Global flood risk under climate change View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-09

AUTHORS

Yukiko Hirabayashi, Roobavannan Mahendran, Sujan Koirala, Lisako Konoshima, Dai Yamazaki, Satoshi Watanabe, Hyungjun Kim, Shinjiro Kanae

ABSTRACT

A warmer climate would increase the risk of floods1. So far, only a few studies2,3 have projected changes in floods on a global scale. None of these studies relied on multiple climate models. A few global studies4,5 have started to estimate the exposure to flooding (population in potential inundation areas) as a proxy of risk, but none of them has estimated it in a warmer future climate. Here we present global flood risk for the end of this century based on the outputs of 11 climate models. A state-of-the-art global river routing model with an inundation scheme6 was employed to compute river discharge and inundation area. An ensemble of projections under a new high-concentration scenario7 demonstrates a large increase in flood frequency in Southeast Asia, Peninsular India, eastern Africa and the northern half of the Andes, with small uncertainty in the direction of change. In certain areas of the world, however, flood frequency is projected to decrease. Another larger ensemble of projections under four new concentration scenarios7 reveals that the global exposure to floods would increase depending on the degree of warming, but interannual variability of the exposure may imply the necessity of adaptation before significant warming. More... »

PAGES

816-821

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nclimate1911

DOI

http://dx.doi.org/10.1038/nclimate1911

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024940405


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hirabayashi", 
        "givenName": "Yukiko", 
        "id": "sg:person.013100167225.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013100167225.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mahendran", 
        "givenName": "Roobavannan", 
        "id": "sg:person.016203717073.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016203717073.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koirala", 
        "givenName": "Sujan", 
        "id": "sg:person.014174401245.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014174401245.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Konoshima", 
        "givenName": "Lisako", 
        "id": "sg:person.07657755342.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07657755342.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bristol", 
          "id": "https://www.grid.ac/institutes/grid.5337.2", 
          "name": [
            "School of Geographical Sciences, University of Bristol, University Road, Clifton, Bristol BS8 1SS, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamazaki", 
        "givenName": "Dai", 
        "id": "sg:person.011126414403.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011126414403.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Watanabe", 
        "givenName": "Satoshi", 
        "id": "sg:person.010142015631.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010142015631.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Hyungjun", 
        "id": "sg:person.01306172162.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306172162.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.32197.3e", 
          "name": [
            "Department of Civil Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kanae", 
        "givenName": "Shinjiro", 
        "id": "sg:person.01164400631.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164400631.64"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1029/1999jd900905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000378252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2012wr011869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000984238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-006-6338-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001370138", 
          "https://doi.org/10.1007/s10584-006-6338-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-006-6338-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001370138", 
          "https://doi.org/10.1007/s10584-006-6338-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006069800", 
          "https://doi.org/10.1038/nature08823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006069800", 
          "https://doi.org/10.1038/nature08823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gloenvcha.2012.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006405146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-88-9-1383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010559256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3178/hrl.3.6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012602298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr022i004p00587", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013724438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-011-0148-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021241034", 
          "https://doi.org/10.1007/s10584-011-0148-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2007jd009719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029438162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415514a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038659743", 
          "https://doi.org/10.1038/415514a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415514a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038659743", 
          "https://doi.org/10.1038/415514a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1623/hysj.53.4.754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043302770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2009gl039006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043607697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2009gl039006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043607697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/nhess-9-1149-2009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048409298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2010wr009726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050434950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-d-11-00094.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051805105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177731747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064402424"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-09", 
    "datePublishedReg": "2013-09-01", 
    "description": "A warmer climate would increase the risk of floods1. So far, only a few studies2,3 have projected changes in floods on a global scale. None of these studies relied on multiple climate models. A few global studies4,5 have started to estimate the exposure to flooding (population in potential inundation areas) as a proxy of risk, but none of them has estimated it in a warmer future climate. Here we present global flood risk for the end of this century based on the outputs of 11 climate models. A state-of-the-art global river routing model with an inundation scheme6 was employed to compute river discharge and inundation area. An ensemble of projections under a new high-concentration scenario7 demonstrates a large increase in flood frequency in Southeast Asia, Peninsular India, eastern Africa and the northern half of the Andes, with small uncertainty in the direction of change. In certain areas of the world, however, flood frequency is projected to decrease. Another larger ensemble of projections under four new concentration scenarios7 reveals that the global exposure to floods would increase depending on the degree of warming, but interannual variability of the exposure may imply the necessity of adaptation before significant warming.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nclimate1911", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1044959", 
        "issn": [
          "1758-678X", 
          "1758-6798"
        ], 
        "name": "Nature Climate Change", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Global flood risk under climate change", 
    "pagination": "816-821", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "76d0f182fa95afeb77d687b20db6c8bde90f4c29daa3a9fbddfee406fdbe4276"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nclimate1911"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024940405"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nclimate1911", 
      "https://app.dimensions.ai/details/publication/pub.1024940405"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000466.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/nclimate1911"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nclimate1911'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nclimate1911'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nclimate1911'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nclimate1911'


 

This table displays all metadata directly associated to this object as RDF triples.

