Nucleation of amorphous shear bands at nanotwins in boron suboxide View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-03-22

AUTHORS

Qi An, K. Madhav Reddy, Jin Qian, Kevin J. Hemker, Ming-Wei Chen, William A. Goddard III

ABSTRACT

The roles of grain boundaries and twin boundaries in mechanical properties are well understood for metals and alloys. However, for covalent solids, their roles in deformation response to applied stress are not established. Here we characterize the nanotwins in boron suboxide (B6O) with twin boundaries along the planes using both scanning transmission electron microscopy and quantum mechanics. Then, we use quantum mechanics to determine the deformation mechanism for perfect and twinned B6O crystals for both pure shear and biaxial shear deformations. Quantum mechanics suggests that amorphous bands nucleate preferentially at the twin boundaries in B6O because the twinned structure has a lower maximum shear strength by 7.5% compared with perfect structure. These results, which are supported by experimental observations of the coordinated existence of nanotwins and amorphous shear bands in B6O, provide a plausible atomistic explanation for the influence of nanotwins on the deformation behaviour of superhard ceramics. More... »

PAGES

11001

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ncomms11001

DOI

http://dx.doi.org/10.1038/ncomms11001

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013384594

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27001922


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Materials and Process Simulation Center, California Institute of Technology, 1200 East California Boulevard, 91125, Pasadena, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Department of Chemistry, Materials and Process Simulation Center, California Institute of Technology, 1200 East California Boulevard, 91125, Pasadena, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "An", 
        "givenName": "Qi", 
        "id": "sg:person.012261751461.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012261751461.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, Johns Hopkins University, 21218, Baltimore, Maryland, USA", 
          "id": "http://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan", 
            "Department of Mechanical Engineering, Johns Hopkins University, 21218, Baltimore, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reddy", 
        "givenName": "K. Madhav", 
        "id": "sg:person.0722215311.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722215311.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Materials and Process Simulation Center, California Institute of Technology, 1200 East California Boulevard, 91125, Pasadena, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Department of Chemistry, Materials and Process Simulation Center, California Institute of Technology, 1200 East California Boulevard, 91125, Pasadena, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qian", 
        "givenName": "Jin", 
        "id": "sg:person.01014755153.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014755153.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, Johns Hopkins University, 21218, Baltimore, Maryland, USA", 
          "id": "http://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Department of Mechanical Engineering, Johns Hopkins University, 21218, Baltimore, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hemker", 
        "givenName": "Kevin J.", 
        "id": "sg:person.01225411302.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225411302.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan", 
          "id": "http://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Ming-Wei", 
        "id": "sg:person.015125211260.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015125211260.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Materials and Process Simulation Center, California Institute of Technology, 1200 East California Boulevard, 91125, Pasadena, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Department of Chemistry, Materials and Process Simulation Center, California Institute of Technology, 1200 East California Boulevard, 91125, Pasadena, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goddard III", 
        "givenName": "William A.", 
        "id": "sg:person.01040243734.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040243734.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ncomms2047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036913784", 
          "https://doi.org/10.1038/ncomms2047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-010-0548-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016334271", 
          "https://doi.org/10.1007/s11661-010-0548-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026596937", 
          "https://doi.org/10.1038/nature13381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms5965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048885259", 
          "https://doi.org/10.1038/ncomms5965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048765817", 
          "https://doi.org/10.1038/nature11728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050446213", 
          "https://doi.org/10.1038/ncomms2768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00559956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046523611", 
          "https://doi.org/10.1007/bf00559956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/34885", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040858068", 
          "https://doi.org/10.1038/34885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms3483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037561454", 
          "https://doi.org/10.1038/ncomms3483"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-03-22", 
    "datePublishedReg": "2016-03-22", 
    "description": "The roles of grain boundaries and twin boundaries in mechanical properties are well understood for metals and alloys. However, for covalent solids, their roles in deformation response to applied stress are not established. Here we characterize the nanotwins in boron suboxide (B6O) with twin boundaries along the  planes using both scanning transmission electron microscopy and quantum mechanics. Then, we use quantum mechanics to determine the deformation mechanism for perfect and twinned B6O crystals for both pure shear and biaxial shear deformations. Quantum mechanics suggests that amorphous bands nucleate preferentially at the twin boundaries in B6O because the twinned structure has a lower maximum shear strength by 7.5% compared with perfect structure. These results, which are supported by experimental observations of the coordinated existence of nanotwins and amorphous shear bands in B6O, provide a plausible atomistic explanation for the influence of nanotwins on the deformation behaviour of superhard ceramics.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/ncomms11001", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4415826", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3849466", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "keywords": [
      "amorphous shear bands", 
      "shear bands", 
      "twin boundaries", 
      "boron suboxide", 
      "maximum shear strength", 
      "biaxial shear deformation", 
      "deformation behavior", 
      "deformation response", 
      "mechanical properties", 
      "shear strength", 
      "deformation mechanisms", 
      "scanning transmission electron microscopy", 
      "grain boundaries", 
      "shear deformation", 
      "applied stress", 
      "nanotwins", 
      "transmission electron microscopy", 
      "amorphous bands", 
      "superhard ceramics", 
      "pure shear", 
      "perfect structure", 
      "electron microscopy", 
      "experimental observations", 
      "suboxide", 
      "B6O", 
      "mechanics", 
      "boundaries", 
      "alloy", 
      "covalent solids", 
      "ceramics", 
      "atomistic explanation", 
      "deformation", 
      "shear", 
      "nucleation", 
      "solids", 
      "structure", 
      "strength", 
      "metals", 
      "band", 
      "microscopy", 
      "properties", 
      "stress", 
      "plane", 
      "behavior", 
      "influence", 
      "crystals", 
      "results", 
      "mechanism", 
      "observations", 
      "response", 
      "existence", 
      "role", 
      "explanation", 
      "quantum mechanics"
    ], 
    "name": "Nucleation of amorphous shear bands at nanotwins in boron suboxide", 
    "pagination": "11001", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013384594"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ncomms11001"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27001922"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ncomms11001", 
      "https://app.dimensions.ai/details/publication/pub.1013384594"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_686.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/ncomms11001"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms11001'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms11001'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms11001'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms11001'


