The emerging anthropogenic signal in land–atmosphere carbon-cycle coupling View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-09

AUTHORS

Danica Lombardozzi, Gordon B. Bonan, Douglas W. Nychka

ABSTRACT

Earth system models simulate prominent terrestrial carbon-cycle responses to anthropogenically forced changes in climate and atmospheric composition over the twenty-first century1,2,3,4. The rate and magnitude of the forced climate change is routinely evaluated relative to unforced, or natural, variability using a multi-member ensemble of simulations5,6,7,8. However, Earth system model carbon-cycle analyses do not account for unforced variability1,2,3,4,9. To investigate unforced terrestrial carbon-cycle variability, we analyse ensembles from the Coupled Model Intercomparison Project (CMIP5), focusing on the Community Climate System Model (CCSM4). The unforced variability of CCSM4 is comparable to that observed at the Harvard Forest eddy covariance flux tower site. Over the twenty-first century, unforced variability in land–atmosphere CO2 flux is larger than the forced response at decadal timescales in many areas of the world, precluding detection of the forced carbon-cycle change. Only after several decades does the forced carbon signal consistently emerge in CCSM4 and other models for the business-as-usual radiative forcing scenario (RCP8.5). Grid-cell variability in time of emergence is large, but decreases at regional scales. To attribute changes in the terrestrial carbon cycle to anthropogenic forcings, monitoring networks and model projections must consider the timescale at which the forced biogeochemical response emerges from the natural variability. More... »

PAGES

796-800

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nclimate2323

DOI

http://dx.doi.org/10.1038/nclimate2323

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007599311


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Center for Atmospheric Research", 
          "id": "https://www.grid.ac/institutes/grid.57828.30", 
          "name": [
            "National Center for Atmospheric Research, P.O. Box 3000, Boulder, Colorado 80307, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lombardozzi", 
        "givenName": "Danica", 
        "id": "sg:person.0747667071.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747667071.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Center for Atmospheric Research", 
          "id": "https://www.grid.ac/institutes/grid.57828.30", 
          "name": [
            "National Center for Atmospheric Research, P.O. Box 3000, Boulder, Colorado 80307, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bonan", 
        "givenName": "Gordon B.", 
        "id": "sg:person.01104272575.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104272575.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Center for Atmospheric Research", 
          "id": "https://www.grid.ac/institutes/grid.57828.30", 
          "name": [
            "National Center for Atmospheric Research, P.O. Box 3000, Boulder, Colorado 80307, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nychka", 
        "givenName": "Douglas W.", 
        "id": "sg:person.07745505663.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07745505663.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1175/2009bams2778.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002657974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004669208", 
          "https://doi.org/10.1038/nature11299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(2004)017<3721:conaaf>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005958485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2486.2006.01221.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007739020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/gcb.12281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007840100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli3800.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008323173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2486.2012.02678.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008610118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2011gl050087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009767696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2011ms000045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011256834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-11-00240.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013960343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2486.2010.02281.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014418749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2486.2010.02281.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014418749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2486.2008.01832.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014513895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-12-00494.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015855144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-010-0977-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021861148", 
          "https://doi.org/10.1007/s00382-010-0977-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1082750", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022784831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/wcc.34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023707290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate1562", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028376412", 
          "https://doi.org/10.1038/nclimate1562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2486.2007.01330.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031047976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2486.2007.01330.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031047976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-12-00554.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031310308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-11-00256.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033092847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agrformet.2011.02.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038865618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-12-00417.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039545465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2006jg000293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040249869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli3746.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040432969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-12-00579.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046725636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2486.2001.00412.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050263765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2011gl050738", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050552335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051575071", 
          "https://doi.org/10.1038/nature06444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-d-11-00094.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051805105"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-09", 
    "datePublishedReg": "2014-09-01", 
    "description": "Earth system models simulate prominent terrestrial carbon-cycle responses to anthropogenically forced changes in climate and atmospheric composition over the twenty-first century1,2,3,4. The rate and magnitude of the forced climate change is routinely evaluated relative to unforced, or natural, variability using a multi-member ensemble of simulations5,6,7,8. However, Earth system model carbon-cycle analyses do not account for unforced variability1,2,3,4,9. To investigate unforced terrestrial carbon-cycle variability, we analyse ensembles from the Coupled Model Intercomparison Project (CMIP5), focusing on the Community Climate System Model (CCSM4). The unforced variability of CCSM4 is comparable to that observed at the Harvard Forest eddy covariance flux tower site. Over the twenty-first century, unforced variability in land\u2013atmosphere CO2 flux is larger than the forced response at decadal timescales in many areas of the world, precluding detection of the forced carbon-cycle change. Only after several decades does the forced carbon signal consistently emerge in CCSM4 and other models for the business-as-usual radiative forcing scenario (RCP8.5). Grid-cell variability in time of emergence is large, but decreases at regional scales. To attribute changes in the terrestrial carbon cycle to anthropogenic forcings, monitoring networks and model projections must consider the timescale at which the forced biogeochemical response emerges from the natural variability.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nclimate2323", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1044959", 
        "issn": [
          "1758-678X", 
          "1758-6798"
        ], 
        "name": "Nature Climate Change", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "The emerging anthropogenic signal in land\u2013atmosphere carbon-cycle coupling", 
    "pagination": "796-800", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2432b6b6dec86ce28ff010844b3edf116bc557e9d14c23b240a1aa53711871cf"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nclimate2323"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007599311"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nclimate2323", 
      "https://app.dimensions.ai/details/publication/pub.1007599311"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000422.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/nclimate2323"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nclimate2323'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nclimate2323'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nclimate2323'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nclimate2323'


