1103/physreva.78.012353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035917080
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1103/physrevlett.103.170504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052845950
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1103/physrevlett.104.030503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036779245
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1103/physrevlett.77.198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060813763
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1109/tit.2011.2161917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061653448
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1126/science.279.5349.342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062559315
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1145/258533.258579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026458435
    140 rdf:type schema:CreativeWork
    141 https://www.grid.ac/institutes/grid.420198.6 schema:alternateName Perimeter Institute
    142 schema:name Department of Physics and Astronomy, Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
    143 Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2J 2W9, Canada.
    144 rdf:type schema:Organization
    145 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
    146 schema:name Department of Physics and Astronomy, Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
    147 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...