Vulnerability of US and European electricity supply to climate change View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-09

AUTHORS

Michelle T. H. van Vliet, John R. Yearsley, Fulco Ludwig, Stefan Vögele, Dennis P. Lettenmaier, Pavel Kabat

ABSTRACT

In the United States and Europe, at present 91% and 78% (ref. 1) of the total electricity is produced by thermoelectric (nuclear and fossil-fuelled) power plants, which directly depend on the availability and temperature of water resources for cooling. During recent warm, dry summers several thermoelectric power plants in Europe and the southeastern United States were forced to reduce production owing to cooling-water scarcity2,3,4. Here we show that thermoelectric power in Europe and the United States is vulnerable to climate change owing to the combined impacts of lower summer river flows and higher river water temperatures. Using a physically based hydrological and water temperature modelling framework in combination with an electricity production model, we show a summer average decrease in capacity of power plants of 6.3–19% in Europe and 4.4–16% in the United States depending on cooling system type and climate scenario for 2031–2060. In addition, probabilities of extreme (>90%) reductions in thermoelectric power production will on average increase by a factor of three. Considering the increase in future electricity demand, there is a strong need for improved climate adaptation strategies in the thermoelectric power sector to assure futureenergy security. More... »

PAGES

676

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nclimate1546

DOI

http://dx.doi.org/10.1038/nclimate1546

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046311535


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Wageningen University & Research", 
          "id": "https://www.grid.ac/institutes/grid.4818.5", 
          "name": [
            "Earth System Science and Climate Change, Wageningen University and Research Centre, PO Box 47, 6700 AA Wageningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Vliet", 
        "givenName": "Michelle T. H.", 
        "id": "sg:person.01052706721.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052706721.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yearsley", 
        "givenName": "John R.", 
        "id": "sg:person.013053755113.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013053755113.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wageningen University & Research", 
          "id": "https://www.grid.ac/institutes/grid.4818.5", 
          "name": [
            "Earth System Science and Climate Change, Wageningen University and Research Centre, PO Box 47, 6700 AA Wageningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ludwig", 
        "givenName": "Fulco", 
        "id": "sg:person.0714302207.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714302207.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Forschungszentrum J\u00fclich", 
          "id": "https://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "Forschungszentrum J\u00fclich, Institute of Energy and Climate Research\u2014System Analyses and Technology Evaluation, D-52425 J\u00fclich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "V\u00f6gele", 
        "givenName": "Stefan", 
        "id": "sg:person.016341016001.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016341016001.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lettenmaier", 
        "givenName": "Dennis P.", 
        "id": "sg:person.016574372047.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016574372047.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Institute for Applied Systems Analysis", 
          "id": "https://www.grid.ac/institutes/grid.75276.31", 
          "name": [
            "Earth System Science and Climate Change, Wageningen University and Research Centre, PO Box 47, 6700 AA Wageningen, The Netherlands", 
            "International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361 Laxenburg, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kabat", 
        "givenName": "Pavel", 
        "id": "sg:person.01051063477.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051063477.69"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10113-009-0104-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005547067", 
          "https://doi.org/10.1007/s10113-009-0104-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10113-009-0104-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005547067", 
          "https://doi.org/10.1007/s10113-009-0104-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10113-009-0104-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005547067", 
          "https://doi.org/10.1007/s10113-009-0104-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2008wr007629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008505090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.econlet.2004.12.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010565939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2004wr003360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011094299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolecon.2009.02.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011100544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/94jd00483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012257839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1128845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012826834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envsci.2010.10.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013561813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1623/hysj.52.2.247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018709367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0959-3780(99)00017-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022047686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2011jhm1336.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038364423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-011-0110-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045277546", 