 

This table displays all metadata directly associated to this object as RDF triples.

166 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nclimate2323 schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author N6035b3ed9f6d4a0ca1ffd8b6377051b9
4 schema:citation sg:pub.10.1007/s00382-010-0977-x
5 sg:pub.10.1038/nature06444
6 sg:pub.10.1038/nature11299
7 sg:pub.10.1038/nclimate1562
8 https://doi.org/10.1002/wcc.34
9 https://doi.org/10.1016/j.agrformet.2011.02.013
10 https://doi.org/10.1029/2006jg000293
11 https://doi.org/10.1029/2011gl050087
12 https://doi.org/10.1029/2011gl050738
13 https://doi.org/10.1029/2011ms000045
14 https://doi.org/10.1046/j.1365-2486.2001.00412.x
15 https://doi.org/10.1111/gcb.12281
16 https://doi.org/10.1111/j.1365-2486.2006.01221.x
17 https://doi.org/10.1111/j.1365-2486.2007.01330.x
18 https://doi.org/10.1111/j.1365-2486.2008.01832.x
19 https://doi.org/10.1111/j.1365-2486.2010.02281.x
20 https://doi.org/10.1111/j.1365-2486.2012.02678.x
21 https://doi.org/10.1126/science.1082750
22 https://doi.org/10.1175/1520-0442(2004)017<3721:conaaf>2.0.co;2
23 https://doi.org/10.1175/2009bams2778.1
24 https://doi.org/10.1175/bams-d-11-00094.1
25 https://doi.org/10.1175/jcli-d-11-00240.1
26 https://doi.org/10.1175/jcli-d-11-00256.1
27 https://doi.org/10.1175/jcli-d-12-00417.1
28 https://doi.org/10.1175/jcli-d-12-00494.1
29 https://doi.org/10.1175/jcli-d-12-00554.1
30 https://doi.org/10.1175/jcli-d-12-00579.1
31 https://doi.org/10.1175/jcli3746.1
32 https://doi.org/10.1175/jcli3800.1
33 schema:datePublished 2014-09
34 schema:datePublishedReg 2014-09-01
35 schema:description Earth system models simulate prominent terrestrial carbon-cycle responses to anthropogenically forced changes in climate and atmospheric composition over the twenty-first century1,2,3,4. The rate and magnitude of the forced climate change is routinely evaluated relative to unforced, or natural, variability using a multi-member ensemble of simulations5,6,7,8. However, Earth system model carbon-cycle analyses do not account for unforced variability1,2,3,4,9. To investigate unforced terrestrial carbon-cycle variability, we analyse ensembles from the Coupled Model Intercomparison Project (CMIP5), focusing on the Community Climate System Model (CCSM4). The unforced variability of CCSM4 is comparable to that observed at the Harvard Forest eddy covariance flux tower site. Over the twenty-first century, unforced variability in land–atmosphere CO2 flux is larger than the forced response at decadal timescales in many areas of the world, precluding detection of the forced carbon-cycle change. Only after several decades does the forced carbon signal consistently emerge in CCSM4 and other models for the business-as-usual radiative forcing scenario (RCP8.5). Grid-cell variability in time of emergence is large, but decreases at regional scales. To attribute changes in the terrestrial carbon cycle to anthropogenic forcings, monitoring networks and model projections must consider the timescale at which the forced biogeochemical response emerges from the natural variability.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf Nd094c0f3116f435694231636509ac3a5
40 Nd6ed8556e5964728bbeb8d27c4a41e00
41 sg:journal.1044959
42 schema:name The emerging anthropogenic signal in land–atmosphere carbon-cycle coupling
43 schema:pagination 796-800
44 schema:productId N3112f37dae9b40e2947bcec9491f2bcb
45 N62fa7995631c483d913ee9b82f5b5f53
46 Nf7941838e7db484ba2fe64410725d320
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007599311
48 https://doi.org/10.1038/nclimate2323
49 schema:sdDatePublished 2019-04-11T00:54
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N43b64c8dbadf45f893f4dbb0cf4c2ee1
52 schema:url http://www.nature.com/articles/nclimate2323
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N1fecdfdcd05b48f0ab7a429aad8706c4 rdf:first sg:person.07745505663.08
57 rdf:rest rdf:nil
58 N3112f37dae9b40e2947bcec9491f2bcb schema:name readcube_id
59 schema:value 2432b6b6dec86ce28ff010844b3edf116bc557e9d14c23b240a1aa53711871cf
60 rdf:type schema:PropertyValue
61 N43b64c8dbadf45f893f4dbb0cf4c2ee1 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N6035b3ed9f6d4a0ca1ffd8b6377051b9 rdf:first sg:person.0747667071.46
64 rdf:rest N68b494c8929d4da592e74bcf26e592e0
65 N62fa7995631c483d913ee9b82f5b5f53 schema:name doi
66 schema:value 10.1038/nclimate2323
67 rdf:type schema:PropertyValue
68 N68b494c8929d4da592e74bcf26e592e0 rdf:first sg:person.01104272575.82
69 rdf:rest N1fecdfdcd05b48f0ab7a429aad8706c4
70 Nd094c0f3116f435694231636509ac3a5 schema:issueNumber 9
71 rdf:type schema:PublicationIssue
72 Nd6ed8556e5964728bbeb8d27c4a41e00 schema:volumeNumber 4
73 rdf:type schema:PublicationVolume
74 Nf7941838e7db484ba2fe64410725d320 schema:name dimensions_id
75 schema:value pub.1007599311
76 rdf:type schema:PropertyValue
77 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
78 schema:name Earth Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
81 schema:name Physical Geography and Environmental Geoscience
82 rdf:type schema:DefinedTerm
83 sg:journal.1044959 schema:issn 1758-678X
84 1758-6798
