Magnetoelectric effect and phase transitions in CuO in external magnetic fields View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-01-18

AUTHORS

Zhaosheng Wang, Navid Qureshi, Shadi Yasin, Alexander Mukhin, Eric Ressouche, Sergei Zherlitsyn, Yurii Skourski, Julian Geshev, Vsevolod Ivanov, Marin Gospodinov, Vassil Skumryev

ABSTRACT

Apart from being so far the only known binary multiferroic compound, CuO has a much higher transition temperature into the multiferroic state, 230 K, than any other known material in which the electric polarization is induced by spontaneous magnetic order, typically lower than 100 K. Although the magnetically induced ferroelectricity of CuO is firmly established, no magnetoelectric effect has been observed so far as direct crosstalk between bulk magnetization and electric polarization counterparts. Here we demonstrate that high magnetic fields of ≈ 50 T are able to suppress the helical modulation of the spins in the multiferroic phase and dramatically affect the electric polarization. Furthermore, just below the spontaneous transition from commensurate (paraelectric) to incommensurate (ferroelectric) structures at 213 K, even modest magnetic fields induce a transition into the incommensurate structure and then suppress it at higher field. Thus, remarkable hidden magnetoelectric features are uncovered, establishing CuO as prototype multiferroic with abundance of competitive magnetic interactions. More... »