172 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nclimate1911 schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author Nee980f949b76468081a03f49735e68da
4 schema:citation sg:pub.10.1007/s10584-006-6338-4
5 sg:pub.10.1007/s10584-011-0148-z
6 sg:pub.10.1038/415514a
7 sg:pub.10.1038/nature08823
8 https://doi.org/10.1016/j.gloenvcha.2012.07.004
9 https://doi.org/10.1029/1999jd900905
10 https://doi.org/10.1029/2007jd009719
11 https://doi.org/10.1029/2009gl039006
12 https://doi.org/10.1029/2010wr009726
13 https://doi.org/10.1029/2012wr011869
14 https://doi.org/10.1029/wr022i004p00587
15 https://doi.org/10.1175/bams-88-9-1383
16 https://doi.org/10.1175/bams-d-11-00094.1
17 https://doi.org/10.1214/aoms/1177731747
18 https://doi.org/10.1623/hysj.53.4.754
19 https://doi.org/10.3178/hrl.3.6
20 https://doi.org/10.5194/nhess-9-1149-2009
21 schema:datePublished 2013-09
22 schema:datePublishedReg 2013-09-01
23 schema:description A warmer climate would increase the risk of floods1. So far, only a few studies2,3 have projected changes in floods on a global scale. None of these studies relied on multiple climate models. A few global studies4,5 have started to estimate the exposure to flooding (population in potential inundation areas) as a proxy of risk, but none of them has estimated it in a warmer future climate. Here we present global flood risk for the end of this century based on the outputs of 11 climate models. A state-of-the-art global river routing model with an inundation scheme6 was employed to compute river discharge and inundation area. An ensemble of projections under a new high-concentration scenario7 demonstrates a large increase in flood frequency in Southeast Asia, Peninsular India, eastern Africa and the northern half of the Andes, with small uncertainty in the direction of change. In certain areas of the world, however, flood frequency is projected to decrease. Another larger ensemble of projections under four new concentration scenarios7 reveals that the global exposure to floods would increase depending on the degree of warming, but interannual variability of the exposure may imply the necessity of adaptation before significant warming.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N88dc8ccc575e46d881ba59f363ce04e4
28 N9abcb2c8583f45098d84652c97a34469
29 sg:journal.1044959
30 schema:name Global flood risk under climate change
31 schema:pagination 816-821
32 schema:productId N724f22fa00da45b7ba1f2d7dff6873d5
33 Na3970eb1a5f245f48564846482323973
34 Nc99df1e701aa4d0685c5a86ae88d7992
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024940405
36 https://doi.org/10.1038/nclimate1911
37 schema:sdDatePublished 2019-04-10T18:11
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N2227ff025c8e438b8f375383426de5e3
40 schema:url http://www.nature.com/articles/nclimate1911
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N2227ff025c8e438b8f375383426de5e3 schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 N5658dbc6e80a46bbb088ec2052e5f9c6 rdf:first sg:person.07657755342.08
47 rdf:rest Naa3fd9992ada465cbabcccb2140fe181
48 N724f22fa00da45b7ba1f2d7dff6873d5 schema:name dimensions_id
49 schema:value pub.1024940405
50 rdf:type schema:PropertyValue
51 N88dc8ccc575e46d881ba59f363ce04e4 schema:issueNumber 9
52 rdf:type schema:PublicationIssue
53 N98a433ae2fea4716b151d6f682abe592 rdf:first sg:person.016203717073.08
54 rdf:rest N99729fb1b10048d8a030062319451ecb
55 N99729fb1b10048d8a030062319451ecb rdf:first sg:person.014174401245.29
56 rdf:rest N5658dbc6e80a46bbb088ec2052e5f9c6
57 N9abcb2c8583f45098d84652c97a34469 schema:volumeNumber 3
58 rdf:type schema:PublicationVolume
59 Na3970eb1a5f245f48564846482323973 schema:name readcube_id
60 schema:value 76d0f182fa95afeb77d687b20db6c8bde90f4c29daa3a9fbddfee406fdbe4276
61 rdf:type schema:PropertyValue
62 Na40c030edb7849eca0c36ab0ed6caa6d rdf:first sg:person.010142015631.07
63 rdf:rest Nc79fce51c3b145d392caaad62b85688b
64 Naa3fd9992ada465cbabcccb2140fe181 rdf:first sg:person.011126414403.25
65 rdf:rest Na40c030edb7849eca0c36ab0ed6caa6d
66 Nc79fce51c3b145d392caaad62b85688b rdf:first sg:person.01306172162.46
67 rdf:rest Ne9140d9428e74621b833275e55c7e37b
68 Nc99df1e701aa4d0685c5a86ae88d7992 schema:name doi
69 schema:value 10.1038/nclimate1911
70 rdf:type schema:PropertyValue
71 Ne9140d9428e74621b833275e55c7e37b rdf:first sg:person.01164400631.64
72 rdf:rest rdf:nil
73 Nee980f949b76468081a03f49735e68da rdf:first sg:person.013100167225.40
74 rdf:rest N98a433ae2fea4716b151d6f682abe592
75 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
76 schema:name Earth Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
79 schema:name Physical Geography and Environmental Geoscience
80 rdf:type schema:DefinedTerm
81 sg:journal.1044959 schema:issn 1758-678X
82 1758-6798
83 schema:name Nature Climate Change
84 rdf:type schema:Periodical
85 sg:person.010142015631.07 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
