Dynamic polymorphism of single actin molecules in the actin filament View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-01-15

AUTHORS

Jun Kozuka, Hiroaki Yokota, Yoshiyuki Arai, Yoshiharu Ishii, Toshio Yanagida

ABSTRACT

Actin filament dynamics are critical in cell motility. The structure of actin filament changes spontaneously and can also be regulated by actin-binding proteins, allowing actin to readily function in response to external stimuli. The interaction with the motor protein myosin changes the dynamic nature of actin filaments. However, the molecular bases for the dynamic processes of actin filaments are not well understood. Here, we observed the dynamics of rabbit skeletal-muscle actin conformation by monitoring individual molecules in the actin filaments using single-molecule fluorescence resonance energy transfer (FRET) imaging with total internal reflection fluorescence microscopy (TIRFM). The time trajectories of FRET show that actin switches between low- and high-FRET efficiency states on a timescale of seconds. If actin filaments are chemically cross-linked, a state that inhibits myosin motility, the equilibrium shifts to the low-FRET conformation, whereas when the actin filament is interacting with myosin, the high-FRET conformation is favored. This dynamic equilibrium suggests that actin can switch between active and inactive conformations in response to external signals. More... »

PAGES

83-86

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nchembio763

DOI

http://dx.doi.org/10.1038/nchembio763

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011183086

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16415860


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Actin Cytoskeleton", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Actins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorescence Resonance Energy Transfer", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microscopy, Fluorescence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Muscle, Skeletal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myosin Type V", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Conformation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rabbits", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Biophysical Engineering, Osaka University, 1-3, Machikaneyama, Toyonaka, 560-8531, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Formation of Soft Nanomachines, Core Research for Evolution Science and Technology, Japan Science and Technology Agency, Suita, 563-0871, Osaka, Japan", 
            "Department of Biophysical Engineering, Osaka University, 1-3, Machikaneyama, Toyonaka, 560-8531, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kozuka", 
        "givenName": "Jun", 
        "id": "sg:person.01222560535.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222560535.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Molecular Physiology, The Tokyo Metropolitan Institute of Medical Science, 3-18-22, Honkomagome, Bunkyo-ku, 113-8613, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272456.0", 
          "name": [
            "Department of Molecular Physiology, The Tokyo Metropolitan Institute of Medical Science, 3-18-22, Honkomagome, Bunkyo-ku, 113-8613, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yokota", 
        "givenName": "Hiroaki", 
        "id": "sg:person.011616353165.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011616353165.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biophysical Engineering, Osaka University, 1-3, Machikaneyama, Toyonaka, 560-8531, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Formation of Soft Nanomachines, Core Research for Evolution Science and Technology, Japan Science and Technology Agency, Suita, 563-0871, Osaka, Japan", 
            "Department of Biophysical Engineering, Osaka University, 1-3, Machikaneyama, Toyonaka, 560-8531, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arai", 
        "givenName": "Yoshiyuki", 
        "id": "sg:person.012777077121.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012777077121.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Formation of Soft Nanomachines, Core Research for Evolution Science and Technology, Japan Science and Technology Agency, Suita, 563-0871, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.419082.6", 
          "name": [
            "Formation of Soft Nanomachines, Core Research for Evolution Science and Technology, Japan Science and Technology Agency, Suita, 563-0871, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ishii", 
        "givenName": "Yoshiharu", 
        "id": "sg:person.01220026401.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220026401.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Soft Biosystem Group, Laboratories for Nanobiology, Graduate School of Frontier Biosciences, University of Osaka, 1-3, Yamadaoka, Suita, 565-0871, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Formation of Soft Nanomachines, Core Research for Evolution Science and Technology, Japan Science and Technology Agency, Suita, 563-0871, Osaka, Japan", 
            "Department of Biophysical Engineering, Osaka University, 1-3, Machikaneyama, Toyonaka, 560-8531, Osaka, Japan", 
            "Soft Biosystem Group, Laboratories for Nanobiology, Graduate School of Frontier Biosciences, University of Osaka, 1-3, Yamadaoka, Suita, 565-0871, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yanagida", 
        "givenName": "Toshio", 
