Emergence of core–peripheries in networks View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-01-29

AUTHORS

T. Verma, F. Russmann, N.A.M. Araújo, J. Nagler, H.J. Herrmann

ABSTRACT

A number of important transport networks, such as the airline and trade networks of the world, exhibit a characteristic core-periphery structure, wherein a few nodes are highly interconnected and the rest of the network frays into a tree. Mechanisms underlying the emergence of core-peripheries, however, remain elusive. Here, we demonstrate that a simple pruning process based on removal of underutilized links and redistribution of loads can lead to the emergence of core-peripheries. Links are assumed beneficial if they either carry a sufficiently large load or are essential for global connectivity. This incentivized redistribution process is controlled by a single parameter, which balances connectivity and profit. The obtained networks exhibit a highly resilient and connected core with a frayed periphery. The balanced network shows a higher resilience than the world airline network or the world trade network, revealing a pathway towards robust structural features through pruning. More... »

PAGES

10441

References to SciGraph publications

  • 2014-06-30. Shortest path and Schramm-Loewner Evolution in SCIENTIFIC REPORTS
  • 2013-03-19. Profiling core-periphery network structure by random walkers in SCIENTIFIC REPORTS
  • 2009-07-25. The evolution of the world trade web: a weighted-network analysis in JOURNAL OF EVOLUTIONARY ECONOMICS
  • 2014-07-09. Revealing the structure of the world airline network in SCIENTIFIC REPORTS
  • 1959-12. A note on two problems in connexion with graphs in NUMERISCHE MATHEMATIK
  • 1998-06. Collective dynamics of ‘small-world’ networks in NATURE
  • 2013-01-29. Modelling the air transport with complex networks: A short review in THE EUROPEAN PHYSICAL JOURNAL SPECIAL TOPICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/ncomms10441

