Selectively enhanced photocurrent generation in twisted bilayer graphene with van Hove singularity View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-03-07

AUTHORS

Jianbo Yin, Huan Wang, Han Peng, Zhenjun Tan, Lei Liao, Li Lin, Xiao Sun, Ai Leen Koh, Yulin Chen, Hailin Peng, Zhongfan Liu

ABSTRACT

Graphene with ultra-high carrier mobility and ultra-short photoresponse time has shown remarkable potential in ultrafast photodetection. However, the broad and weak optical absorption (∼2.3%) of monolayer graphene hinders its practical application in photodetectors with high responsivity and selectivity. Here we demonstrate that twisted bilayer graphene, a stack of two graphene monolayers with an interlayer twist angle, exhibits a strong light–matter interaction and selectively enhanced photocurrent generation. Such enhancement is attributed to the emergence of unique twist-angle-dependent van Hove singularities, which are directly revealed by spatially resolved angle-resolved photoemission spectroscopy. When the energy interval between the van Hove singularities of the conduction and valance bands matches the energy of incident photons, the photocurrent generated can be significantly enhanced (up to ∼80 times with the integration of plasmonic structures in our devices). These results provide valuable insight for designing graphene photodetectors with enhanced sensitivity for variable wavelength. More... »

PAGES

10699

References to SciGraph publications

  • 2010-03-28. Graphene photodetectors for high-speed optical communications in NATURE PHOTONICS
  • 2009-06. Direct observation of a widely tunable bandgap in bilayer graphene in NATURE
  • 2009-11-29. Observation of Van Hove singularities in twisted graphene layers in NATURE PHYSICS
  • 2009-10-11. Ultrafast graphene photodetector in NATURE NANOTECHNOLOGY
  • 2013-06-27. Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene in NATURE COMMUNICATIONS
  • 2005-11. Experimental observation of the quantum Hall effect and Berry's phase in graphene in NATURE
  • 2012-01-15. Ultrafast hot-carrier-dominated photocurrent in graphene in NATURE NANOTECHNOLOGY
  • 2005-11. Two-dimensional gas of massless Dirac fermions in graphene in NATURE
  • 2015-04-13. Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating in NATURE NANOTECHNOLOGY
  • 2012-12-02. Photocurrent measurements of supercollision cooling in graphene in NATURE PHYSICS
  • 2013-09-15. Chip-integrated ultrafast graphene photodetector with high responsivity in NATURE PHOTONICS
  • 2007-09-09. Substrate-induced bandgap opening in epitaxial graphene in NATURE MATERIALS
  • 2011-08-30. Strong plasmonic enhancement of photovoltage in graphene in NATURE COMMUNICATIONS
  • 2013-09-15. CMOS-compatible graphene photodetector covering all optical communication bands in NATURE PHOTONICS
  • 2007-03. The rise of graphene in NATURE MATERIALS
  • 2013-02-24. Photoexcitation cascade and multiple hot-carrier generation in graphene in NATURE PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/ncomms10699

