Magnetic bilayer-skyrmions without skyrmion Hall effect View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-01-19

AUTHORS

Xichao Zhang, Yan Zhou, Motohiko Ezawa

ABSTRACT

Magnetic skyrmions might be used as information carriers in future advanced memories, logic gates and computing devices. However, there exists an obstacle known as the skyrmion Hall effect (SkHE), that is, the skyrmion trajectories bend away from the driving current direction due to the Magnus force. Consequently, the skyrmions in constricted geometries may be destroyed by touching the sample edges. Here we theoretically propose that the SkHE can be suppressed in the antiferromagnetically exchange-coupled bilayer system, since the Magnus forces in the top and bottom layers are exactly cancelled. We show that such a pair of SkHE-free magnetic skyrmions can be nucleated and be driven by the current-induced torque. Our proposal provides a promising means to move magnetic skyrmions in a perfectly straight trajectory in ultra-dense devices with ultra-fast processing speed. More... »

PAGES

10293

References to SciGraph publications

Journal

TITLE

Nature Communications

ISSUE

N/A

VOLUME

7

From Grant

  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/ncomms10293

    DOI

    http://dx.doi.org/10.1038/ncomms10293

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1022678770

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/26782905


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Condensed Matter Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Hong Kong", 
              "id": "https://www.grid.ac/institutes/grid.194645.b", 
              "name": [
                "School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China", 
                "Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Xichao", 
            "id": "sg:person.01004177726.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004177726.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Hong Kong", 
              "id": "https://www.grid.ac/institutes/grid.194645.b", 
              "name": [
                "School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China", 
                "Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhou", 
            "givenName": "Yan", 
            "id": "sg:person.01120426326.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120426326.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Tokyo", 
              "id": "https://www.grid.ac/institutes/grid.26999.3d", 
              "name": [
                "Department of Applied Physics, University of Tokyo, Hongo 7-3-1, Tokyo 113-8656, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ezawa", 
            "givenName": "Motohiko", 
            "id": "sg:person.07724251271.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07724251271.76"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/srep06784", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003042361", 
              "https://doi.org/10.1038/srep06784"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep11369", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003960489", 
              "https://doi.org/10.1038/srep11369"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2013.29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006853479", 
              "https://doi.org/10.1038/nnano.2013.29"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2015.41", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007000449", 
              "https://doi.org/10.1038/nnano.2015.41"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms5652", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007764703", 
              "https://doi.org/10.1038/ncomms5652"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4593", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009287387", 
              "https://doi.org/10.1038/nmat4593"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep09400", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012698622", 
              "https://doi.org/10.1038/srep09400"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.111.067203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015186331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.111.067203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015186331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys2045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017462081", 
              "https://doi.org/10.1038/nphys2045"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.89.064412", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018396782"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.89.064412", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018396782"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1209/0295-5075/100/57002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018672975"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys3347", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018939057", 
              "https://doi.org/10.1038/nphys3347"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2013.176", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019530671", 
              "https://doi.org/10.1038/nnano.2013.176"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.87.020402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019965027"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.87.020402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019965027"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1209/epl/i2004-10452-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021678993"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2013.210", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022657870", 
              "https://doi.org/10.1038/nnano.2013.210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4223", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024011429", 
              "https://doi.org/10.1038/nmat4223"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2014.324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025850891", 
              "https://doi.org/10.1038/nnano.2014.324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026381550", 
              "https://doi.org/10.1038/nature05056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026381550", 
              "https://doi.org/10.1038/nature05056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.86.054432", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026811477"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.86.054432", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026811477"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c5nr01856k", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026946941"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep08754", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029150576", 
              "https://doi.org/10.1038/srep08754"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys2231", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029936903", 
              "https://doi.org/10.1038/nphys2231"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aaa1442", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032089254"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep10620", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033042117", 
              "https://doi.org/10.1038/srep10620"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep07643", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033698995", 
              "https://doi.org/10.1038/srep07643"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034080992", 
              "https://doi.org/10.1038/nature09124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034080992", 
              "https://doi.org/10.1038/nature09124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys3234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034404991", 
              "https://doi.org/10.1038/nphys3234"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms2442", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037950420", 
              "https://doi.org/10.1038/ncomms2442"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.88.184422", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040967075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.88.184422", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040967075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0957-4484/26/22/225701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041379655"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.112.187203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042334446"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.112.187203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042334446"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.85.174416", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042735330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.85.174416", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042735330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7567/jjap.54.053001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043797383"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.90.094423", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049049328"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.90.094423", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049049328"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0304-8853(94)90046-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049517393"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0304-8853(94)90046-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049517393"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2013.243", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052510644", 
              "https://doi.org/10.1038/nnano.2013.243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl501379k", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056220796"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4932356", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058096983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.114.177203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060763597"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.114.177203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060763597"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.115.267210", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060764734"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.115.267210", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060764734"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.30.230", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060777021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.30.230", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060777021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1166767", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062459116"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-01-19", 
        "datePublishedReg": "2016-01-19", 
        "description": "Magnetic skyrmions might be used as information carriers in future advanced memories, logic gates and computing devices. However, there exists an obstacle known as the skyrmion Hall effect (SkHE), that is, the skyrmion trajectories bend away from the driving current direction due to the Magnus force. Consequently, the skyrmions in constricted geometries may be destroyed by touching the sample edges. Here we theoretically propose that the SkHE can be suppressed in the antiferromagnetically exchange-coupled bilayer system, since the Magnus forces in the top and bottom layers are exactly cancelled. We show that such a pair of SkHE-free magnetic skyrmions can be nucleated and be driven by the current-induced torque. Our proposal provides a promising means to move magnetic skyrmions in a perfectly straight trajectory in ultra-dense devices with ultra-fast processing speed. ", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/ncomms10293", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5884791", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6125548", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7430701", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5883382", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5863010", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "type": "Periodical"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "name": "Magnetic bilayer-skyrmions without skyrmion Hall effect", 
        "pagination": "10293", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "6c0b3ef7768e854d1161ebbb9acc5aba4b0c1141c52f30235f32ece83136cdbf"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "26782905"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101528555"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/ncomms10293"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1022678770"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/ncomms10293", 
          "https://app.dimensions.ai/details/publication/pub.1022678770"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T20:03", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000550.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/ncomms10293"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ncomms10293'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ncomms10293'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ncomms10293'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ncomms10293'