PAGES

10295

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ncomms10295

DOI

http://dx.doi.org/10.1038/ncomms10295

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040669590

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26776921


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Helmholtz-Zentrum Dresden-Rossendorf", 
          "id": "https://www.grid.ac/institutes/grid.40602.30", 
          "name": [
            "Hochfeld-Magnetlabor Dresden (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, D-01314 Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Zhaosheng", 
        "id": "sg:person.01073277433.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073277433.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Laue-Langevin", 
          "id": "https://www.grid.ac/institutes/grid.156520.5", 
          "name": [
            "Institut Laue Langevin, 6 rue Jules Horowitz, Bo\u00ee\u0131te Postale 156, F-38042 Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qureshi", 
        "givenName": "Navid", 
        "id": "sg:person.01055251666.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055251666.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "American University of the Middle East", 
          "id": "https://www.grid.ac/institutes/grid.472279.d", 
          "name": [
            "Hochfeld-Magnetlabor Dresden (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, D-01314 Dresden, Germany", 
            "American University of the Middle East, College of Engineering and Technology, 54200 Egaila, Kuwait"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yasin", 
        "givenName": "Shadi", 
        "id": "sg:person.01307342632.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307342632.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Prokhorov General Physics Institute, Russian Academy of Sciences, ul. Vavilova 38, Moscow 119991, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mukhin", 
        "givenName": "Alexander", 
        "id": "sg:person.014335742440.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014335742440.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Nanosciences et Cryog\u00e9nie", 
          "id": "https://www.grid.ac/institutes/grid.457339.f", 
          "name": [
            "SPSMS, UMR-E CEA/UJF-Grenoble 1, INAC, F-38054 Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ressouche", 
        "givenName": "Eric", 
        "id": "sg:person.01160666417.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160666417.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Helmholtz-Zentrum Dresden-Rossendorf", 
          "id": "https://www.grid.ac/institutes/grid.40602.30", 
          "name": [
            "Hochfeld-Magnetlabor Dresden (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, D-01314 Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zherlitsyn", 
        "givenName": "Sergei", 
        "id": "sg:person.01355456032.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355456032.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Helmholtz-Zentrum Dresden-Rossendorf", 
          "id": "https://www.grid.ac/institutes/grid.40602.30", 
          "name": [
            "Hochfeld-Magnetlabor Dresden (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, D-01314 Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Skourski", 
        "givenName": "Yurii", 
        "id": "sg:person.01320016206.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320016206.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Autonomous University of Barcelona", 
          "id": "https://www.grid.ac/institutes/grid.7080.f", 
          "name": [
            "Instituto de F\u00edsica, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91501-970 Rio Grande do Sul, Brazil", 
            "Departament de F\u00edsica, Universitat Aut\u00f2noma de Barcelona, 08193 Bellaterra, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Geshev", 
        "givenName": "Julian", 
        "id": "sg:person.01334177074.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334177074.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Prokhorov General Physics Institute, Russian Academy of Sciences, ul. Vavilova 38, Moscow 119991, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ivanov", 
        "givenName": "Vsevolod", 
        "id": "sg:person.01213474712.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213474712.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Georgi Nadjakov Institute of Solid State Physics", 
          "id": "https://www.grid.ac/institutes/grid.425129.9", 
          "name": [
            "Institute of Solid State Physics, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gospodinov", 
        "givenName": "Marin", 
        "id": "sg:person.01351743371.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351743371.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituci\u00f3 Catalana de Recerca i Estudis Avan\u00e7ats", 
          "id": "https://www.grid.ac/institutes/grid.425902.8", 
          "name": [
            "Departament de F\u00edsica, Universitat Aut\u00f2noma de Barcelona, 08193 Bellaterra, Barcelona, Spain", 
            "Instituci\u00f3 Catalana de Recerca i Estudis Avan\u00e7ats, E-08010 Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Skumryev", 
        "givenName": "Vassil", 
        "id": "sg:person.01303277302.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303277302.69"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.96.067601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003273940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.067601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003273940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.026401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005526420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.026401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005526420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063774511060241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005806410", 
          "https://doi.org/10.1134/s1063774511060241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.184404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008529378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.184404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008529378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.187205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009946544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.187205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009946544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/51/1/126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010700004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/4/23/009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012681052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/26/3/036003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012879901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.057205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013260206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.057205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013260206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.224433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013460045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.224433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013460045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.167206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019776747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.167206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019776747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-8853(97)00713-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023174939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.177201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024822573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.177201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024822573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/22/22/226002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026105729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/22/22/226002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026105729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/17/40/008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028640815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/17/40/008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028640815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms4787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032589420", 
          "https://doi.org/10.1038/ncomms4787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.134428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033724804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.134428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033724804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/3/23/016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034055822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01357183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035152716", 
          "https://doi.org/10.1007/bf01357183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01357183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035152716", 
          "https://doi.org/10.1007/bf01357183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041639818", 
          "https://doi.org/10.1038/nmat2125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.094434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047072180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.094434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047072180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms3511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047430238", 
          "https://doi.org/10.1038/ncomms3511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3356980", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050121487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0567740870001838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052271233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3636106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057989320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3719/21/15/023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058964720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.39.4343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060549484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.39.4343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060549484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.46.11632", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060562658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.46.11632", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060562658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.174428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060641370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.174428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060641370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.094420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060642100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.094420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060642100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.257601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060758470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.257601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060758470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1201061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062464373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.57.3293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063110596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.70.1054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063119321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.81.124714", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063126176"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-01-18", 
    "datePublishedReg": "2016-01-18", 
    "description": "Apart from being so far the only known binary multiferroic compound, CuO has a much higher transition temperature into the multiferroic state, 230 K, than any other known material in which the electric polarization is induced by spontaneous magnetic order, typically lower than 100 K. Although the magnetically induced ferroelectricity of CuO is firmly established, no magnetoelectric effect has been observed so far as direct crosstalk between bulk magnetization and electric polarization counterparts. Here we demonstrate that high magnetic fields of \u2248 50 T are able to suppress the helical modulation of the spins in the multiferroic phase and dramatically affect the electric polarization. Furthermore, just below the spontaneous transition from commensurate (paraelectric) to incommensurate (ferroelectric) structures at 213 K, even modest magnetic fields induce a transition into the incommensurate structure and then suppress it at higher field. Thus, remarkable hidden magnetoelectric features are uncovered, establishing CuO as prototype multiferroic with abundance of competitive magnetic interactions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/ncomms10295", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5329514", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4520832", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "type": "Periodical"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Magnetoelectric effect and phase transitions in CuO in external magnetic fields", 
    "pagination": "10295", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c1bbe309154f144a1575d51a85baa476431c46c5c62ee3535a1f3ed04e4dbf1c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26776921"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101528555"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ncomms10295"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040669590"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ncomms10295", 
      "https://app.dimensions.ai/details/publication/pub.1040669590"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000551.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/ncomms10295"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms10295'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms10295'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms10295'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms10295'


 

This table displays all metadata directly associated to this object as RDF triples.

