Implications for climate sensitivity from the response to individual forcings View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-04

AUTHORS

Kate Marvel, Gavin A. Schmidt, Ron L. Miller, Larissa S. Nazarenko

ABSTRACT

Climate sensitivity to doubled CO2 is a widely used metric for the large-scale response to external forcing. Climate models predict a wide range for two commonly used definitions: the transient climate response (TCR: the warming after 70 years of CO2 concentrations that rise at 1% per year), and the equilibrium climate sensitivity (ECS: the equilibrium temperature change following a doubling of CO2 concentrations). Many observational data sets have been used to constrain these values, including temperature trends over the recent past1,2,3,4,5,6, inferences from palaeoclimate7,8 and process-based constraints from the modern satellite era9,10. However, as the IPCC recently reported11, different classes of observational constraints produce somewhat incongruent ranges. Here we show that climate sensitivity estimates derived from recent observations must account for the efficacy of each forcing active during the historical period. When we use single-forcing experiments to estimate these efficacies and calculate climate sensitivity from the observed twentieth-century warming, our estimates of both TCR and ECS are revised upwards compared to previous studies, improving the consistency with independent constraints. More... »

PAGES

386-389

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nclimate2888

DOI

http://dx.doi.org/10.1038/nclimate2888

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011919229


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0699", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Goddard Institute for Space Studies", 
          "id": "https://www.grid.ac/institutes/grid.419078.3", 
          "name": [
            "Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA", 
            "NASA Goddard Institute for\u00a0Space Studies, New York, New York 10025, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marvel", 
        "givenName": "Kate", 
        "id": "sg:person.014556577031.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014556577031.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Goddard Institute for Space Studies", 
          "id": "https://www.grid.ac/institutes/grid.419078.3", 
          "name": [
            "NASA Goddard Institute for\u00a0Space Studies, New York, New York 10025, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmidt", 
        "givenName": "Gavin A.", 
        "id": "sg:person.01205474267.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205474267.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Goddard Institute for Space Studies", 
          "id": "https://www.grid.ac/institutes/grid.419078.3", 
          "name": [
            "Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA", 
            "NASA Goddard Institute for\u00a0Space Studies, New York, New York 10025, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miller", 
        "givenName": "Ron L.", 
        "id": "sg:person.015566240467.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015566240467.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Columbia University", 
          "id": "https://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "NASA Goddard Institute for\u00a0Space Studies, New York, New York 10025, USA", 
            "Center for Climate Systems Research, Columbia University, New York, New\u00a0York\u00a010025, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nazarenko", 
        "givenName": "Larissa S.", 
        "id": "sg:person.011275333101.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011275333101.80"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.quascirev.2009.09.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002685098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4236/acs.2012.24035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004393666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2013ms000266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007212452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/97jd01495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007277001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-004-0497-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010869841", 
          "https://doi.org/10.1007/s00382-004-0497-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-004-0497-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010869841", 
          "https://doi.org/10.1007/s00382-004-0497-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2013ms000265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012518414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016927016", 
          "https://doi.org/10.1038/nature12829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-12-00544.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022300635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023256906", 
          "https://doi.org/10.1038/nature11574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-014-2342-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025772326", 
          "https://doi.org/10.1007/s00382-014-2342-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2012gl053872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026283261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2012gl053872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026283261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005gl023977", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027467855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.2014.0417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028965709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2009jcli3139.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032145190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2013gl058955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034911689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/env.2140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034997442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo1836", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035863071", 
          "https://doi.org/10.1038/ngeo1836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-14-00214.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037454868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2014gl060046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037809364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo473", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039476098", 
          "https://doi.org/10.1038/ngeo473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo473", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039476098", 
          "https://doi.org/10.1038/ngeo473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate2136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040830588", 