     

    This table displays all metadata directly associated to this object as RDF triples.

    244 TRIPLES      21 PREDICATES      70 URIs      19 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/ncomms10293 schema:about anzsrc-for:02
    2 anzsrc-for:0204
    3 schema:author N16812e5beaa64bd8b99e9234d25190b3
    4 schema:citation sg:pub.10.1038/nature05056
    5 sg:pub.10.1038/nature09124
    6 sg:pub.10.1038/ncomms2442
    7 sg:pub.10.1038/ncomms5652
    8 sg:pub.10.1038/nmat4223
    9 sg:pub.10.1038/nmat4593
    10 sg:pub.10.1038/nnano.2013.176
    11 sg:pub.10.1038/nnano.2013.210
    12 sg:pub.10.1038/nnano.2013.243
    13 sg:pub.10.1038/nnano.2013.29
    14 sg:pub.10.1038/nnano.2014.324
    15 sg:pub.10.1038/nnano.2015.41
    16 sg:pub.10.1038/nphys2045
    17 sg:pub.10.1038/nphys2231
    18 sg:pub.10.1038/nphys3234
    19 sg:pub.10.1038/nphys3347
    20 sg:pub.10.1038/srep06784
    21 sg:pub.10.1038/srep07643
    22 sg:pub.10.1038/srep08754
    23 sg:pub.10.1038/srep09400
    24 sg:pub.10.1038/srep10620
    25 sg:pub.10.1038/srep11369
    26 https://doi.org/10.1016/0304-8853(94)90046-9
    27 https://doi.org/10.1021/nl501379k
    28 https://doi.org/10.1039/c5nr01856k
    29 https://doi.org/10.1063/1.4932356
    30 https://doi.org/10.1088/0957-4484/26/22/225701
    31 https://doi.org/10.1103/physrevb.85.174416
    32 https://doi.org/10.1103/physrevb.86.054432
    33 https://doi.org/10.1103/physrevb.87.020402
    34 https://doi.org/10.1103/physrevb.88.184422
    35 https://doi.org/10.1103/physrevb.89.064412
    36 https://doi.org/10.1103/physrevb.90.094423
    37 https://doi.org/10.1103/physrevlett.111.067203
    38 https://doi.org/10.1103/physrevlett.112.187203
    39 https://doi.org/10.1103/physrevlett.114.177203
    40 https://doi.org/10.1103/physrevlett.115.267210
    41 https://doi.org/10.1103/physrevlett.30.230
    42 https://doi.org/10.1126/science.1166767
    43 https://doi.org/10.1126/science.aaa1442
    44 https://doi.org/10.1209/0295-5075/100/57002
    45 https://doi.org/10.1209/epl/i2004-10452-6
    46 https://doi.org/10.7567/jjap.54.053001
    47 schema:datePublished 2016-01-19
    48 schema:datePublishedReg 2016-01-19
    49 schema:description Magnetic skyrmions might be used as information carriers in future advanced memories, logic gates and computing devices. However, there exists an obstacle known as the skyrmion Hall effect (SkHE), that is, the skyrmion trajectories bend away from the driving current direction due to the Magnus force. Consequently, the skyrmions in constricted geometries may be destroyed by touching the sample edges. Here we theoretically propose that the SkHE can be suppressed in the antiferromagnetically exchange-coupled bilayer system, since the Magnus forces in the top and bottom layers are exactly cancelled. We show that such a pair of SkHE-free magnetic skyrmions can be nucleated and be driven by the current-induced torque. Our proposal provides a promising means to move magnetic skyrmions in a perfectly straight trajectory in ultra-dense devices with ultra-fast processing speed.
    50 schema:genre research_article
    51 schema:inLanguage en
    52 schema:isAccessibleForFree true
    53 schema:isPartOf Nc17014fb1bab4b1688a2cbef8b60e292
    54 sg:journal.1043282
    55 schema:name Magnetic bilayer-skyrmions without skyrmion Hall effect
    56 schema:pagination 10293
    57 schema:productId N147650e8e14544a3b997a6c6faf62e03
    58 Nd9eae6f66bba4c0ea648654395d752fe
    59 Nde7d7232d72443f68f535ee63e07de77
    60 Ne8102fadd8ec4cdeabec896ff922c03a
    61 Nf10c9baa0d044c77bb4d9db297530d26
    62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022678770
    63 https://doi.org/10.1038/ncomms10293
    64 schema:sdDatePublished 2019-04-10T20:03
    65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    66 schema:sdPublisher Na391219026d541619e6c09976a966900
    67 schema:url https://www.nature.com/articles/ncomms10293
    68 sgo:license sg:explorer/license/
    69 sgo:sdDataset articles
    70 rdf:type schema:ScholarlyArticle
    71 N03acf4fb564b4d32b149de92c872b671 rdf:first sg:person.01120426326.02
    72 rdf:rest N5a58b6d05dc54415b031a7a6b8d1f6f1
    73 N147650e8e14544a3b997a6c6faf62e03 schema:name readcube_id
    74 schema:value 6c0b3ef7768e854d1161ebbb9acc5aba4b0c1141c52f30235f32ece83136cdbf
    75 rdf:type schema:PropertyValue
    76 N16812e5beaa64bd8b99e9234d25190b3 rdf:first sg:person.01004177726.19
    77 rdf:rest N03acf4fb564b4d32b149de92c872b671
    78 N5a58b6d05dc54415b031a7a6b8d1f6f1 rdf:first sg:person.07724251271.76
    79 rdf:rest rdf:nil
    80 Na391219026d541619e6c09976a966900 schema:name Springer Nature - SN SciGraph project
    81 rdf:type schema:Organization
    82 Nc17014fb1bab4b1688a2cbef8b60e292 schema:volumeNumber 7
    83 rdf:type schema:PublicationVolume