273 TRIPLES      21 PREDICATES      62 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ncomms10295 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N6976458c78e34331a53d7142d91d9fac
4 schema:citation sg:pub.10.1007/bf01357183
5 sg:pub.10.1038/ncomms3511
6 sg:pub.10.1038/ncomms4787
7 sg:pub.10.1038/nmat2125
8 sg:pub.10.1134/s1063774511060241
9 https://doi.org/10.1016/s0304-8853(97)00713-0
10 https://doi.org/10.1063/1.3356980
11 https://doi.org/10.1063/1.3636106
12 https://doi.org/10.1088/0022-3719/21/15/023
13 https://doi.org/10.1088/0953-8984/17/40/008
14 https://doi.org/10.1088/0953-8984/22/22/226002
15 https://doi.org/10.1088/0953-8984/26/3/036003
16 https://doi.org/10.1088/0953-8984/3/23/016
17 https://doi.org/10.1088/0953-8984/4/23/009
18 https://doi.org/10.1088/1742-6596/51/1/126
19 https://doi.org/10.1103/physrevb.39.4343
20 https://doi.org/10.1103/physrevb.46.11632
21 https://doi.org/10.1103/physrevb.68.224433
22 https://doi.org/10.1103/physrevb.73.094434
23 https://doi.org/10.1103/physrevb.84.184404
24 https://doi.org/10.1103/physrevb.85.134428
25 https://doi.org/10.1103/physrevb.87.174428
26 https://doi.org/10.1103/physrevb.88.094420
27 https://doi.org/10.1103/physrevlett.106.026401
28 https://doi.org/10.1103/physrevlett.106.257601
29 https://doi.org/10.1103/physrevlett.108.177201
30 https://doi.org/10.1103/physrevlett.108.187205
31 https://doi.org/10.1103/physrevlett.109.167206
32 https://doi.org/10.1103/physrevlett.95.057205
33 https://doi.org/10.1103/physrevlett.96.067601
34 https://doi.org/10.1107/s0567740870001838
35 https://doi.org/10.1126/science.1201061
36 https://doi.org/10.1143/jpsj.57.3293
37 https://doi.org/10.1143/jpsj.70.1054
38 https://doi.org/10.1143/jpsj.81.124714
39 schema:datePublished 2016-01-18
40 schema:datePublishedReg 2016-01-18
41 schema:description Apart from being so far the only known binary multiferroic compound, CuO has a much higher transition temperature into the multiferroic state, 230 K, than any other known material in which the electric polarization is induced by spontaneous magnetic order, typically lower than 100 K. Although the magnetically induced ferroelectricity of CuO is firmly established, no magnetoelectric effect has been observed so far as direct crosstalk between bulk magnetization and electric polarization counterparts. Here we demonstrate that high magnetic fields of ≈ 50 T are able to suppress the helical modulation of the spins in the multiferroic phase and dramatically affect the electric polarization. Furthermore, just below the spontaneous transition from commensurate (paraelectric) to incommensurate (ferroelectric) structures at 213 K, even modest magnetic fields induce a transition into the incommensurate structure and then suppress it at higher field. Thus, remarkable hidden magnetoelectric features are uncovered, establishing CuO as prototype multiferroic with abundance of competitive magnetic interactions.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree true
45 schema:isPartOf Ne3cd223e84c3494fb738bad8acf27745
46 sg:journal.1043282
47 schema:name Magnetoelectric effect and phase transitions in CuO in external magnetic fields
48 schema:pagination 10295
49 schema:productId N920b5af2894d4c53af342fd8aa314271
50 Naa62a31071f7433f8a432d88cfe10772
51 Nbd81664c40d84a239742a5172197f5a0
52 Nd9ed81506ea341bd8986f03d224865dd
53 Ne6bf055c8f724b0a902899388e555478
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040669590
55 https://doi.org/10.1038/ncomms10295
56 schema:sdDatePublished 2019-04-10T23:32
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher Nd884cb8ce7b546ec9bbc6ead7b170f82
59 schema:url https://www.nature.com/articles/ncomms10295
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N02515bffa08b4ab4a3641a836ea6e580 rdf:first sg:person.01355456032.65
64 rdf:rest N5a510dbbf7f7494ba97fa0debeaa3f43
65 N0265ed879da84040bf8be221ce455271 rdf:first sg:person.014335742440.78
66 rdf:rest N137ee7edf8424fafbea197736ddc6bbb
67 N137ee7edf8424fafbea197736ddc6bbb rdf:first sg:person.01160666417.36
68 rdf:rest N02515bffa08b4ab4a3641a836ea6e580
69 N24cf95766ffa451090f8096d09a01b0f rdf:first sg:person.01055251666.11
70 rdf:rest N3768560e7e344718bf7b594de864b137
71 N2e5cedf637a64ae49abe638e9aafa487 rdf:first sg:person.01303277302.69
72 rdf:rest rdf:nil
73 N3768560e7e344718bf7b594de864b137 rdf:first sg:person.01307342632.76
74 rdf:rest N0265ed879da84040bf8be221ce455271
75 N4434b57cdfb5425583e38c72b1fe9735 rdf:first sg:person.01351743371.43
76 rdf:rest N2e5cedf637a64ae49abe638e9aafa487
77 N4cc234e34236416098f67642b14b0b26 rdf:first sg:person.01213474712.49
78 rdf:rest N4434b57cdfb5425583e38c72b1fe9735
79 N5a510dbbf7f7494ba97fa0debeaa3f43 rdf:first sg:person.01320016206.10
80 rdf:rest Nd538156fd3b940c489eecb0bcb65add1
81 N6976458c78e34331a53d7142d91d9fac rdf:first sg:person.01073277433.61
82 rdf:rest N24cf95766ffa451090f8096d09a01b0f
83 N920b5af2894d4c53af342fd8aa314271 schema:name dimensions_id
84 schema:value pub.1040669590
85 rdf:type schema:PropertyValue
86 Naa62a31071f7433f8a432d88cfe10772 schema:name readcube_id
87 schema:value c1bbe309154f144a1575d51a85baa476431c46c5c62ee3535a1f3ed04e4dbf1c
88 rdf:type schema:PropertyValue
89 Nbd81664c40d84a239742a5172197f5a0 schema:name nlm_unique_id
90 schema:value 101528555
91 rdf:type schema:PropertyValue
92 Nd538156fd3b940c489eecb0bcb65add1 rdf:first sg:person.01334177074.82
93 rdf:rest N4cc234e34236416098f67642b14b0b26
