Shaping metallic glasses by electromagnetic pulsing View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-02-08

AUTHORS

Georg Kaltenboeck, Marios D. Demetriou, Scott Roberts, William L. Johnson

ABSTRACT

With damage tolerance rivalling advanced engineering alloys and thermoplastic forming capabilities analogous to conventional plastics, metallic glasses are emerging as a modern engineering material. Here, we take advantage of their unique electrical and rheological properties along with the classic Lorentz force concept to demonstrate that electromagnetic coupling of electric current and a magnetic field can thermoplastically shape a metallic glass without conventional heating sources or applied mechanical forces. Specifically, we identify a process window where application of an electric current pulse in the presence of a normally directed magnetic field can ohmically heat a metallic glass to a softened state, while simultaneously inducing a large enough magnetic body force to plastically shape it. The heating and shaping is performed on millisecond timescales, effectively bypassing crystallization producing fully amorphous-shaped parts. This electromagnetic forming approach lays the groundwork for a versatile, time- and energy-efficient manufacturing platform for ultrastrong metals. More... »

PAGES

10576

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ncomms10576

DOI

http://dx.doi.org/10.1038/ncomms10576

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024805126

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26853460


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Keck Engineering Laboratories, California Institute of Technology, 91125, Pasadena, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Keck Engineering Laboratories, California Institute of Technology, 91125, Pasadena, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaltenboeck", 
        "givenName": "Georg", 
        "id": "sg:person.01204405212.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204405212.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Keck Engineering Laboratories, California Institute of Technology, 91125, Pasadena, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Keck Engineering Laboratories, California Institute of Technology, 91125, Pasadena, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Demetriou", 
        "givenName": "Marios D.", 
        "id": "sg:person.01341434145.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341434145.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Keck Engineering Laboratories, California Institute of Technology, 91125, Pasadena, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Keck Engineering Laboratories, California Institute of Technology, 91125, Pasadena, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roberts", 
        "givenName": "Scott", 
        "id": "sg:person.0627070402.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627070402.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Keck Engineering Laboratories, California Institute of Technology, 91125, Pasadena, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Keck Engineering Laboratories, California Institute of Technology, 91125, Pasadena, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Johnson", 
        "givenName": "William L.", 
        "id": "sg:person.01046505045.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046505045.39"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4615-9738-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018281370", 
          "https://doi.org/10.1007/978-1-4615-9738-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042156004", 
          "https://doi.org/10.1038/nmat2930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018290838", 
          "https://doi.org/10.1038/nature07718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep06441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034596228", 
          "https://doi.org/10.1038/srep06441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/mrs2007.127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067969209", 
          "https://doi.org/10.1557/mrs2007.127"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-02-08", 
    "datePublishedReg": "2016-02-08", 