    DOI

    http://dx.doi.org/10.1038/ncomms10441

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1044160641

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/26822856


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "ETH Z\u00fcrich, Computational Physics for Engineering Materials, Institute for Building Materials, Wolfgang-Pauli-Strasse 27, HIT, CH-8093 Z\u00fcrich, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5801.c", 
              "name": [
                "ETH Z\u00fcrich, Computational Physics for Engineering Materials, Institute for Building Materials, Wolfgang-Pauli-Strasse 27, HIT, CH-8093 Z\u00fcrich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Verma", 
            "givenName": "T.", 
            "id": "sg:person.01310252416.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310252416.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "ETH Z\u00fcrich, Computational Physics for Engineering Materials, Institute for Building Materials, Wolfgang-Pauli-Strasse 27, HIT, CH-8093 Z\u00fcrich, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5801.c", 
              "name": [
                "ETH Z\u00fcrich, Computational Physics for Engineering Materials, Institute for Building Materials, Wolfgang-Pauli-Strasse 27, HIT, CH-8093 Z\u00fcrich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Russmann", 
            "givenName": "F.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Centro de F\u00edsica Te\u00f3rica e Computacional, Universidade de Lisboa, 1749-016 Lisboa, Portugal", 
              "id": "http://www.grid.ac/institutes/grid.9983.b", 
              "name": [
                "Departamento de F\u00edsica, Faculdade de Ci\u00eancias, Universidade de Lisboa, P-1749-016 Lisboa, Portugal", 
                "Centro de F\u00edsica Te\u00f3rica e Computacional, Universidade de Lisboa, 1749-016 Lisboa, Portugal"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ara\u00fajo", 
            "givenName": "N.A.M.", 
            "id": "sg:person.015663040744.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015663040744.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "ETH Z\u00fcrich, Computational Physics for Engineering Materials, Institute for Building Materials, Wolfgang-Pauli-Strasse 27, HIT, CH-8093 Z\u00fcrich, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5801.c", 
              "name": [
                "ETH Z\u00fcrich, Computational Physics for Engineering Materials, Institute for Building Materials, Wolfgang-Pauli-Strasse 27, HIT, CH-8093 Z\u00fcrich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nagler", 
            "givenName": "J.", 
            "id": "sg:person.0615513231.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615513231.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Departamento de F\u00edsica, Universidade Federal do Cear\u00e1, Campus do Pici, Cear\u00e1, Fortaleza 60455-760, Brazil", 
              "id": "http://www.grid.ac/institutes/grid.8395.7", 
              "name": [
                "ETH Z\u00fcrich, Computational Physics for Engineering Materials, Institute for Building Materials, Wolfgang-Pauli-Strasse 27, HIT, CH-8093 Z\u00fcrich, Switzerland", 
                "Departamento de F\u00edsica, Universidade Federal do Cear\u00e1, Campus do Pici, Cear\u00e1, Fortaleza 60455-760, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Herrmann", 
            "givenName": "H.J.", 
            "id": "sg:person.014365341425.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014365341425.84"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/30918", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041985305", 
              "https://doi.org/10.1038/30918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep05638", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002165433", 
              "https://doi.org/10.1038/srep05638"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep01467", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053432818", 
              "https://doi.org/10.1038/srep01467"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01386390", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041716633", 
              "https://doi.org/10.1007/bf01386390"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjst/e2013-01711-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023900247", 
              "https://doi.org/10.1140/epjst/e2013-01711-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00191-009-0160-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034083027", 
              "https://doi.org/10.1007/s00191-009-0160-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep05495", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019231861", 
              "https://doi.org/10.1038/srep05495"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-01-29", 
        "datePublishedReg": "2016-01-29", 
        "description": "A number of important transport networks, such as the airline and trade networks of the world, exhibit a characteristic core-periphery structure, wherein a few nodes are highly interconnected and the rest of the network frays into a tree. Mechanisms underlying the emergence of core-peripheries, however, remain elusive. Here, we demonstrate that a simple pruning process based on removal of underutilized links and redistribution of loads can lead to the emergence of core-peripheries. Links are assumed beneficial if they either carry a sufficiently large load or are essential for global connectivity. This incentivized redistribution process is controlled by a single parameter, which balances connectivity and profit. The obtained networks exhibit a highly resilient and connected core with a frayed periphery. The balanced network shows a higher resilience than the world airline network or the world trade network, revealing a pathway towards robust structural features through pruning. ", 
        "genre": "article", 
        "id": "sg:pub.10.1038/ncomms10441", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3799437", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3526548", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "keywords": [
          "world trade network", 
          "world airline network", 
          "airline network", 
          "connected core", 
          "balanced network", 
          "core-periphery structure", 
          "single parameter", 
          "transport network", 
          "underutilized links", 
          "network", 
          "global connectivity", 
          "pruning process", 
          "trade network", 
          "parameters", 
          "connectivity", 
          "nodes", 
          "redistribution processes", 
          "link", 
          "structure", 
          "number", 
          "large loads", 
          "process", 
          "load", 
          "core", 
          "emergence", 
          "features", 
          "airlines", 
          "profit", 
          "trees", 
          "redistribution", 
          "high resilience", 
          "structural features", 
          "redistribution of loads", 
          "rest", 
          "resilience", 
          "mechanism", 
          "world", 
          "periphery", 
          "fray", 
          "removal", 
          "pathway", 
          "robust structural features", 
          "important transport networks", 
          "characteristic core-periphery structure", 
          "network frays", 
          "simple pruning process", 
          "incentivized redistribution process", 
          "frayed periphery"
        ], 
        "name": "Emergence of core\u2013peripheries in networks", 
        "pagination": "10441", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1044160641"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/ncomms10441"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "26822856"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/ncomms10441", 
          "https://app.dimensions.ai/details/publication/pub.1044160641"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_687.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/ncomms10441"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms10441'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms10441'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms10441'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms10441'


     

    This table displays all metadata directly associated to this object as RDF triples.