    DOI

    http://dx.doi.org/10.1038/ncomms10699

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1023529104

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/26948537


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Technology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Optical Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Nanotechnology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 202 Chengfu Road, Haidian District, 100871, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.11135.37", 
              "name": [
                "Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 202 Chengfu Road, Haidian District, 100871, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yin", 
            "givenName": "Jianbo", 
            "id": "sg:person.01243565077.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243565077.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 202 Chengfu Road, Haidian District, 100871, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.11135.37", 
              "name": [
                "Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 202 Chengfu Road, Haidian District, 100871, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Huan", 
            "id": "sg:person.01127336477.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127336477.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, OX1 3PU, Oxford, UK", 
              "id": "http://www.grid.ac/institutes/grid.4991.5", 
              "name": [
                "Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, OX1 3PU, Oxford, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Peng", 
            "givenName": "Han", 
            "id": "sg:person.01175451677.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175451677.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.11135.37", 
              "name": [
                "Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 202 Chengfu Road, Haidian District, 100871, Beijing, China", 
                "Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tan", 
            "givenName": "Zhenjun", 
            "id": "sg:person.0740550357.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740550357.56"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 202 Chengfu Road, Haidian District, 100871, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.11135.37", 
              "name": [
                "Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 202 Chengfu Road, Haidian District, 100871, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liao", 
            "givenName": "Lei", 
            "id": "sg:person.0736077670.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736077670.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 202 Chengfu Road, Haidian District, 100871, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.11135.37", 
              "name": [
                "Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 202 Chengfu Road, Haidian District, 100871, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lin", 
            "givenName": "Li", 
            "id": "sg:person.011044314465.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011044314465.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.11135.37", 
              "name": [
                "Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 202 Chengfu Road, Haidian District, 100871, Beijing, China", 
                "Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sun", 
            "givenName": "Xiao", 
            "id": "sg:person.01123112157.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123112157.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford Nano Shared Facilities, Stanford University, 94305, Stanford, California, USA", 
              "id": "http://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Stanford Nano Shared Facilities, Stanford University, 94305, Stanford, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Koh", 
            "givenName": "Ai Leen", 
            "id": "sg:person.0727314575.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727314575.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, OX1 3PU, Oxford, UK", 
              "id": "http://www.grid.ac/institutes/grid.4991.5", 
              "name": [
                "Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, OX1 3PU, Oxford, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Yulin", 
            "id": "sg:person.0737573754.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737573754.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 202 Chengfu Road, Haidian District, 100871, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.11135.37", 
              "name": [
                "Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 202 Chengfu Road, Haidian District, 100871, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Peng", 
            "givenName": "Hailin", 
            "id": "sg:person.01340650506.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340650506.94"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 202 Chengfu Road, Haidian District, 100871, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.11135.37", 
              "name": [
                "Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 202 Chengfu Road, Haidian District, 100871, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Zhongfan", 
            "id": "sg:person.0750635777.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750635777.41"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nphoton.2013.253", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003444244", 
              "https://doi.org/10.1038/nphoton.2013.253"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2010.40", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006827577", 
              "https://doi.org/10.1038/nphoton.2010.40"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms1464", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005965627", 
              "https://doi.org/10.1038/ncomms1464"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04235", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009714128", 