          "https://doi.org/10.1038/nclimate2136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2014ms000403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041296166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli4064.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045141925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2003gl018747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045433795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005jd005776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053698466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005jd005776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053698466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1064419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062445415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1203513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062464569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1227465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062467026"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-04", 
    "datePublishedReg": "2016-04-01", 
    "description": "Climate sensitivity to doubled CO2 is a widely used metric for the large-scale response to external forcing. Climate models predict a wide range for two commonly used definitions: the transient climate response (TCR: the warming after 70 years of CO2 concentrations that rise at 1% per year), and the equilibrium climate sensitivity (ECS: the equilibrium temperature change following a doubling of CO2 concentrations). Many observational data sets have been used to constrain these values, including temperature trends over the recent past1,2,3,4,5,6, inferences from palaeoclimate7,8 and process-based constraints from the modern satellite era9,10. However, as the IPCC recently reported11, different classes of observational constraints produce somewhat incongruent ranges. Here we show that climate sensitivity estimates derived from recent observations must account for the efficacy of each forcing active during the historical period. When we use single-forcing experiments to estimate these efficacies and calculate climate sensitivity from the observed twentieth-century warming, our estimates of both TCR and ECS are revised upwards compared to previous studies, improving the consistency with independent constraints.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nclimate2888", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1044959", 
        "issn": [
          "1758-678X", 
          "1758-6798"
        ], 
        "name": "Nature Climate Change", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Implications for climate sensitivity from the response to individual forcings", 
    "pagination": "386-389", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "38ca0c0d501bfc106b01a3b3f21d5f05d34cb34126d39d07e773b0fd837c3eaa"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nclimate2888"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011919229"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nclimate2888", 
      "https://app.dimensions.ai/details/publication/pub.1011919229"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000422.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/nclimate2888"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nclimate2888'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nclimate2888'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nclimate2888'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nclimate2888'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nclimate2888 schema:about anzsrc-for:06
2 anzsrc-for:0699
3 schema:author N3388c38051604198a455e4696ed6cbae
4 schema:citation sg:pub.10.1007/s00382-004-0497-7
5 sg:pub.10.1007/s00382-014-2342-y
6 sg:pub.10.1038/nature11574
7 sg:pub.10.1038/nature12829
8 sg:pub.10.1038/nclimate2136
9 sg:pub.10.1038/ngeo1836
10 sg:pub.10.1038/ngeo473
11 https://doi.org/10.1002/2013gl058955
12 https://doi.org/10.1002/2013ms000265
13 https://doi.org/10.1002/2013ms000266
14 https://doi.org/10.1002/2014gl060046
15 https://doi.org/10.1002/2014ms000403
16 https://doi.org/10.1002/env.2140
17 https://doi.org/10.1016/j.quascirev.2009.09.026
18 https://doi.org/10.1029/2003gl018747
19 https://doi.org/10.1029/2005gl023977
20 https://doi.org/10.1029/2005jd005776
21 https://doi.org/10.1029/2012gl053872
22 https://doi.org/10.1029/97jd01495
23 https://doi.org/10.1098/rsta.2014.0417
24 https://doi.org/10.1126/science.1064419
25 https://doi.org/10.1126/science.1203513
26 https://doi.org/10.1126/science.1227465
27 https://doi.org/10.1175/2009jcli3139.1
28 https://doi.org/10.1175/jcli-d-12-00544.1
29 https://doi.org/10.1175/jcli-d-14-00214.1
30 https://doi.org/10.1175/jcli4064.1
31 https://doi.org/10.4236/acs.2012.24035
32 schema:datePublished 2016-04
33 schema:datePublishedReg 2016-04-01
34 schema:description Climate sensitivity to doubled CO2 is a widely used metric for the large-scale response to external forcing. Climate models predict a wide range for two commonly used definitions: the transient climate response (TCR: the warming after 70 years of CO2 concentrations that rise at 1% per year), and the equilibrium climate sensitivity (ECS: the equilibrium temperature change following a doubling of CO2 concentrations). Many observational data sets have been used to constrain these values, including temperature trends over the recent past1,2,3,4,5,6, inferences from palaeoclimate7,8 and process-based constraints from the modern satellite era9,10. However, as the IPCC recently reported11, different classes of observational constraints produce somewhat incongruent ranges. Here we show that climate sensitivity estimates derived from recent observations must account for the efficacy of each forcing active during the historical period. When we use single-forcing experiments to estimate these efficacies and calculate climate sensitivity from the observed twentieth-century warming, our estimates of both TCR and ECS are revised upwards compared to previous studies, improving the consistency with independent constraints.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf N794af7da09004de3993fdae420b4ff0f
39 Nb7970c438b614ff48577530182431d32
40 sg:journal.1044959
41 schema:name Implications for climate sensitivity from the response to individual forcings
42 schema:pagination 386-389
43 schema:productId N486ff77a09724538afbd9006aef03c8b
44 N621a49ba7cb24faaa7096939cc8522ec
45 Nffab11f9a6224c118389567113014f40
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011919229
47 https://doi.org/10.1038/nclimate2888
48 schema:sdDatePublished 2019-04-11T00:03
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N7ad032dd40dc438e85fd8438d8e9f91a
51 schema:url http://www.nature.com/articles/nclimate2888
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N08050622ce464d299a1783e4a0d2bbc2 rdf:first sg:person.011275333101.80