85 schema:name Nature Climate Change
86 rdf:type schema:Periodical
87 sg:person.01104272575.82 schema:affiliation https://www.grid.ac/institutes/grid.57828.30
88 schema:familyName Bonan
89 schema:givenName Gordon B.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104272575.82
91 rdf:type schema:Person
92 sg:person.0747667071.46 schema:affiliation https://www.grid.ac/institutes/grid.57828.30
93 schema:familyName Lombardozzi
94 schema:givenName Danica
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747667071.46
96 rdf:type schema:Person
97 sg:person.07745505663.08 schema:affiliation https://www.grid.ac/institutes/grid.57828.30
98 schema:familyName Nychka
99 schema:givenName Douglas W.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07745505663.08
101 rdf:type schema:Person
102 sg:pub.10.1007/s00382-010-0977-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021861148
103 https://doi.org/10.1007/s00382-010-0977-x
104 rdf:type schema:CreativeWork
105 sg:pub.10.1038/nature06444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051575071
106 https://doi.org/10.1038/nature06444
107 rdf:type schema:CreativeWork
108 sg:pub.10.1038/nature11299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004669208
109 https://doi.org/10.1038/nature11299
110 rdf:type schema:CreativeWork
111 sg:pub.10.1038/nclimate1562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028376412
112 https://doi.org/10.1038/nclimate1562
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1002/wcc.34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023707290
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.agrformet.2011.02.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038865618
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1029/2006jg000293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040249869
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1029/2011gl050087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009767696
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1029/2011gl050738 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050552335
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1029/2011ms000045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011256834
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1046/j.1365-2486.2001.00412.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050263765
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1111/gcb.12281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007840100
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1111/j.1365-2486.2006.01221.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007739020
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1111/j.1365-2486.2007.01330.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031047976
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1111/j.1365-2486.2008.01832.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014513895
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1111/j.1365-2486.2010.02281.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014418749
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1111/j.1365-2486.2012.02678.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008610118
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1126/science.1082750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022784831
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1175/1520-0442(2004)017<3721:conaaf>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005958485
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1175/2009bams2778.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002657974
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1175/bams-d-11-00094.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051805105
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1175/jcli-d-11-00240.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013960343
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1175/jcli-d-11-00256.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033092847
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1175/jcli-d-12-00417.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039545465
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1175/jcli-d-12-00494.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015855144
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1175/jcli-d-12-00554.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031310308
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1175/jcli-d-12-00579.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046725636
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1175/jcli3746.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040432969
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1175/jcli3800.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008323173
163 rdf:type schema:CreativeWork
164 https://www.grid.ac/institutes/grid.57828.30 schema:alternateName National Center for Atmospheric Research
165 schema:name National Center for Atmospheric Research, P.O. Box 3000, Boulder, Colorado 80307, USA
166 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...