    176 TRIPLES      22 PREDICATES      81 URIs      66 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/ncomms10441 schema:about anzsrc-for:08
    2 anzsrc-for:0806
    3 schema:author Nd8c54bef4e7d42baba805058ea70a639
    4 schema:citation sg:pub.10.1007/bf01386390
    5 sg:pub.10.1007/s00191-009-0160-x
    6 sg:pub.10.1038/30918
    7 sg:pub.10.1038/srep01467
    8 sg:pub.10.1038/srep05495
    9 sg:pub.10.1038/srep05638
    10 sg:pub.10.1140/epjst/e2013-01711-9
    11 schema:datePublished 2016-01-29
    12 schema:datePublishedReg 2016-01-29
    13 schema:description A number of important transport networks, such as the airline and trade networks of the world, exhibit a characteristic core-periphery structure, wherein a few nodes are highly interconnected and the rest of the network frays into a tree. Mechanisms underlying the emergence of core-peripheries, however, remain elusive. Here, we demonstrate that a simple pruning process based on removal of underutilized links and redistribution of loads can lead to the emergence of core-peripheries. Links are assumed beneficial if they either carry a sufficiently large load or are essential for global connectivity. This incentivized redistribution process is controlled by a single parameter, which balances connectivity and profit. The obtained networks exhibit a highly resilient and connected core with a frayed periphery. The balanced network shows a higher resilience than the world airline network or the world trade network, revealing a pathway towards robust structural features through pruning.
    14 schema:genre article
    15 schema:inLanguage en
    16 schema:isAccessibleForFree true
    17 schema:isPartOf N388d52c9b8104bf5a4087b62f0d497aa
    18 N5ccdf943349349919c347ec6506278c7
    19 sg:journal.1043282
    20 schema:keywords airline network
    21 airlines
    22 balanced network
    23 characteristic core-periphery structure
    24 connected core
    25 connectivity
    26 core
    27 core-periphery structure
    28 emergence
    29 features
    30 fray
    31 frayed periphery
    32 global connectivity
    33 high resilience
    34 important transport networks
    35 incentivized redistribution process
    36 large loads
    37 link
    38 load
    39 mechanism
    40 network
    41 network frays
    42 nodes
    43 number
    44 parameters
    45 pathway
    46 periphery
    47 process
    48 profit
    49 pruning process
    50 redistribution
    51 redistribution of loads
    52 redistribution processes
    53 removal
    54 resilience
    55 rest
    56 robust structural features
    57 simple pruning process
    58 single parameter
    59 structural features
    60 structure
    61 trade network
    62 transport network
    63 trees
    64 underutilized links
    65 world
    66 world airline network
    67 world trade network
    68 schema:name Emergence of core–peripheries in networks
    69 schema:pagination 10441
    70 schema:productId Na1dc98450a6c43ad89eb6b7d454a8068
    71 Nbfed86bbae904be5b43aec356015ffb7
    72 Ne9652761073f4503bb132f2d6b1bd75a
    73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044160641
    74 https://doi.org/10.1038/ncomms10441
    75 schema:sdDatePublished 2022-01-01T18:39
    76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    77 schema:sdPublisher N42dde73479f94a638f42cf06c6329906
    78 schema:url https://doi.org/10.1038/ncomms10441
    79 sgo:license sg:explorer/license/
    80 sgo:sdDataset articles
    81 rdf:type schema:ScholarlyArticle
    82 N2de0690976c0444fb3d834fe4fc88302 rdf:first N395ed612b0b749ec91483f4f22143ca9
    83 rdf:rest N34bd93bf6ff249f5bcac2bf07f98c7f2
    84 N34bd93bf6ff249f5bcac2bf07f98c7f2 rdf:first sg:person.015663040744.87
    85 rdf:rest N778fed3bd3894621a3da0d8e2b93f0fb
    86 N388d52c9b8104bf5a4087b62f0d497aa schema:volumeNumber 7
    87 rdf:type schema:PublicationVolume
    88 N395ed612b0b749ec91483f4f22143ca9 schema:affiliation grid-institutes:grid.5801.c
    89 schema:familyName Russmann
    90 schema:givenName F.
    91 rdf:type schema:Person
    92 N42dde73479f94a638f42cf06c6329906 schema:name Springer Nature - SN SciGraph project
    93 rdf:type schema:Organization
    94 N5ccdf943349349919c347ec6506278c7 schema:issueNumber 1
    95 rdf:type schema:PublicationIssue
    96 N778fed3bd3894621a3da0d8e2b93f0fb rdf:first sg:person.0615513231.04
    97 rdf:rest N98b679caed334cd59418e8cbd34d5919
    98 N98b679caed334cd59418e8cbd34d5919 rdf:first sg:person.014365341425.84
    99 rdf:rest rdf:nil
    100 Na1dc98450a6c43ad89eb6b7d454a8068 schema:name doi
    101 schema:value 10.1038/ncomms10441
    102 rdf:type schema:PropertyValue