              "https://doi.org/10.1038/nature04235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043686943", 
              "https://doi.org/10.1038/nature08105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2013.240", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020219312", 
              "https://doi.org/10.1038/nphoton.2013.240"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms3096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029669947", 
              "https://doi.org/10.1038/ncomms3096"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys1463", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045564126", 
              "https://doi.org/10.1038/nphys1463"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2009.292", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007762915", 
              "https://doi.org/10.1038/nnano.2009.292"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2011.243", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046544818", 
              "https://doi.org/10.1038/nnano.2011.243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat2003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036371302", 
              "https://doi.org/10.1038/nmat2003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys2493", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012089877", 
              "https://doi.org/10.1038/nphys2493"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys2564", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012783684", 
              "https://doi.org/10.1038/nphys2564"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1849", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052791836", 
              "https://doi.org/10.1038/nmat1849"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2015.54", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000793648", 
              "https://doi.org/10.1038/nnano.2015.54"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001061831", 
              "https://doi.org/10.1038/nature04233"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-03-07", 
        "datePublishedReg": "2016-03-07", 
        "description": "Graphene with ultra-high carrier mobility and ultra-short photoresponse time has shown remarkable potential in ultrafast photodetection. However, the broad and weak optical absorption (\u223c2.3%) of monolayer graphene hinders its practical application in photodetectors with high responsivity and selectivity. Here we demonstrate that twisted bilayer graphene, a stack of two graphene monolayers with an interlayer twist angle, exhibits a strong light\u2013matter interaction and selectively enhanced photocurrent generation. Such enhancement is attributed to the emergence of unique twist-angle-dependent van Hove singularities, which are directly revealed by spatially resolved angle-resolved photoemission spectroscopy. When the energy interval between the van Hove singularities of the conduction and valance bands matches the energy of incident photons, the photocurrent generated can be significantly enhanced (up to \u223c80 times with the integration of plasmonic structures in our devices). These results provide valuable insight for designing graphene photodetectors with enhanced sensitivity for variable wavelength.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/ncomms10699", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8144360", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8252261", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6979573", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6976444", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "keywords": [
          "twisted bilayer graphene", 
          "bilayer graphene", 
          "strong light-matter interaction", 
          "van Hove", 
          "ultra-high carrier mobility", 
          "light-matter interaction", 
          "weak optical absorption", 
          "interlayer twist angle", 
          "photocurrent generation", 
          "van Hove singularity", 
          "ultrafast photodetection", 
          "optical absorption", 
          "photoemission spectroscopy", 
          "monolayer graphene", 
          "graphene monolayer", 
          "graphene photodetectors", 
          "energy interval", 
          "photoresponse time", 
          "high responsivity", 
          "variable wavelength", 
          "valance band", 
          "incident photon", 
          "carrier mobility", 
          "graphene", 
          "photodetectors", 
          "remarkable potential", 
          "Hove", 
          "twist angle", 
          "enhanced sensitivity", 
          "practical applications", 
          "such enhancement", 
          "photons", 
          "photodetection", 
          "wavelength", 
          "photocurrent", 
          "responsivity", 
          "spectroscopy", 
          "angle", 
          "absorption", 
          "energy", 
          "monolayers", 
          "band", 
          "stack", 
          "generation", 
          "selectivity", 
          "applications", 
          "conduction", 
          "singularity", 
          "enhancement", 
          "mobility", 
          "sensitivity", 
          "interaction", 
          "potential", 
          "valuable insights", 
          "time", 
          "results", 
          "insights", 
          "emergence", 
          "interval"
        ], 
        "name": "Selectively enhanced photocurrent generation in twisted bilayer graphene with van Hove singularity", 
        "pagination": "10699", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1023529104"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/ncomms10699"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "26948537"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/ncomms10699", 
          "https://app.dimensions.ai/details/publication/pub.1023529104"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_699.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/ncomms10699"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms10699'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms10699'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms10699'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms10699'