    "description": "With damage tolerance rivalling advanced engineering alloys and thermoplastic forming capabilities analogous to conventional plastics, metallic glasses are emerging as a modern engineering material. Here, we take advantage of their unique electrical and rheological properties along with the classic Lorentz force concept to demonstrate that electromagnetic coupling of electric current and a magnetic field can thermoplastically shape a metallic glass without conventional heating sources or applied mechanical forces. Specifically, we identify a process window where application of an electric current pulse in the presence of a normally directed magnetic field can ohmically heat a metallic glass to a softened state, while simultaneously inducing a large enough magnetic body force to plastically shape it. The heating and shaping is performed on millisecond timescales, effectively bypassing crystallization producing fully amorphous-shaped parts. This electromagnetic forming approach lays the groundwork for a versatile, time- and energy-efficient manufacturing platform for ultrastrong metals.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/ncomms10576", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "keywords": [
      "metallic glasses", 
      "advanced engineering alloys", 
      "modern engineering materials", 
      "magnetic body force", 
      "electric current pulse", 
      "conventional heating sources", 
      "engineering alloys", 
      "engineering materials", 
      "process window", 
      "damage tolerance", 
      "softened state", 
      "conventional plastics", 
      "magnetic field", 
      "body force", 
      "heating source", 
      "electric current", 
      "rheological properties", 
      "manufacturing platform", 
      "current pulses", 
      "glass", 
      "force concept", 
      "electromagnetic coupling", 
      "mechanical forces", 
      "alloy", 
      "force", 
      "heating", 
      "plastic", 
      "current", 
      "field", 
      "materials", 
      "metals", 
      "pulsing", 
      "capability", 
      "properties", 
      "applications", 
      "crystallization", 
      "pulses", 
      "advantages", 
      "shaping", 
      "platform", 
      "coupling", 
      "window", 
      "millisecond timescale", 
      "source", 
      "approach", 
      "time", 
      "concept", 
      "timescales", 
      "part", 
      "state", 
      "presence", 
      "tolerance", 
      "groundwork"
    ], 
    "name": "Shaping metallic glasses by electromagnetic pulsing", 
    "pagination": "10576", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024805126"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ncomms10576"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26853460"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ncomms10576", 
      "https://app.dimensions.ai/details/publication/pub.1024805126"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_698.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/ncomms10576"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms10576'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms10576'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms10576'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms10576'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      21 PREDICATES      83 URIs      70 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ncomms10576 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N89021fc8e2cf409cb19c1c55ae7c45d1
4 schema:citation sg:pub.10.1007/978-1-4615-9738-4
5 sg:pub.10.1038/nature07718
6 sg:pub.10.1038/nmat2930
7 sg:pub.10.1038/srep06441
8 sg:pub.10.1557/mrs2007.127
9 schema:datePublished 2016-02-08
10 schema:datePublishedReg 2016-02-08
11 schema:description With damage tolerance rivalling advanced engineering alloys and thermoplastic forming capabilities analogous to conventional plastics, metallic glasses are emerging as a modern engineering material. Here, we take advantage of their unique electrical and rheological properties along with the classic Lorentz force concept to demonstrate that electromagnetic coupling of electric current and a magnetic field can thermoplastically shape a metallic glass without conventional heating sources or applied mechanical forces. Specifically, we identify a process window where application of an electric current pulse in the presence of a normally directed magnetic field can ohmically heat a metallic glass to a softened state, while simultaneously inducing a large enough magnetic body force to plastically shape it. The heating and shaping is performed on millisecond timescales, effectively bypassing crystallization producing fully amorphous-shaped parts. This electromagnetic forming approach lays the groundwork for a versatile, time- and energy-efficient manufacturing platform for ultrastrong metals.
12 schema:genre article
13 schema:isAccessibleForFree true
14 schema:isPartOf N0a68c581fafc43a199d65fc19998733b
15 N236e50498ffa437e98edf16966bad8e2
16 sg:journal.1043282
17 schema:keywords advanced engineering alloys
18 advantages
19 alloy
20 applications
21 approach
22 body force
23 capability
24 concept
25 conventional heating sources
26 conventional plastics
27 coupling
28 crystallization
29 current