86 schema:familyName Watanabe
87 schema:givenName Satoshi
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010142015631.07
89 rdf:type schema:Person
90 sg:person.011126414403.25 schema:affiliation https://www.grid.ac/institutes/grid.5337.2
91 schema:familyName Yamazaki
92 schema:givenName Dai
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011126414403.25
94 rdf:type schema:Person
95 sg:person.01164400631.64 schema:affiliation https://www.grid.ac/institutes/grid.32197.3e
96 schema:familyName Kanae
97 schema:givenName Shinjiro
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164400631.64
99 rdf:type schema:Person
100 sg:person.01306172162.46 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
101 schema:familyName Kim
102 schema:givenName Hyungjun
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306172162.46
104 rdf:type schema:Person
105 sg:person.013100167225.40 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
106 schema:familyName Hirabayashi
107 schema:givenName Yukiko
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013100167225.40
109 rdf:type schema:Person
110 sg:person.014174401245.29 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
111 schema:familyName Koirala
112 schema:givenName Sujan
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014174401245.29
114 rdf:type schema:Person
115 sg:person.016203717073.08 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
116 schema:familyName Mahendran
117 schema:givenName Roobavannan
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016203717073.08
119 rdf:type schema:Person
120 sg:person.07657755342.08 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
121 schema:familyName Konoshima
122 schema:givenName Lisako
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07657755342.08
124 rdf:type schema:Person
125 sg:pub.10.1007/s10584-006-6338-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001370138
126 https://doi.org/10.1007/s10584-006-6338-4
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s10584-011-0148-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1021241034
129 https://doi.org/10.1007/s10584-011-0148-z
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/415514a schema:sameAs https://app.dimensions.ai/details/publication/pub.1038659743
132 https://doi.org/10.1038/415514a
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/nature08823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006069800
135 https://doi.org/10.1038/nature08823
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.gloenvcha.2012.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006405146
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1029/1999jd900905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000378252
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1029/2007jd009719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029438162
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1029/2009gl039006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043607697
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1029/2010wr009726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050434950
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1029/2012wr011869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000984238
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1029/wr022i004p00587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013724438
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1175/bams-88-9-1383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010559256
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1175/bams-d-11-00094.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051805105
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1214/aoms/1177731747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064402424
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1623/hysj.53.4.754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043302770
158 rdf:type schema:CreativeWork
159 https://doi.org/10.3178/hrl.3.6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012602298
160 rdf:type schema:CreativeWork
161 https://doi.org/10.5194/nhess-9-1149-2009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048409298
162 rdf:type schema:CreativeWork
163 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
164 schema:name Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan
165 Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
166 rdf:type schema:Organization
167 https://www.grid.ac/institutes/grid.32197.3e schema:alternateName Tokyo Institute of Technology
168 schema:name Department of Civil Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
169 rdf:type schema:Organization
170 https://www.grid.ac/institutes/grid.5337.2 schema:alternateName University of Bristol
171 schema:name School of Geographical Sciences, University of Bristol, University Road, Clifton, Bristol BS8 1SS, UK
172 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...