     

    This table displays all metadata directly associated to this object as RDF triples.

    277 TRIPLES      21 PREDICATES      102 URIs      76 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/ncomms10699 schema:about anzsrc-for:02
    2 anzsrc-for:0205
    3 anzsrc-for:10
    4 anzsrc-for:1007
    5 schema:author N79d64533212a4afe8eba2a5eaae0867b
    6 schema:citation sg:pub.10.1038/nature04233
    7 sg:pub.10.1038/nature04235
    8 sg:pub.10.1038/nature08105
    9 sg:pub.10.1038/ncomms1464
    10 sg:pub.10.1038/ncomms3096
    11 sg:pub.10.1038/nmat1849
    12 sg:pub.10.1038/nmat2003
    13 sg:pub.10.1038/nnano.2009.292
    14 sg:pub.10.1038/nnano.2011.243
    15 sg:pub.10.1038/nnano.2015.54
    16 sg:pub.10.1038/nphoton.2010.40
    17 sg:pub.10.1038/nphoton.2013.240
    18 sg:pub.10.1038/nphoton.2013.253
    19 sg:pub.10.1038/nphys1463
    20 sg:pub.10.1038/nphys2493
    21 sg:pub.10.1038/nphys2564
    22 schema:datePublished 2016-03-07
    23 schema:datePublishedReg 2016-03-07
    24 schema:description Graphene with ultra-high carrier mobility and ultra-short photoresponse time has shown remarkable potential in ultrafast photodetection. However, the broad and weak optical absorption (∼2.3%) of monolayer graphene hinders its practical application in photodetectors with high responsivity and selectivity. Here we demonstrate that twisted bilayer graphene, a stack of two graphene monolayers with an interlayer twist angle, exhibits a strong light–matter interaction and selectively enhanced photocurrent generation. Such enhancement is attributed to the emergence of unique twist-angle-dependent van Hove singularities, which are directly revealed by spatially resolved angle-resolved photoemission spectroscopy. When the energy interval between the van Hove singularities of the conduction and valance bands matches the energy of incident photons, the photocurrent generated can be significantly enhanced (up to ∼80 times with the integration of plasmonic structures in our devices). These results provide valuable insight for designing graphene photodetectors with enhanced sensitivity for variable wavelength.
    25 schema:genre article
    26 schema:isAccessibleForFree true
    27 schema:isPartOf Ndfb2f083df554a33bd29abaf4aebbd00
    28 Ne96fcc75436741f1bd17b8bd8143d65d
    29 sg:journal.1043282
    30 schema:keywords Hove
    31 absorption
    32 angle
    33 applications
    34 band
    35 bilayer graphene
    36 carrier mobility
    37 conduction
    38 emergence
    39 energy
    40 energy interval
    41 enhanced sensitivity
    42 enhancement
    43 generation
    44 graphene
    45 graphene monolayer
    46 graphene photodetectors
    47 high responsivity
    48 incident photon
    49 insights
    50 interaction
    51 interlayer twist angle
    52 interval
    53 light-matter interaction
    54 mobility
    55 monolayer graphene
    56 monolayers
    57 optical absorption
    58 photocurrent
    59 photocurrent generation
    60 photodetection
    61 photodetectors
    62 photoemission spectroscopy
    63 photons
    64 photoresponse time
    65 potential
    66 practical applications
    67 remarkable potential
    68 responsivity
    69 results
    70 selectivity
    71 sensitivity
    72 singularity
    73 spectroscopy
    74 stack
    75 strong light-matter interaction
    76 such enhancement
    77 time
    78 twist angle
    79 twisted bilayer graphene
    80 ultra-high carrier mobility
    81 ultrafast photodetection
    82 valance band
    83 valuable insights
    84 van Hove
    85 van Hove singularity
    86 variable wavelength
    87 wavelength
    88 weak optical absorption
    89 schema:name Selectively enhanced photocurrent generation in twisted bilayer graphene with van Hove singularity
    90 schema:pagination 10699
    91 schema:productId N18f72f80a53a42679ccc21b9dbd9e250
    92 N715d7b8f04b64385820cc4ca41fe4a56
    93 Na720f796bc0145549881fbaa10e3488f
    94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023529104
    95 https://doi.org/10.1038/ncomms10699
    96 schema:sdDatePublished 2022-09-02T16:00
    97 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    98 schema:sdPublisher N479d437ebce94985baffe059a9c7d71d
    99 schema:url https://doi.org/10.1038/ncomms10699
    100 sgo:license sg:explorer/license/
    101 sgo:sdDataset articles
    102 rdf:type schema:ScholarlyArticle
    103 N18f72f80a53a42679ccc21b9dbd9e250 schema:name dimensions_id
    104 schema:value pub.1023529104
    105 rdf:type schema:PropertyValue
    106 N25eccbdb0cfb418c9967b25e7d428128 rdf:first sg:person.011044314465.07
    107 rdf:rest N8815e180bbe440f38d1c40a407d36886
    108 N30c74d8b75814725855a61892a0b0767 rdf:first sg:person.0736077670.28