94 Nd884cb8ce7b546ec9bbc6ead7b170f82 schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 Nd9ed81506ea341bd8986f03d224865dd schema:name doi
97 schema:value 10.1038/ncomms10295
98 rdf:type schema:PropertyValue
99 Ne3cd223e84c3494fb738bad8acf27745 schema:volumeNumber 7
100 rdf:type schema:PublicationVolume
101 Ne6bf055c8f724b0a902899388e555478 schema:name pubmed_id
102 schema:value 26776921
103 rdf:type schema:PropertyValue
104 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
105 schema:name Engineering
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
108 schema:name Materials Engineering
109 rdf:type schema:DefinedTerm
110 sg:grant.4520832 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms10295
111 rdf:type schema:MonetaryGrant
112 sg:grant.5329514 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms10295
113 rdf:type schema:MonetaryGrant
114 sg:journal.1043282 schema:issn 2041-1723
115 schema:name Nature Communications
116 rdf:type schema:Periodical
117 sg:person.01055251666.11 schema:affiliation https://www.grid.ac/institutes/grid.156520.5
118 schema:familyName Qureshi
119 schema:givenName Navid
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055251666.11
121 rdf:type schema:Person
122 sg:person.01073277433.61 schema:affiliation https://www.grid.ac/institutes/grid.40602.30
123 schema:familyName Wang
124 schema:givenName Zhaosheng
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073277433.61
126 rdf:type schema:Person
127 sg:person.01160666417.36 schema:affiliation https://www.grid.ac/institutes/grid.457339.f
128 schema:familyName Ressouche
129 schema:givenName Eric
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160666417.36
131 rdf:type schema:Person
132 sg:person.01213474712.49 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
133 schema:familyName Ivanov
134 schema:givenName Vsevolod
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213474712.49
136 rdf:type schema:Person
137 sg:person.01303277302.69 schema:affiliation https://www.grid.ac/institutes/grid.425902.8
138 schema:familyName Skumryev
139 schema:givenName Vassil
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303277302.69
141 rdf:type schema:Person
142 sg:person.01307342632.76 schema:affiliation https://www.grid.ac/institutes/grid.472279.d
143 schema:familyName Yasin
144 schema:givenName Shadi
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307342632.76
146 rdf:type schema:Person
147 sg:person.01320016206.10 schema:affiliation https://www.grid.ac/institutes/grid.40602.30
148 schema:familyName Skourski
149 schema:givenName Yurii
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320016206.10
151 rdf:type schema:Person
152 sg:person.01334177074.82 schema:affiliation https://www.grid.ac/institutes/grid.7080.f
153 schema:familyName Geshev
154 schema:givenName Julian
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334177074.82
156 rdf:type schema:Person
157 sg:person.01351743371.43 schema:affiliation https://www.grid.ac/institutes/grid.425129.9
158 schema:familyName Gospodinov
159 schema:givenName Marin
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351743371.43
161 rdf:type schema:Person
162 sg:person.01355456032.65 schema:affiliation https://www.grid.ac/institutes/grid.40602.30
163 schema:familyName Zherlitsyn
164 schema:givenName Sergei
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355456032.65
166 rdf:type schema:Person
167 sg:person.014335742440.78 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
168 schema:familyName Mukhin
169 schema:givenName Alexander
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014335742440.78
171 rdf:type schema:Person
172 sg:pub.10.1007/bf01357183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035152716
173 https://doi.org/10.1007/bf01357183
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/ncomms3511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047430238
176 https://doi.org/10.1038/ncomms3511
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/ncomms4787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032589420
179 https://doi.org/10.1038/ncomms4787
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/nmat2125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041639818
182 https://doi.org/10.1038/nmat2125
183 rdf:type schema:CreativeWork
184 sg:pub.10.1134/s1063774511060241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005806410
185 https://doi.org/10.1134/s1063774511060241
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/s0304-8853(97)00713-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023174939
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1063/1.3356980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050121487
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1063/1.3636106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057989320
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1088/0022-3719/21/15/023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058964720
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1088/0953-8984/17/40/008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028640815
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1088/0953-8984/22/22/226002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026105729
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1088/0953-8984/26/3/036003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012879901