 

This table displays all metadata directly associated to this object as RDF triples.

196 TRIPLES      21 PREDICATES      88 URIs      71 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ncomms11001 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nd36aed3a962c4ba98f83aea5fcbe75d4
4 schema:citation sg:pub.10.1007/bf00559956
5 sg:pub.10.1007/s11661-010-0548-0
6 sg:pub.10.1038/34885
7 sg:pub.10.1038/nature11728
8 sg:pub.10.1038/nature13381
9 sg:pub.10.1038/ncomms2047
10 sg:pub.10.1038/ncomms2768
11 sg:pub.10.1038/ncomms3483
12 sg:pub.10.1038/ncomms5965
13 schema:datePublished 2016-03-22
14 schema:datePublishedReg 2016-03-22
15 schema:description The roles of grain boundaries and twin boundaries in mechanical properties are well understood for metals and alloys. However, for covalent solids, their roles in deformation response to applied stress are not established. Here we characterize the nanotwins in boron suboxide (B6O) with twin boundaries along the planes using both scanning transmission electron microscopy and quantum mechanics. Then, we use quantum mechanics to determine the deformation mechanism for perfect and twinned B6O crystals for both pure shear and biaxial shear deformations. Quantum mechanics suggests that amorphous bands nucleate preferentially at the twin boundaries in B6O because the twinned structure has a lower maximum shear strength by 7.5% compared with perfect structure. These results, which are supported by experimental observations of the coordinated existence of nanotwins and amorphous shear bands in B6O, provide a plausible atomistic explanation for the influence of nanotwins on the deformation behaviour of superhard ceramics.
16 schema:genre article
17 schema:isAccessibleForFree true
18 schema:isPartOf N3b2bb1efc3d347859c1d75b475e78a11
19 N4cbd501b1b13413db11d35531d433d3a
20 sg:journal.1043282
21 schema:keywords B6O
22 alloy
23 amorphous bands
24 amorphous shear bands
25 applied stress
26 atomistic explanation
27 band
28 behavior
29 biaxial shear deformation
30 boron suboxide
31 boundaries
32 ceramics
33 covalent solids
34 crystals
35 deformation
36 deformation behavior
37 deformation mechanisms
38 deformation response
39 electron microscopy
40 existence
41 experimental observations
42 explanation
43 grain boundaries
44 influence
45 maximum shear strength
46 mechanical properties
47 mechanics
48 mechanism
49 metals
50 microscopy
51 nanotwins
52 nucleation
53 observations
54 perfect structure
55 plane
56 properties
57 pure shear
58 quantum mechanics
59 response
60 results
61 role
62 scanning transmission electron microscopy
63 shear
64 shear bands
65 shear deformation
66 shear strength
67 solids
68 strength
69 stress
70 structure
71 suboxide
72 superhard ceramics
73 transmission electron microscopy
74 twin boundaries
75 schema:name Nucleation of amorphous shear bands at nanotwins in boron suboxide
76 schema:pagination 11001
77 schema:productId N50b9e17821d84d269184daaec42b9860
78 N612ee5fca4e543dc970d818b872090a9
79 N638b488f112d4a4fb7790786225584af
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013384594
81 https://doi.org/10.1038/ncomms11001
82 schema:sdDatePublished 2022-12-01T06:34
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher Ncb7426ce968a4f77a20ec0435ee5b712
85 schema:url https://doi.org/10.1038/ncomms11001
86 sgo:license sg:explorer/license/
87 sgo:sdDataset articles
88 rdf:type schema:ScholarlyArticle
89 N30f8da81ac704d718756c822e81758c8 rdf:first sg:person.0722215311.07
90 rdf:rest N69e8be602dd24c43b20178259daf7923
91 N3a476acdaf5e43c5ab31f35435915df2 rdf:first sg:person.015125211260.19
92 rdf:rest N66ac937252854a5f9915431a844a6542
93 N3b2bb1efc3d347859c1d75b475e78a11 schema:volumeNumber 7
94 rdf:type schema:PublicationVolume
95 N4cbd501b1b13413db11d35531d433d3a schema:issueNumber 1
96 rdf:type schema:PublicationIssue
97 N50b9e17821d84d269184daaec42b9860 schema:name doi
98 schema:value 10.1038/ncomms11001
99 rdf:type schema:PropertyValue
100 N612ee5fca4e543dc970d818b872090a9 schema:name dimensions_id
101 schema:value pub.1013384594
102 rdf:type schema:PropertyValue
103 N638b488f112d4a4fb7790786225584af schema:name pubmed_id
104 schema:value 27001922
105 rdf:type schema:PropertyValue
106 N66ac937252854a5f9915431a844a6542 rdf:first sg:person.01040243734.25
107 rdf:rest rdf:nil
108 N69e8be602dd24c43b20178259daf7923 rdf:first sg:person.01014755153.97
109 rdf:rest N9e094dac5cf34c09ae584a38071bc4e6
110 N9e094dac5cf34c09ae584a38071bc4e6 rdf:first sg:person.01225411302.11
111 rdf:rest N3a476acdaf5e43c5ab31f35435915df2