          "https://doi.org/10.1007/s10584-011-0110-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053011310", 
          "https://doi.org/10.1038/ngeo195"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-09", 
    "datePublishedReg": "2012-09-01", 
    "description": "In the United States and Europe, at present 91% and 78% (ref. 1) of the total electricity is produced by thermoelectric (nuclear and fossil-fuelled) power plants, which directly depend on the availability and temperature of water resources for cooling. During recent warm, dry summers several thermoelectric power plants in Europe and the southeastern United States were forced to reduce production owing to cooling-water scarcity2,3,4. Here we show that thermoelectric power in Europe and the United States is vulnerable to climate change owing to the combined impacts of lower summer river flows and higher river water temperatures. Using a physically based hydrological and water temperature modelling framework in combination with an electricity production model, we show a summer average decrease in capacity of power plants of 6.3\u201319% in Europe and 4.4\u201316% in the United States depending on cooling system type and climate scenario for 2031\u20132060. In addition, probabilities of extreme (>90%) reductions in thermoelectric power production will on average increase by a factor of three. Considering the increase in future electricity demand, there is a strong need for improved climate adaptation strategies in the thermoelectric power sector to assure futureenergy security.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nclimate1546", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1044959", 
        "issn": [
          "1758-678X", 
          "1758-6798"
        ], 
        "name": "Nature Climate Change", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "name": "Vulnerability of US and European electricity supply to climate change", 
    "pagination": "676", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dc9b5ee68387b24ecb2c63c383b413587394258a60aabf436b60cd043699b5ff"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nclimate1546"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046311535"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nclimate1546", 
      "https://app.dimensions.ai/details/publication/pub.1046311535"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000436.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nclimate1546"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nclimate1546'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nclimate1546'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nclimate1546'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nclimate1546'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nclimate1546 schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author N1f50e7ebd74b4fc6a12583dd8754f03a
4 schema:citation sg:pub.10.1007/s10113-009-0104-x
5 sg:pub.10.1007/s10584-011-0110-0
6 sg:pub.10.1038/ngeo195
7 https://doi.org/10.1016/j.ecolecon.2009.02.015
8 https://doi.org/10.1016/j.econlet.2004.12.029
9 https://doi.org/10.1016/j.envsci.2010.10.007
10 https://doi.org/10.1016/s0959-3780(99)00017-5
11 https://doi.org/10.1029/2004wr003360
12 https://doi.org/10.1029/2008wr007629
13 https://doi.org/10.1029/94jd00483
14 https://doi.org/10.1126/science.1128845
15 https://doi.org/10.1175/2011jhm1336.1
16 https://doi.org/10.1623/hysj.52.2.247
17 schema:datePublished 2012-09
18 schema:datePublishedReg 2012-09-01
19 schema:description In the United States and Europe, at present 91% and 78% (ref. 1) of the total electricity is produced by thermoelectric (nuclear and fossil-fuelled) power plants, which directly depend on the availability and temperature of water resources for cooling. During recent warm, dry summers several thermoelectric power plants in Europe and the southeastern United States were forced to reduce production owing to cooling-water scarcity2,3,4. Here we show that thermoelectric power in Europe and the United States is vulnerable to climate change owing to the combined impacts of lower summer river flows and higher river water temperatures. Using a physically based hydrological and water temperature modelling framework in combination with an electricity production model, we show a summer average decrease in capacity of power plants of 6.3–19% in Europe and 4.4–16% in the United States depending on cooling system type and climate scenario for 2031–2060. In addition, probabilities of extreme (>90%) reductions in thermoelectric power production will on average increase by a factor of three. Considering the increase in future electricity demand, there is a strong need for improved climate adaptation strategies in the thermoelectric power sector to assure futureenergy security.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N71cc91acb78c4fcea6a377d7bd144e59
24 N7679490561c34025ae09efe9f75f6a54
25 sg:journal.1044959
26 schema:name Vulnerability of US and European electricity supply to climate change
27 schema:pagination 676
28 schema:productId Nd5d3d4b80fa44ac5ac98cc372eb50780
29 Nee82de89d487454b9ed79bc37e3823b0
30 Nfc4043c35264488f99849282181b8c2c
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046311535
32 https://doi.org/10.1038/nclimate1546
33 schema:sdDatePublished 2019-04-10T18:58
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N142e062e7bf54e3ebd70a6f4fecea592
36 schema:url https://www.nature.com/articles/nclimate1546
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N142e062e7bf54e3ebd70a6f4fecea592 schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 N1b2725a966634bec8c926c92e5321344 rdf:first sg:person.013053755113.23
43 rdf:rest N4c4d422b453f4131bba5597076ebbf3c