    109 rdf:rest N25eccbdb0cfb418c9967b25e7d428128
    110 N40e640393e8c466da97e00ffc288dbc1 rdf:first sg:person.0727314575.32
    111 rdf:rest Nd61f9b2bbcb0445687f4b8fd0c5e9bd0
    112 N479d437ebce94985baffe059a9c7d71d schema:name Springer Nature - SN SciGraph project
    113 rdf:type schema:Organization
    114 N59f6c1881a6a46a6bb4545ea01bffc3d rdf:first sg:person.01175451677.21
    115 rdf:rest N7941d8ec454f4068978bda79ae147d9a
    116 N6dffef8f606c4759ab5d3fd8e0ce843d rdf:first sg:person.01127336477.11
    117 rdf:rest N59f6c1881a6a46a6bb4545ea01bffc3d
    118 N7096b01a9e684ab1a23b26e3eea1f3b3 rdf:first sg:person.01340650506.94
    119 rdf:rest Na26e3bfd24874394a696b9f4232699fa
    120 N715d7b8f04b64385820cc4ca41fe4a56 schema:name pubmed_id
    121 schema:value 26948537
    122 rdf:type schema:PropertyValue
    123 N7941d8ec454f4068978bda79ae147d9a rdf:first sg:person.0740550357.56
    124 rdf:rest N30c74d8b75814725855a61892a0b0767
    125 N79d64533212a4afe8eba2a5eaae0867b rdf:first sg:person.01243565077.11
    126 rdf:rest N6dffef8f606c4759ab5d3fd8e0ce843d
    127 N8815e180bbe440f38d1c40a407d36886 rdf:first sg:person.01123112157.58
    128 rdf:rest N40e640393e8c466da97e00ffc288dbc1
    129 Na26e3bfd24874394a696b9f4232699fa rdf:first sg:person.0750635777.41
    130 rdf:rest rdf:nil
    131 Na720f796bc0145549881fbaa10e3488f schema:name doi
    132 schema:value 10.1038/ncomms10699
    133 rdf:type schema:PropertyValue
    134 Nd61f9b2bbcb0445687f4b8fd0c5e9bd0 rdf:first sg:person.0737573754.36
    135 rdf:rest N7096b01a9e684ab1a23b26e3eea1f3b3
    136 Ndfb2f083df554a33bd29abaf4aebbd00 schema:volumeNumber 7
    137 rdf:type schema:PublicationVolume
    138 Ne96fcc75436741f1bd17b8bd8143d65d schema:issueNumber 1
    139 rdf:type schema:PublicationIssue
    140 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    141 schema:name Physical Sciences
    142 rdf:type schema:DefinedTerm
    143 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
    144 schema:name Optical Physics
    145 rdf:type schema:DefinedTerm
    146 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
    147 schema:name Technology
    148 rdf:type schema:DefinedTerm
    149 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
    150 schema:name Nanotechnology
    151 rdf:type schema:DefinedTerm
    152 sg:grant.6976444 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms10699
    153 rdf:type schema:MonetaryGrant
    154 sg:grant.6979573 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms10699
    155 rdf:type schema:MonetaryGrant
    156 sg:grant.8144360 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms10699
    157 rdf:type schema:MonetaryGrant
    158 sg:grant.8252261 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms10699
    159 rdf:type schema:MonetaryGrant
    160 sg:journal.1043282 schema:issn 2041-1723
    161 schema:name Nature Communications
    162 schema:publisher Springer Nature
    163 rdf:type schema:Periodical
    164 sg:person.011044314465.07 schema:affiliation grid-institutes:grid.11135.37
    165 schema:familyName Lin
    166 schema:givenName Li
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011044314465.07
    168 rdf:type schema:Person
    169 sg:person.01123112157.58 schema:affiliation grid-institutes:grid.11135.37
    170 schema:familyName Sun
    171 schema:givenName Xiao
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123112157.58
    173 rdf:type schema:Person
    174 sg:person.01127336477.11 schema:affiliation grid-institutes:grid.11135.37
    175 schema:familyName Wang
    176 schema:givenName Huan
    177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127336477.11
    178 rdf:type schema:Person
    179 sg:person.01175451677.21 schema:affiliation grid-institutes:grid.4991.5
    180 schema:familyName Peng
    181 schema:givenName Han
    182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175451677.21
    183 rdf:type schema:Person
    184 sg:person.01243565077.11 schema:affiliation grid-institutes:grid.11135.37
    185 schema:familyName Yin
    186 schema:givenName Jianbo
    187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243565077.11
    188 rdf:type schema:Person
    189 sg:person.01340650506.94 schema:affiliation grid-institutes:grid.11135.37
    190 schema:familyName Peng
    191 schema:givenName Hailin
    192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340650506.94
    193 rdf:type schema:Person
    194 sg:person.0727314575.32 schema:affiliation grid-institutes:grid.168010.e
    195 schema:familyName Koh
    196 schema:givenName Ai Leen
    197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727314575.32
    198 rdf:type schema:Person
    199 sg:person.0736077670.28 schema:affiliation grid-institutes:grid.11135.37