    84 Nd9eae6f66bba4c0ea648654395d752fe schema:name pubmed_id
    85 schema:value 26782905
    86 rdf:type schema:PropertyValue
    87 Nde7d7232d72443f68f535ee63e07de77 schema:name nlm_unique_id
    88 schema:value 101528555
    89 rdf:type schema:PropertyValue
    90 Ne8102fadd8ec4cdeabec896ff922c03a schema:name doi
    91 schema:value 10.1038/ncomms10293
    92 rdf:type schema:PropertyValue
    93 Nf10c9baa0d044c77bb4d9db297530d26 schema:name dimensions_id
    94 schema:value pub.1022678770
    95 rdf:type schema:PropertyValue
    96 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    97 schema:name Physical Sciences
    98 rdf:type schema:DefinedTerm
    99 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
    100 schema:name Condensed Matter Physics
    101 rdf:type schema:DefinedTerm
    102 sg:grant.5863010 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms10293
    103 rdf:type schema:MonetaryGrant
    104 sg:grant.5883382 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms10293
    105 rdf:type schema:MonetaryGrant
    106 sg:grant.5884791 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms10293
    107 rdf:type schema:MonetaryGrant
    108 sg:grant.6125548 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms10293
    109 rdf:type schema:MonetaryGrant
    110 sg:grant.7430701 http://pending.schema.org/fundedItem sg:pub.10.1038/ncomms10293
    111 rdf:type schema:MonetaryGrant
    112 sg:journal.1043282 schema:issn 2041-1723
    113 schema:name Nature Communications
    114 rdf:type schema:Periodical
    115 sg:person.01004177726.19 schema:affiliation https://www.grid.ac/institutes/grid.194645.b
    116 schema:familyName Zhang
    117 schema:givenName Xichao
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004177726.19
    119 rdf:type schema:Person
    120 sg:person.01120426326.02 schema:affiliation https://www.grid.ac/institutes/grid.194645.b
    121 schema:familyName Zhou
    122 schema:givenName Yan
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120426326.02
    124 rdf:type schema:Person
    125 sg:person.07724251271.76 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
    126 schema:familyName Ezawa
    127 schema:givenName Motohiko
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07724251271.76
    129 rdf:type schema:Person
    130 sg:pub.10.1038/nature05056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026381550
    131 https://doi.org/10.1038/nature05056
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1038/nature09124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034080992
    134 https://doi.org/10.1038/nature09124
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1038/ncomms2442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037950420
    137 https://doi.org/10.1038/ncomms2442
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1038/ncomms5652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007764703
    140 https://doi.org/10.1038/ncomms5652
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1038/nmat4223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024011429
    143 https://doi.org/10.1038/nmat4223
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1038/nmat4593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009287387
    146 https://doi.org/10.1038/nmat4593
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1038/nnano.2013.176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019530671
    149 https://doi.org/10.1038/nnano.2013.176
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1038/nnano.2013.210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022657870
    152 https://doi.org/10.1038/nnano.2013.210
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1038/nnano.2013.243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052510644
    155 https://doi.org/10.1038/nnano.2013.243
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1038/nnano.2013.29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006853479
    158 https://doi.org/10.1038/nnano.2013.29
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1038/nnano.2014.324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025850891
    161 https://doi.org/10.1038/nnano.2014.324
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1038/nnano.2015.41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007000449
    164 https://doi.org/10.1038/nnano.2015.41
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1038/nphys2045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017462081
    167 https://doi.org/10.1038/nphys2045
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1038/nphys2231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029936903
    170 https://doi.org/10.1038/nphys2231
