Robustness and uncertainties in the new CMIP5 climate model projections View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-04

AUTHORS

Reto Knutti, Jan Sedláček

ABSTRACT

Estimates of impacts from anthropogenic climate change rely on projections from climate models. Uncertainties in those have often been a limiting factor, in particular on local scales. A new generation of more complex models running scenarios for the upcoming Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5) is widely, and perhaps naively, expected to provide more detailed and more certain projections. Here we show that projected global temperature change from the new models is remarkably similar to that from those used in IPCC AR4 after accounting for the different underlying scenarios. The spatial patterns of temperature and precipitation change are also very consistent. Interestingly, the local model spread has not changed much despite substantial model development and a massive increase in computational capacity. Part of this model spread is irreducible owing to internal variability in the climate system, yet there is also uncertainty from model differences that can potentially be eliminated. We argue that defining progress in climate modelling in terms of narrowing uncertainties is too limited. Models improve, representing more processes in greater detail. This implies greater confidence in their projections, but convergence may remain slow. The uncertainties should not stop decisions being made. More... »

PAGES

369

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nclimate1716

DOI

http://dx.doi.org/10.1038/nclimate1716

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002144786


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Technology in Zurich", 
          "id": "https://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Institute for Atmospheric and Climate Science, ETH Zurich, CH-8092 Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Knutti", 
        "givenName": "Reto", 
        "id": "sg:person.0725114521.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725114521.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Technology in Zurich", 
          "id": "https://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Institute for Atmospheric and Climate Science, ETH Zurich, CH-8092 Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sedl\u00e1\u010dek", 
        "givenName": "Jan", 
        "id": "sg:person.010247250515.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010247250515.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10584-010-9800-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000824091", 
          "https://doi.org/10.1007/s10584-010-9800-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-010-9800-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000824091", 
          "https://doi.org/10.1007/s10584-010-9800-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2011gl049863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001874069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004923988", 
          "https://doi.org/10.1038/ngeo337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2009eo130003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007998124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-88-9-1383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010559256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1748-9326/6/3/034009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013942303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2008bams2759.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020056115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2012gl051607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020461576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2007jcli2119.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023901703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2009jcli3361.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030337444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-11-00354.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034209336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.2007.2076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038869427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-11-1457-2011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039681748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.2008.0169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042409419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2011gl046864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043462392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-011-0156-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045851916", 
          "https://doi.org/10.1007/s10584-011-0156-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate1385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047584368", 
          "https://doi.org/10.1038/nclimate1385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2011gl050738", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050552335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-d-11-00094.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051805105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-11-1417-2011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052721753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2010jd014963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053283119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2009bams2607.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063454096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/mwr3280.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063456178"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-04", 
    "datePublishedReg": "2013-04-01", 
    "description": "Estimates of impacts from anthropogenic climate change rely on projections from climate models. Uncertainties in those have often been a limiting factor, in particular on local scales. A new generation of more complex models running scenarios for the upcoming Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5) is widely, and perhaps naively, expected to provide more detailed and more certain projections. Here we show that projected global temperature change from the new models is remarkably similar to that from those used in IPCC AR4 after accounting for the different underlying scenarios. The spatial patterns of temperature and precipitation change are also very consistent. Interestingly, the local model spread has not changed much despite substantial model development and a massive increase in computational capacity. Part of this model spread is irreducible owing to internal variability in the climate system, yet there is also uncertainty from model differences that can potentially be eliminated. We argue that defining progress in climate modelling in terms of narrowing uncertainties is too limited. Models improve, representing more processes in greater detail. This implies greater confidence in their projections, but convergence may remain slow. The uncertainties should not stop decisions being made.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nclimate1716", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1044959", 
        "issn": [
          "1758-678X", 
          "1758-6798"
        ], 
        "name": "Nature Climate Change", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Robustness and uncertainties in the new CMIP5 climate model projections", 
    "pagination": "369", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0a36abf8d37fbaae97f95c0603f75042d9b4c41e223c251dc34dc83cf63998b1"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nclimate1716"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002144786"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nclimate1716", 
      "https://app.dimensions.ai/details/publication/pub.1002144786"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000435.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nclimate1716"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nclimate1716'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nclimate1716'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nclimate1716'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nclimate1716'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nclimate1716 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author Nebfeae66946f49f4851a68757be2d60f