44 N1f50e7ebd74b4fc6a12583dd8754f03a rdf:first sg:person.01052706721.60
45 rdf:rest N1b2725a966634bec8c926c92e5321344
46 N4c4d422b453f4131bba5597076ebbf3c rdf:first sg:person.0714302207.79
47 rdf:rest N8f6e9f5aaf804087a4c5b1a015700c5f
48 N71cc91acb78c4fcea6a377d7bd144e59 schema:issueNumber 9
49 rdf:type schema:PublicationIssue
50 N735e446e09f240879528eb0767c3ecec rdf:first sg:person.01051063477.69
51 rdf:rest rdf:nil
52 N7679490561c34025ae09efe9f75f6a54 schema:volumeNumber 2
53 rdf:type schema:PublicationVolume
54 N8f6e9f5aaf804087a4c5b1a015700c5f rdf:first sg:person.016341016001.85
55 rdf:rest N9b60f83532c0471aaff2deda37c5930e
56 N9b60f83532c0471aaff2deda37c5930e rdf:first sg:person.016574372047.09
57 rdf:rest N735e446e09f240879528eb0767c3ecec
58 Nd5d3d4b80fa44ac5ac98cc372eb50780 schema:name dimensions_id
59 schema:value pub.1046311535
60 rdf:type schema:PropertyValue
61 Nee82de89d487454b9ed79bc37e3823b0 schema:name doi
62 schema:value 10.1038/nclimate1546
63 rdf:type schema:PropertyValue
64 Nfc4043c35264488f99849282181b8c2c schema:name readcube_id
65 schema:value dc9b5ee68387b24ecb2c63c383b413587394258a60aabf436b60cd043699b5ff
66 rdf:type schema:PropertyValue
67 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
68 schema:name Earth Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
71 schema:name Physical Geography and Environmental Geoscience
72 rdf:type schema:DefinedTerm
73 sg:journal.1044959 schema:issn 1758-678X
74 1758-6798
75 schema:name Nature Climate Change
76 rdf:type schema:Periodical
77 sg:person.01051063477.69 schema:affiliation https://www.grid.ac/institutes/grid.75276.31
78 schema:familyName Kabat
79 schema:givenName Pavel
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051063477.69
81 rdf:type schema:Person
82 sg:person.01052706721.60 schema:affiliation https://www.grid.ac/institutes/grid.4818.5
83 schema:familyName van Vliet
84 schema:givenName Michelle T. H.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052706721.60
86 rdf:type schema:Person
87 sg:person.013053755113.23 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
88 schema:familyName Yearsley
89 schema:givenName John R.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013053755113.23
91 rdf:type schema:Person
92 sg:person.016341016001.85 schema:affiliation https://www.grid.ac/institutes/grid.8385.6
93 schema:familyName Vögele
94 schema:givenName Stefan
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016341016001.85
96 rdf:type schema:Person
97 sg:person.016574372047.09 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
98 schema:familyName Lettenmaier
99 schema:givenName Dennis P.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016574372047.09
101 rdf:type schema:Person
102 sg:person.0714302207.79 schema:affiliation https://www.grid.ac/institutes/grid.4818.5
103 schema:familyName Ludwig
104 schema:givenName Fulco
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714302207.79
106 rdf:type schema:Person
107 sg:pub.10.1007/s10113-009-0104-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005547067
108 https://doi.org/10.1007/s10113-009-0104-x
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s10584-011-0110-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045277546
111 https://doi.org/10.1007/s10584-011-0110-0
112 rdf:type schema:CreativeWork
113 sg:pub.10.1038/ngeo195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053011310
114 https://doi.org/10.1038/ngeo195
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.ecolecon.2009.02.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011100544
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.econlet.2004.12.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010565939
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.envsci.2010.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013561813
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/s0959-3780(99)00017-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022047686
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1029/2004wr003360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011094299
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1029/2008wr007629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008505090
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1029/94jd00483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012257839
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1126/science.1128845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012826834
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1175/2011jhm1336.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038364423
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1623/hysj.52.2.247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018709367
135 rdf:type schema:CreativeWork
136 https://www.grid.ac/institutes/grid.34477.33 schema:alternateName University of Washington
137 schema:name Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, USA
138 rdf:type schema:Organization
139 https://www.grid.ac/institutes/grid.4818.5 schema:alternateName Wageningen University & Research
140 schema:name Earth System Science and Climate Change, Wageningen University and Research Centre, PO Box 47, 6700 AA Wageningen, The Netherlands
141 rdf:type schema:Organization
142 https://www.grid.ac/institutes/grid.75276.31 schema:alternateName International Institute for Applied Systems Analysis
143 schema:name Earth System Science and Climate Change, Wageningen University and Research Centre, PO Box 47, 6700 AA Wageningen, The Netherlands
144 International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361 Laxenburg, Austria
145 rdf:type schema:Organization
146 https://www.grid.ac/institutes/grid.8385.6 schema:alternateName Forschungszentrum Jülich
147 schema:name Forschungszentrum Jülich, Institute of Energy and Climate Research—System Analyses and Technology Evaluation, D-52425 Jülich, Germany
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...