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1038/nphys3234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034404991
    173 https://doi.org/10.1038/nphys3234
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1038/nphys3347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018939057
    176 https://doi.org/10.1038/nphys3347
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1038/srep06784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003042361
    179 https://doi.org/10.1038/srep06784
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1038/srep07643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033698995
    182 https://doi.org/10.1038/srep07643
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1038/srep08754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029150576
    185 https://doi.org/10.1038/srep08754
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/srep09400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012698622
    188 https://doi.org/10.1038/srep09400
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/srep10620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033042117
    191 https://doi.org/10.1038/srep10620
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/srep11369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003960489
    194 https://doi.org/10.1038/srep11369
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1016/0304-8853(94)90046-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049517393
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1021/nl501379k schema:sameAs https://app.dimensions.ai/details/publication/pub.1056220796
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1039/c5nr01856k schema:sameAs https://app.dimensions.ai/details/publication/pub.1026946941
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1063/1.4932356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058096983
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1088/0957-4484/26/22/225701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041379655
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1103/physrevb.85.174416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042735330
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1103/physrevb.86.054432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026811477
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1103/physrevb.87.020402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019965027
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1103/physrevb.88.184422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040967075
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1103/physrevb.89.064412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018396782
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1103/physrevb.90.094423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049049328
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1103/physrevlett.111.067203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015186331
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1103/physrevlett.112.187203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042334446
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1103/physrevlett.114.177203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060763597
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1103/physrevlett.115.267210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060764734
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1103/physrevlett.30.230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060777021
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1126/science.1166767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062459116
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1126/science.aaa1442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032089254
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1209/0295-5075/100/57002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018672975
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1209/epl/i2004-10452-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021678993
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.7567/jjap.54.053001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043797383
    237 rdf:type schema:CreativeWork
    238 https://www.grid.ac/institutes/grid.194645.b schema:alternateName University of Hong Kong
    239 schema:name Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong, China
    240 School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
    241 rdf:type schema:Organization
    242 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
    243 schema:name Department of Applied Physics, University of Tokyo, Hongo 7-3-1, Tokyo 113-8656, Japan
    244 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...