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1088/0953-8984/3/23/016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034055822
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1088/0953-8984/4/23/009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012681052
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1088/1742-6596/51/1/126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010700004
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1103/physrevb.39.4343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060549484
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1103/physrevb.46.11632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060562658
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1103/physrevb.68.224433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013460045
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1103/physrevb.73.094434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047072180
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1103/physrevb.84.184404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008529378
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1103/physrevb.85.134428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033724804
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1103/physrevb.87.174428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060641370
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1103/physrevb.88.094420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060642100
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1103/physrevlett.106.026401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005526420
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1103/physrevlett.106.257601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060758470
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1103/physrevlett.108.177201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024822573
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1103/physrevlett.108.187205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009946544
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1103/physrevlett.109.167206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019776747
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1103/physrevlett.95.057205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013260206
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1103/physrevlett.96.067601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003273940
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1107/s0567740870001838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052271233
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1126/science.1201061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062464373
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1143/jpsj.57.3293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063110596
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1143/jpsj.70.1054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063119321
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1143/jpsj.81.124714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063126176
246 rdf:type schema:CreativeWork
247 https://www.grid.ac/institutes/grid.156520.5 schema:alternateName Institut Laue-Langevin
248 schema:name Institut Laue Langevin, 6 rue Jules Horowitz, Boîıte Postale 156, F-38042 Grenoble, France
249 rdf:type schema:Organization
250 https://www.grid.ac/institutes/grid.40602.30 schema:alternateName Helmholtz-Zentrum Dresden-Rossendorf
251 schema:name Hochfeld-Magnetlabor Dresden (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, D-01314 Dresden, Germany
252 rdf:type schema:Organization
253 https://www.grid.ac/institutes/grid.425129.9 schema:alternateName Georgi Nadjakov Institute of Solid State Physics
254 schema:name Institute of Solid State Physics, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria
255 rdf:type schema:Organization
256 https://www.grid.ac/institutes/grid.425902.8 schema:alternateName Institució Catalana de Recerca i Estudis Avançats
257 schema:name Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
258 Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain
259 rdf:type schema:Organization
260 https://www.grid.ac/institutes/grid.457339.f schema:alternateName Institut Nanosciences et Cryogénie
261 schema:name SPSMS, UMR-E CEA/UJF-Grenoble 1, INAC, F-38054 Grenoble, France
262 rdf:type schema:Organization
263 https://www.grid.ac/institutes/grid.472279.d schema:alternateName American University of the Middle East
264 schema:name American University of the Middle East, College of Engineering and Technology, 54200 Egaila, Kuwait
265 Hochfeld-Magnetlabor Dresden (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, D-01314 Dresden, Germany
266 rdf:type schema:Organization
267 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
268 schema:name Prokhorov General Physics Institute, Russian Academy of Sciences, ul. Vavilova 38, Moscow 119991, Russia
269 rdf:type schema:Organization
270 https://www.grid.ac/institutes/grid.7080.f schema:alternateName Autonomous University of Barcelona
271 schema:name Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
272 Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91501-970 Rio Grande do Sul, Brazil
273 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...