56 rdf:rest rdf:nil
57 N3388c38051604198a455e4696ed6cbae rdf:first sg:person.014556577031.31
58 rdf:rest Ne5e4c49159e842ef83c8cf9f777c9f9a
59 N486ff77a09724538afbd9006aef03c8b schema:name dimensions_id
60 schema:value pub.1011919229
61 rdf:type schema:PropertyValue
62 N621a49ba7cb24faaa7096939cc8522ec schema:name readcube_id
63 schema:value 38ca0c0d501bfc106b01a3b3f21d5f05d34cb34126d39d07e773b0fd837c3eaa
64 rdf:type schema:PropertyValue
65 N794af7da09004de3993fdae420b4ff0f schema:volumeNumber 6
66 rdf:type schema:PublicationVolume
67 N7ad032dd40dc438e85fd8438d8e9f91a schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N93b3808685c04bf88b6e3d5fd40383a5 rdf:first sg:person.015566240467.46
70 rdf:rest N08050622ce464d299a1783e4a0d2bbc2
71 Nb7970c438b614ff48577530182431d32 schema:issueNumber 4
72 rdf:type schema:PublicationIssue
73 Ne5e4c49159e842ef83c8cf9f777c9f9a rdf:first sg:person.01205474267.39
74 rdf:rest N93b3808685c04bf88b6e3d5fd40383a5
75 Nffab11f9a6224c118389567113014f40 schema:name doi
76 schema:value 10.1038/nclimate2888
77 rdf:type schema:PropertyValue
78 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
79 schema:name Biological Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0699 schema:inDefinedTermSet anzsrc-for:
82 schema:name Other Biological Sciences
83 rdf:type schema:DefinedTerm
84 sg:journal.1044959 schema:issn 1758-678X
85 1758-6798
86 schema:name Nature Climate Change
87 rdf:type schema:Periodical
88 sg:person.011275333101.80 schema:affiliation https://www.grid.ac/institutes/grid.21729.3f
89 schema:familyName Nazarenko
90 schema:givenName Larissa S.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011275333101.80
92 rdf:type schema:Person
93 sg:person.01205474267.39 schema:affiliation https://www.grid.ac/institutes/grid.419078.3
94 schema:familyName Schmidt
95 schema:givenName Gavin A.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205474267.39
97 rdf:type schema:Person
98 sg:person.014556577031.31 schema:affiliation https://www.grid.ac/institutes/grid.419078.3
99 schema:familyName Marvel
100 schema:givenName Kate
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014556577031.31
102 rdf:type schema:Person
103 sg:person.015566240467.46 schema:affiliation https://www.grid.ac/institutes/grid.419078.3
104 schema:familyName Miller
105 schema:givenName Ron L.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015566240467.46
107 rdf:type schema:Person
108 sg:pub.10.1007/s00382-004-0497-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010869841
109 https://doi.org/10.1007/s00382-004-0497-7
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s00382-014-2342-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1025772326
112 https://doi.org/10.1007/s00382-014-2342-y
113 rdf:type schema:CreativeWork
114 sg:pub.10.1038/nature11574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023256906
115 https://doi.org/10.1038/nature11574
116 rdf:type schema:CreativeWork
117 sg:pub.10.1038/nature12829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016927016
118 https://doi.org/10.1038/nature12829
119 rdf:type schema:CreativeWork
120 sg:pub.10.1038/nclimate2136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040830588
121 https://doi.org/10.1038/nclimate2136
122 rdf:type schema:CreativeWork
123 sg:pub.10.1038/ngeo1836 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035863071
124 https://doi.org/10.1038/ngeo1836
125 rdf:type schema:CreativeWork
126 sg:pub.10.1038/ngeo473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039476098
127 https://doi.org/10.1038/ngeo473
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1002/2013gl058955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034911689
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1002/2013ms000265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012518414
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1002/2013ms000266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007212452
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1002/2014gl060046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037809364
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1002/2014ms000403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041296166
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1002/env.2140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034997442
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.quascirev.2009.09.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002685098
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1029/2003gl018747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045433795
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1029/2005gl023977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027467855
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1029/2005jd005776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053698466
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1029/2012gl053872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026283261
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1029/97jd01495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007277001
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1098/rsta.2014.0417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028965709
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1126/science.1064419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062445415
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1126/science.1203513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062464569
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1126/science.1227465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062467026
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1175/2009jcli3139.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032145190
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1175/jcli-d-12-00544.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022300635
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1175/jcli-d-14-00214.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037454868
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1175/jcli4064.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045141925
168 rdf:type schema:CreativeWork
169 https://doi.org/10.4236/acs.2012.24035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004393666
170 rdf:type schema:CreativeWork
171 https://www.grid.ac/institutes/grid.21729.3f schema:alternateName Columbia University
172 schema:name Center for Climate Systems Research, Columbia University, New York, New York 10025, USA
173 NASA Goddard Institute for Space Studies, New York, New York 10025, USA
174 rdf:type schema:Organization
175 https://www.grid.ac/institutes/grid.419078.3 schema:alternateName Goddard Institute for Space Studies
176 schema:name Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA
177 NASA Goddard Institute for Space Studies, New York, New York 10025, USA
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...