Ontology type: schema:ScholarlyArticle
2013-11-17
AUTHORSE. M. Fischer, U. Beyerle, R. Knutti
ABSTRACTThere are large uncertainties associated with the projection of climate extremes. This study shows that the uncertainties are mainly due to internal climate variability. However, model projections are consistent when averaged across regions, allowing robust projection of future extremes.
PAGES1033-1038
http://scigraph.springernature.com/pub.10.1038/nclimate2051
DOIhttp://dx.doi.org/10.1038/nclimate2051
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1007909771
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Earth Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atmospheric Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute for Atmospheric and Climate Science, ETH Zurich, Universit\u00e4tstrasse 16, 8092 Zurich, Switzerland",
"id": "http://www.grid.ac/institutes/grid.5801.c",
"name": [
"Institute for Atmospheric and Climate Science, ETH Zurich, Universit\u00e4tstrasse 16, 8092 Zurich, Switzerland"
],
"type": "Organization"
},
"familyName": "Fischer",
"givenName": "E. M.",
"id": "sg:person.016571603451.04",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016571603451.04"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute for Atmospheric and Climate Science, ETH Zurich, Universit\u00e4tstrasse 16, 8092 Zurich, Switzerland",
"id": "http://www.grid.ac/institutes/grid.5801.c",
"name": [
"Institute for Atmospheric and Climate Science, ETH Zurich, Universit\u00e4tstrasse 16, 8092 Zurich, Switzerland"
],
"type": "Organization"
},
"familyName": "Beyerle",
"givenName": "U.",
"id": "sg:person.0754352011.01",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754352011.01"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute for Atmospheric and Climate Science, ETH Zurich, Universit\u00e4tstrasse 16, 8092 Zurich, Switzerland",
"id": "http://www.grid.ac/institutes/grid.5801.c",
"name": [
"Institute for Atmospheric and Climate Science, ETH Zurich, Universit\u00e4tstrasse 16, 8092 Zurich, Switzerland"
],
"type": "Organization"
},
"familyName": "Knutti",
"givenName": "R.",
"id": "sg:person.0725114521.94",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725114521.94"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s00382-010-0977-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021861148",
"https://doi.org/10.1007/s00382-010-0977-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nclimate1562",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028376412",
"https://doi.org/10.1038/nclimate1562"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature09763",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028595909",
"https://doi.org/10.1038/nature09763"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nclimate1716",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002144786",
"https://doi.org/10.1038/nclimate1716"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10584-011-0122-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040318214",
"https://doi.org/10.1007/s10584-011-0122-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature03089",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028450143",
"https://doi.org/10.1038/nature03089"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10584-013-0705-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038008793",
"https://doi.org/10.1007/s10584-013-0705-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00382-008-0473-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042898397",
"https://doi.org/10.1007/s00382-008-0473-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10584-006-9051-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033458924",
"https://doi.org/10.1007/s10584-006-9051-4"
],
"type": "CreativeWork"
}
],
"datePublished": "2013-11-17",
"datePublishedReg": "2013-11-17",
"description": "There are large uncertainties associated with the projection of climate extremes. This study shows that the uncertainties are mainly due to internal climate variability. However, model projections are consistent when averaged across regions, allowing robust projection of future extremes.",
"genre": "article",
"id": "sg:pub.10.1038/nclimate2051",
"inLanguage": "en",
"isAccessibleForFree": false,
"isFundedItemOf": [
{
"id": "sg:grant.5237200",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1044959",
"issn": [
"1758-678X",
"1758-6798"
],
"name": "Nature Climate Change",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "12",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "3"
}
],
"keywords": [
"climate extremes",
"internal climate variability",
"climate variability",
"future extremes",
"model projections",
"large uncertainties",
"robust projections",
"extremes",
"projections",
"uncertainty",
"variability",
"region",
"study"
],
"name": "Robust spatially aggregated projections of climate extremes",
"pagination": "1033-1038",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1007909771"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/nclimate2051"
]
}
],
"sameAs": [
"https://doi.org/10.1038/nclimate2051",
"https://app.dimensions.ai/details/publication/pub.1007909771"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:28",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_589.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1038/nclimate2051"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nclimate2051'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nclimate2051'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nclimate2051'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nclimate2051'
This table displays all metadata directly associated to this object as RDF triples.
123 TRIPLES
22 PREDICATES
47 URIs
30 LITERALS
6 BLANK NODES