30 current pulses
31 damage tolerance
32 electric current
33 electric current pulse
34 electromagnetic coupling
35 engineering alloys
36 engineering materials
37 field
38 force
39 force concept
40 glass
41 groundwork
42 heating
43 heating source
44 magnetic body force
45 magnetic field
46 manufacturing platform
47 materials
48 mechanical forces
49 metallic glasses
50 metals
51 millisecond timescale
52 modern engineering materials
53 part
54 plastic
55 platform
56 presence
57 process window
58 properties
59 pulses
60 pulsing
61 rheological properties
62 shaping
63 softened state
64 source
65 state
66 time
67 timescales
68 tolerance
69 window
70 schema:name Shaping metallic glasses by electromagnetic pulsing
71 schema:pagination 10576
72 schema:productId N9c29471a19304e66a4aac9b110ba29ca
73 Na33ed2ab4eb348fe859bcb99c53de381
74 Nff43666bc41f4b90bcd88ef2e93446a2
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024805126
76 https://doi.org/10.1038/ncomms10576
77 schema:sdDatePublished 2022-09-02T16:01
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher N511a6173a5b74ab888be223db5939eee
80 schema:url https://doi.org/10.1038/ncomms10576
81 sgo:license sg:explorer/license/
82 sgo:sdDataset articles
83 rdf:type schema:ScholarlyArticle
84 N0a68c581fafc43a199d65fc19998733b schema:volumeNumber 7
85 rdf:type schema:PublicationVolume
86 N236e50498ffa437e98edf16966bad8e2 schema:issueNumber 1
87 rdf:type schema:PublicationIssue
88 N511a6173a5b74ab888be223db5939eee schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 N5d6a8d9e34304bac9a81110747456eb9 rdf:first sg:person.0627070402.04
91 rdf:rest N91940c6a93ce4a598dabde944a4a799f
92 N89021fc8e2cf409cb19c1c55ae7c45d1 rdf:first sg:person.01204405212.49
93 rdf:rest Nd7675281edfc4b38b6c6c13652d3c5c8
94 N91940c6a93ce4a598dabde944a4a799f rdf:first sg:person.01046505045.39
95 rdf:rest rdf:nil
96 N9c29471a19304e66a4aac9b110ba29ca schema:name doi
97 schema:value 10.1038/ncomms10576
98 rdf:type schema:PropertyValue
99 Na33ed2ab4eb348fe859bcb99c53de381 schema:name dimensions_id
100 schema:value pub.1024805126
101 rdf:type schema:PropertyValue
102 Nd7675281edfc4b38b6c6c13652d3c5c8 rdf:first sg:person.01341434145.41
103 rdf:rest N5d6a8d9e34304bac9a81110747456eb9
104 Nff43666bc41f4b90bcd88ef2e93446a2 schema:name pubmed_id
105 schema:value 26853460
106 rdf:type schema:PropertyValue
107 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
108 schema:name Engineering
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
111 schema:name Materials Engineering
112 rdf:type schema:DefinedTerm
113 sg:journal.1043282 schema:issn 2041-1723
114 schema:name Nature Communications
115 schema:publisher Springer Nature
116 rdf:type schema:Periodical
117 sg:person.01046505045.39 schema:affiliation grid-institutes:grid.20861.3d
118 schema:familyName Johnson
119 schema:givenName William L.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046505045.39
121 rdf:type schema:Person
122 sg:person.01204405212.49 schema:affiliation grid-institutes:grid.20861.3d
123 schema:familyName Kaltenboeck
124 schema:givenName Georg
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204405212.49
126 rdf:type schema:Person
127 sg:person.01341434145.41 schema:affiliation grid-institutes:grid.20861.3d
128 schema:familyName Demetriou
129 schema:givenName Marios D.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341434145.41
131 rdf:type schema:Person
132 sg:person.0627070402.04 schema:affiliation grid-institutes:grid.20861.3d
133 schema:familyName Roberts
134 schema:givenName Scott
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627070402.04
136 rdf:type schema:Person
137 sg:pub.10.1007/978-1-4615-9738-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018281370
138 https://doi.org/10.1007/978-1-4615-9738-4
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/nature07718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018290838
141 https://doi.org/10.1038/nature07718
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/nmat2930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042156004
144 https://doi.org/10.1038/nmat2930
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/srep06441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034596228
147 https://doi.org/10.1038/srep06441
148 rdf:type schema:CreativeWork
149 sg:pub.10.1557/mrs2007.127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067969209
150 https://doi.org/10.1557/mrs2007.127
151 rdf:type schema:CreativeWork
152 grid-institutes:grid.20861.3d schema:alternateName Keck Engineering Laboratories, California Institute of Technology, 91125, Pasadena, California, USA
153 schema:name Keck Engineering Laboratories, California Institute of Technology, 91125, Pasadena, California, USA
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...