        "id": "sg:person.015141357621.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015141357621.93"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/416413a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012621438", 
          "https://doi.org/10.1038/416413a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/298131a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023582309", 
          "https://doi.org/10.1038/298131a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032520692", 
          "https://doi.org/10.1038/nature02881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/307058a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053227057", 
          "https://doi.org/10.1038/307058a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35090597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030336457", 
          "https://doi.org/10.1038/35090597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042807650", 
          "https://doi.org/10.1038/nature01083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/347037a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037388616", 
          "https://doi.org/10.1038/347037a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019275455", 
          "https://doi.org/10.1038/nature04105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/374555a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006208507", 
          "https://doi.org/10.1038/374555a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-01-15", 
    "datePublishedReg": "2006-01-15", 
    "description": "Actin filament dynamics are critical in cell motility. The structure of actin filament changes spontaneously and can also be regulated by actin-binding proteins, allowing actin to readily function in response to external stimuli. The interaction with the motor protein myosin changes the dynamic nature of actin filaments. However, the molecular bases for the dynamic processes of actin filaments are not well understood. Here, we observed the dynamics of rabbit skeletal-muscle actin conformation by monitoring individual molecules in the actin filaments using single-molecule fluorescence resonance energy transfer (FRET) imaging with total internal reflection fluorescence microscopy (TIRFM). The time trajectories of FRET show that actin switches between low- and high-FRET efficiency states on a timescale of seconds. If actin filaments are chemically cross-linked, a state that inhibits myosin motility, the equilibrium shifts to the low-FRET conformation, whereas when the actin filament is interacting with myosin, the high-FRET conformation is favored. This dynamic equilibrium suggests that actin can switch between active and inactive conformations in response to external signals.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nchembio763", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327431", 
        "issn": [
          "1552-4450", 
          "1552-4469"
        ], 
        "name": "Nature Chemical Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "keywords": [
      "total internal reflection fluorescence microscopy", 
      "fluorescence resonance energy transfer", 
      "actin filaments", 
      "single-molecule fluorescence resonance energy transfer", 
      "actin filament dynamics", 
      "actin-binding proteins", 
      "actin filament changes", 
      "reflection fluorescence microscopy", 
      "motor protein myosin", 
      "cell motility", 
      "molecular basis", 
      "inactive conformation", 
      "actin conformation", 
      "filament dynamics", 
      "resonance energy transfer", 
      "external signals", 
      "actin molecules", 
      "protein myosin", 
      "fluorescence microscopy", 
      "actin", 
      "timescale of seconds", 
      "dynamic polymorphism", 
      "filaments", 
      "myosin motility", 
      "conformation", 
      "filament changes", 
      "motility", 
      "myosin", 
      "individual molecules", 
      "external stimuli", 
      "dynamic equilibrium", 
      "equilibrium shift", 
      "energy transfer", 
      "protein", 
      "molecules", 
      "dynamic nature", 
      "polymorphism", 
      "dynamic process", 
      "single actin molecule", 
      "response", 
      "dynamics", 
      "interaction", 
      "switch", 
      "microscopy", 
      "time trajectories", 
      "signals", 
      "basis", 
      "structure", 
      "transfer", 
      "stimuli", 
      "changes", 
      "timescales", 
      "shift", 
      "equilibrium", 
      "process", 
      "efficiency state", 
      "state", 
      "nature", 
      "trajectories", 
      "seconds"
    ], 
    "name": "Dynamic polymorphism of single actin molecules in the actin filament", 
    "pagination": "83-86", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011183086"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nchembio763"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16415860"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nchembio763", 
      "https://app.dimensions.ai/details/publication/pub.1011183086"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_430.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nchembio763"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nchembio763'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nchembio763'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nchembio763'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nchembio763'


 

This table displays all metadata directly associated to this object as RDF triples.