    200 schema:familyName Liao
    201 schema:givenName Lei
    202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736077670.28
    203 rdf:type schema:Person
    204 sg:person.0737573754.36 schema:affiliation grid-institutes:grid.4991.5
    205 schema:familyName Chen
    206 schema:givenName Yulin
    207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737573754.36
    208 rdf:type schema:Person
    209 sg:person.0740550357.56 schema:affiliation grid-institutes:grid.11135.37
    210 schema:familyName Tan
    211 schema:givenName Zhenjun
    212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740550357.56
    213 rdf:type schema:Person
    214 sg:person.0750635777.41 schema:affiliation grid-institutes:grid.11135.37
    215 schema:familyName Liu
    216 schema:givenName Zhongfan
    217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750635777.41
    218 rdf:type schema:Person
    219 sg:pub.10.1038/nature04233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001061831
    220 https://doi.org/10.1038/nature04233
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/nature04235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009714128
    223 https://doi.org/10.1038/nature04235
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1038/nature08105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043686943
    226 https://doi.org/10.1038/nature08105
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1038/ncomms1464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005965627
    229 https://doi.org/10.1038/ncomms1464
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1038/ncomms3096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029669947
    232 https://doi.org/10.1038/ncomms3096
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1038/nmat1849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052791836
    235 https://doi.org/10.1038/nmat1849
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1038/nmat2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036371302
    238 https://doi.org/10.1038/nmat2003
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1038/nnano.2009.292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007762915
    241 https://doi.org/10.1038/nnano.2009.292
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1038/nnano.2011.243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046544818
    244 https://doi.org/10.1038/nnano.2011.243
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1038/nnano.2015.54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000793648
    247 https://doi.org/10.1038/nnano.2015.54
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1038/nphoton.2010.40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006827577
    250 https://doi.org/10.1038/nphoton.2010.40
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1038/nphoton.2013.240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020219312
    253 https://doi.org/10.1038/nphoton.2013.240
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1038/nphoton.2013.253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003444244
    256 https://doi.org/10.1038/nphoton.2013.253
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1038/nphys1463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045564126
    259 https://doi.org/10.1038/nphys1463
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1038/nphys2493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012089877
    262 https://doi.org/10.1038/nphys2493
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1038/nphys2564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012783684
    265 https://doi.org/10.1038/nphys2564
    266 rdf:type schema:CreativeWork
    267 grid-institutes:grid.11135.37 schema:alternateName Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
    268 Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 202 Chengfu Road, Haidian District, 100871, Beijing, China
    269 schema:name Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
    270 Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 202 Chengfu Road, Haidian District, 100871, Beijing, China
    271 rdf:type schema:Organization
    272 grid-institutes:grid.168010.e schema:alternateName Stanford Nano Shared Facilities, Stanford University, 94305, Stanford, California, USA
    273 schema:name Stanford Nano Shared Facilities, Stanford University, 94305, Stanford, California, USA
    274 rdf:type schema:Organization
    275 grid-institutes:grid.4991.5 schema:alternateName Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, OX1 3PU, Oxford, UK
    276 schema:name Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, OX1 3PU, Oxford, UK
    277 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...