    103 Nbfed86bbae904be5b43aec356015ffb7 schema:name pubmed_id
    104 schema:value 26822856
    105 rdf:type schema:PropertyValue
    106 Nd8c54bef4e7d42baba805058ea70a639 rdf:first sg:person.01310252416.74
    107 rdf:rest N2de0690976c0444fb3d834fe4fc88302
    108 Ne9652761073f4503bb132f2d6b1bd75a schema:name dimensions_id
    109 schema:value pub.1044160641
    110 rdf:type schema:PropertyValue
    111 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    112 schema:name Information and Computing Sciences
    113 rdf:type schema:DefinedTerm
    114 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    115 schema:name Information Systems
    116 rdf:type schema:DefinedTerm
    117 sg:grant.3526548 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms10441
    118 rdf:type schema:MonetaryGrant
    119 sg:grant.3799437 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms10441
    120 rdf:type schema:MonetaryGrant
    121 sg:journal.1043282 schema:issn 2041-1723
    122 schema:name Nature Communications
    123 schema:publisher Springer Nature
    124 rdf:type schema:Periodical
    125 sg:person.01310252416.74 schema:affiliation grid-institutes:grid.5801.c
    126 schema:familyName Verma
    127 schema:givenName T.
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310252416.74
    129 rdf:type schema:Person
    130 sg:person.014365341425.84 schema:affiliation grid-institutes:grid.8395.7
    131 schema:familyName Herrmann
    132 schema:givenName H.J.
    133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014365341425.84
    134 rdf:type schema:Person
    135 sg:person.015663040744.87 schema:affiliation grid-institutes:grid.9983.b
    136 schema:familyName Araújo
    137 schema:givenName N.A.M.
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015663040744.87
    139 rdf:type schema:Person
    140 sg:person.0615513231.04 schema:affiliation grid-institutes:grid.5801.c
    141 schema:familyName Nagler
    142 schema:givenName J.
    143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615513231.04
    144 rdf:type schema:Person
    145 sg:pub.10.1007/bf01386390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041716633
    146 https://doi.org/10.1007/bf01386390
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/s00191-009-0160-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034083027
    149 https://doi.org/10.1007/s00191-009-0160-x
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1038/30918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041985305
    152 https://doi.org/10.1038/30918
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1038/srep01467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053432818
    155 https://doi.org/10.1038/srep01467
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1038/srep05495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019231861
    158 https://doi.org/10.1038/srep05495
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1038/srep05638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002165433
    161 https://doi.org/10.1038/srep05638
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1140/epjst/e2013-01711-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023900247
    164 https://doi.org/10.1140/epjst/e2013-01711-9
    165 rdf:type schema:CreativeWork
    166 grid-institutes:grid.5801.c schema:alternateName ETH Zürich, Computational Physics for Engineering Materials, Institute for Building Materials, Wolfgang-Pauli-Strasse 27, HIT, CH-8093 Zürich, Switzerland
    167 schema:name ETH Zürich, Computational Physics for Engineering Materials, Institute for Building Materials, Wolfgang-Pauli-Strasse 27, HIT, CH-8093 Zürich, Switzerland
    168 rdf:type schema:Organization
    169 grid-institutes:grid.8395.7 schema:alternateName Departamento de Física, Universidade Federal do Ceará, Campus do Pici, Ceará, Fortaleza 60455-760, Brazil
    170 schema:name Departamento de Física, Universidade Federal do Ceará, Campus do Pici, Ceará, Fortaleza 60455-760, Brazil
    171 ETH Zürich, Computational Physics for Engineering Materials, Institute for Building Materials, Wolfgang-Pauli-Strasse 27, HIT, CH-8093 Zürich, Switzerland
    172 rdf:type schema:Organization
    173 grid-institutes:grid.9983.b schema:alternateName Centro de Física Teórica e Computacional, Universidade de Lisboa, 1749-016 Lisboa, Portugal
    174 schema:name Centro de Física Teórica e Computacional, Universidade de Lisboa, 1749-016 Lisboa, Portugal
    175 Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, P-1749-016 Lisboa, Portugal
    176 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...