4 schema:citation sg:pub.10.1007/s10584-010-9800-2
5 sg:pub.10.1007/s10584-011-0156-z
6 sg:pub.10.1038/nclimate1385
7 sg:pub.10.1038/ngeo337
8 https://doi.org/10.1029/2009eo130003
9 https://doi.org/10.1029/2010jd014963
10 https://doi.org/10.1029/2011gl046864
11 https://doi.org/10.1029/2011gl049863
12 https://doi.org/10.1029/2011gl050738
13 https://doi.org/10.1029/2012gl051607
14 https://doi.org/10.1088/1748-9326/6/3/034009
15 https://doi.org/10.1098/rsta.2007.2076
16 https://doi.org/10.1098/rsta.2008.0169
17 https://doi.org/10.1175/2007jcli2119.1
18 https://doi.org/10.1175/2008bams2759.1
19 https://doi.org/10.1175/2009bams2607.1
20 https://doi.org/10.1175/2009jcli3361.1
21 https://doi.org/10.1175/bams-88-9-1383
22 https://doi.org/10.1175/bams-d-11-00094.1
23 https://doi.org/10.1175/jcli-d-11-00354.1
24 https://doi.org/10.1175/mwr3280.1
25 https://doi.org/10.5194/acp-11-1417-2011
26 https://doi.org/10.5194/acp-11-1457-2011
27 schema:datePublished 2013-04
28 schema:datePublishedReg 2013-04-01
29 schema:description Estimates of impacts from anthropogenic climate change rely on projections from climate models. Uncertainties in those have often been a limiting factor, in particular on local scales. A new generation of more complex models running scenarios for the upcoming Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5) is widely, and perhaps naively, expected to provide more detailed and more certain projections. Here we show that projected global temperature change from the new models is remarkably similar to that from those used in IPCC AR4 after accounting for the different underlying scenarios. The spatial patterns of temperature and precipitation change are also very consistent. Interestingly, the local model spread has not changed much despite substantial model development and a massive increase in computational capacity. Part of this model spread is irreducible owing to internal variability in the climate system, yet there is also uncertainty from model differences that can potentially be eliminated. We argue that defining progress in climate modelling in terms of narrowing uncertainties is too limited. Models improve, representing more processes in greater detail. This implies greater confidence in their projections, but convergence may remain slow. The uncertainties should not stop decisions being made.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N2232caa4fb1046a7b8e07fa7c37361e1
34 Nedb6180c5d0e4e169d15329c037144e6
35 sg:journal.1044959
36 schema:name Robustness and uncertainties in the new CMIP5 climate model projections
37 schema:pagination 369
38 schema:productId N13809c2265ed4f62b10ca09b0151b275
39 N80b7c311c7bf434fb2475fdbee8ba87a
40 Nc1cc32e612084aa3b8caa80f60971b62
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002144786
42 https://doi.org/10.1038/nclimate1716
43 schema:sdDatePublished 2019-04-10T22:20
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher Nab2b66a24b764c63a2e065a2e6578d7c
46 schema:url https://www.nature.com/articles/nclimate1716
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N13809c2265ed4f62b10ca09b0151b275 schema:name readcube_id
51 schema:value 0a36abf8d37fbaae97f95c0603f75042d9b4c41e223c251dc34dc83cf63998b1
52 rdf:type schema:PropertyValue
53 N2232caa4fb1046a7b8e07fa7c37361e1 schema:volumeNumber 3
54 rdf:type schema:PublicationVolume
55 N80b7c311c7bf434fb2475fdbee8ba87a schema:name doi
56 schema:value 10.1038/nclimate1716
57 rdf:type schema:PropertyValue
58 N86977f64fa224509a523eba23ae72307 rdf:first sg:person.010247250515.21
59 rdf:rest rdf:nil
60 Nab2b66a24b764c63a2e065a2e6578d7c schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 Nc1cc32e612084aa3b8caa80f60971b62 schema:name dimensions_id
63 schema:value pub.1002144786
64 rdf:type schema:PropertyValue
65 Nebfeae66946f49f4851a68757be2d60f rdf:first sg:person.0725114521.94
66 rdf:rest N86977f64fa224509a523eba23ae72307
67 Nedb6180c5d0e4e169d15329c037144e6 schema:issueNumber 4
68 rdf:type schema:PublicationIssue
69 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
70 schema:name Earth Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
73 schema:name Atmospheric Sciences
74 rdf:type schema:DefinedTerm
75 sg:journal.1044959 schema:issn 1758-678X
76 1758-6798
77 schema:name Nature Climate Change
78 rdf:type schema:Periodical
79 sg:person.010247250515.21 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
80 schema:familyName Sedláček
81 schema:givenName Jan
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010247250515.21
83 rdf:type schema:Person
84 sg:person.0725114521.94 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
85 schema:familyName Knutti
86 schema:givenName Reto
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725114521.94
88 rdf:type schema:Person
89 sg:pub.10.1007/s10584-010-9800-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000824091
90 https://doi.org/10.1007/s10584-010-9800-2
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/s10584-011-0156-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1045851916
93 https://doi.org/10.1007/s10584-011-0156-z
94 rdf:type schema:CreativeWork
95 sg:pub.10.1038/nclimate1385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047584368
96 https://doi.org/10.1038/nclimate1385
97 rdf:type schema:CreativeWork
98 sg:pub.10.1038/ngeo337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004923988
99 https://doi.org/10.1038/ngeo337
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1029/2009eo130003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007998124
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1029/2010jd014963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053283119
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1029/2011gl046864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043462392
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1029/2011gl049863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001874069
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1029/2011gl050738 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050552335
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1029/2012gl051607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020461576
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1088/1748-9326/6/3/034009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013942303
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1098/rsta.2007.2076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038869427
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1098/rsta.2008.0169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042409419
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1175/2007jcli2119.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023901703
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1175/2008bams2759.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020056115
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1175/2009bams2607.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063454096
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1175/2009jcli3361.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030337444
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1175/bams-88-9-1383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010559256
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1175/bams-d-11-00094.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051805105
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1175/jcli-d-11-00354.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034209336
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1175/mwr3280.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063456178
134 rdf:type schema:CreativeWork
135 https://doi.org/10.5194/acp-11-1417-2011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052721753
136 rdf:type schema:CreativeWork
137 https://doi.org/10.5194/acp-11-1457-2011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039681748
138 rdf:type schema:CreativeWork
139 https://www.grid.ac/institutes/grid.5801.c schema:alternateName Swiss Federal Institute of Technology in Zurich
140 schema:name Institute for Atmospheric and Climate Science, ETH Zurich, CH-8092 Zurich, Switzerland
141 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...