112 Ncb7426ce968a4f77a20ec0435ee5b712 schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 Nd36aed3a962c4ba98f83aea5fcbe75d4 rdf:first sg:person.012261751461.23
115 rdf:rest N30f8da81ac704d718756c822e81758c8
116 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
117 schema:name Engineering
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
120 schema:name Materials Engineering
121 rdf:type schema:DefinedTerm
122 sg:grant.3849466 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms11001
123 rdf:type schema:MonetaryGrant
124 sg:grant.4415826 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms11001
125 rdf:type schema:MonetaryGrant
126 sg:journal.1043282 schema:issn 2041-1723
127 schema:name Nature Communications
128 schema:publisher Springer Nature
129 rdf:type schema:Periodical
130 sg:person.01014755153.97 schema:affiliation grid-institutes:grid.20861.3d
131 schema:familyName Qian
132 schema:givenName Jin
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014755153.97
134 rdf:type schema:Person
135 sg:person.01040243734.25 schema:affiliation grid-institutes:grid.20861.3d
136 schema:familyName Goddard III
137 schema:givenName William A.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040243734.25
139 rdf:type schema:Person
140 sg:person.01225411302.11 schema:affiliation grid-institutes:grid.21107.35
141 schema:familyName Hemker
142 schema:givenName Kevin J.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225411302.11
144 rdf:type schema:Person
145 sg:person.012261751461.23 schema:affiliation grid-institutes:grid.20861.3d
146 schema:familyName An
147 schema:givenName Qi
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012261751461.23
149 rdf:type schema:Person
150 sg:person.015125211260.19 schema:affiliation grid-institutes:grid.69566.3a
151 schema:familyName Chen
152 schema:givenName Ming-Wei
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015125211260.19
154 rdf:type schema:Person
155 sg:person.0722215311.07 schema:affiliation grid-institutes:grid.21107.35
156 schema:familyName Reddy
157 schema:givenName K. Madhav
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722215311.07
159 rdf:type schema:Person
160 sg:pub.10.1007/bf00559956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046523611
161 https://doi.org/10.1007/bf00559956
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/s11661-010-0548-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016334271
164 https://doi.org/10.1007/s11661-010-0548-0
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/34885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040858068
167 https://doi.org/10.1038/34885
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/nature11728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048765817
170 https://doi.org/10.1038/nature11728
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/nature13381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026596937
173 https://doi.org/10.1038/nature13381
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/ncomms2047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036913784
176 https://doi.org/10.1038/ncomms2047
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/ncomms2768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050446213
179 https://doi.org/10.1038/ncomms2768
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/ncomms3483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037561454
182 https://doi.org/10.1038/ncomms3483
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/ncomms5965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048885259
185 https://doi.org/10.1038/ncomms5965
186 rdf:type schema:CreativeWork
187 grid-institutes:grid.20861.3d schema:alternateName Department of Chemistry, Materials and Process Simulation Center, California Institute of Technology, 1200 East California Boulevard, 91125, Pasadena, California, USA
188 schema:name Department of Chemistry, Materials and Process Simulation Center, California Institute of Technology, 1200 East California Boulevard, 91125, Pasadena, California, USA
189 rdf:type schema:Organization
190 grid-institutes:grid.21107.35 schema:alternateName Department of Mechanical Engineering, Johns Hopkins University, 21218, Baltimore, Maryland, USA
191 schema:name Department of Mechanical Engineering, Johns Hopkins University, 21218, Baltimore, Maryland, USA
192 WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan
193 rdf:type schema:Organization
194 grid-institutes:grid.69566.3a schema:alternateName WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan
195 schema:name WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan
196 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...