234 TRIPLES      21 PREDICATES      104 URIs      87 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nchembio763 schema:about N087c02287be04eb0ae9d3b10621d8505
2 N21f04d50ea804700a80decac8edc0729
3 N2913d4560e8c457d8b53fbbeb77164c5
4 N29230effefe548988f7d7e7eead361a0
5 N67e61e2bce36423da2c6b860d48de813
6 N6e26ef81c6284221926830596e541226
7 N708d305fbff8465fa372d45457274258
8 N8ed559880e0c45389222a5d17cd2e405
9 Ndefa4347460640419e0791d9dc1ac0a2
10 Nfcf46cf53dbd484b8f1b7fe958a71e51
11 anzsrc-for:06
12 anzsrc-for:0601
13 schema:author Ne002e06dcdf646aa994e342600b0315e
14 schema:citation sg:pub.10.1038/298131a0
15 sg:pub.10.1038/307058a0
16 sg:pub.10.1038/347037a0
17 sg:pub.10.1038/35090597
18 sg:pub.10.1038/374555a0
19 sg:pub.10.1038/416413a
20 sg:pub.10.1038/nature01083
21 sg:pub.10.1038/nature02881
22 sg:pub.10.1038/nature04105
23 schema:datePublished 2006-01-15
24 schema:datePublishedReg 2006-01-15
25 schema:description Actin filament dynamics are critical in cell motility. The structure of actin filament changes spontaneously and can also be regulated by actin-binding proteins, allowing actin to readily function in response to external stimuli. The interaction with the motor protein myosin changes the dynamic nature of actin filaments. However, the molecular bases for the dynamic processes of actin filaments are not well understood. Here, we observed the dynamics of rabbit skeletal-muscle actin conformation by monitoring individual molecules in the actin filaments using single-molecule fluorescence resonance energy transfer (FRET) imaging with total internal reflection fluorescence microscopy (TIRFM). The time trajectories of FRET show that actin switches between low- and high-FRET efficiency states on a timescale of seconds. If actin filaments are chemically cross-linked, a state that inhibits myosin motility, the equilibrium shifts to the low-FRET conformation, whereas when the actin filament is interacting with myosin, the high-FRET conformation is favored. This dynamic equilibrium suggests that actin can switch between active and inactive conformations in response to external signals.
26 schema:genre article
27 schema:isAccessibleForFree false
28 schema:isPartOf N0be20686731f4c0eb8c2c229216b5c15
29 Nde3ebc092f6740a18fc93408beeb3a4b
30 sg:journal.1327431
31 schema:keywords actin
32 actin conformation
33 actin filament changes
34 actin filament dynamics
35 actin filaments
36 actin molecules
37 actin-binding proteins
38 basis
39 cell motility
40 changes
41 conformation
42 dynamic equilibrium
43 dynamic nature
44 dynamic polymorphism
45 dynamic process
46 dynamics
47 efficiency state
48 energy transfer
49 equilibrium
50 equilibrium shift
51 external signals
52 external stimuli
53 filament changes
54 filament dynamics
55 filaments
56 fluorescence microscopy
57 fluorescence resonance energy transfer
58 inactive conformation
59 individual molecules
60 interaction
61 microscopy
62 molecular basis
63 molecules
64 motility
65 motor protein myosin
66 myosin
67 myosin motility
68 nature
69 polymorphism
70 process
71 protein
72 protein myosin
73 reflection fluorescence microscopy
74 resonance energy transfer
75 response
76 seconds
77 shift
78 signals
79 single actin molecule
80 single-molecule fluorescence resonance energy transfer
81 state
82 stimuli
83 structure
84 switch
85 time trajectories
86 timescale of seconds
87 timescales
88 total internal reflection fluorescence microscopy
89 trajectories
90 transfer
91 schema:name Dynamic polymorphism of single actin molecules in the actin filament
92 schema:pagination 83-86
93 schema:productId N8684235b115a4360a3058b7dd2153a16
94 N902cc7e78d8249e9a81b7afcc27d81fe
95 Nef798cc0a6a749edab6bfa3d989fa789
96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011183086
97 https://doi.org/10.1038/nchembio763
98 schema:sdDatePublished 2022-09-02T15:52
99 schema:sdLicense https://scigraph.springernature.com/explorer/license/
100 schema:sdPublisher N5f1029d83c1a47fb87aa8b2350369649
101 schema:url https://doi.org/10.1038/nchembio763
102 sgo:license sg:explorer/license/
103 sgo:sdDataset articles
104 rdf:type schema:ScholarlyArticle
105 N087c02287be04eb0ae9d3b10621d8505 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Microscopy, Fluorescence
107 rdf:type schema:DefinedTerm
108 N0be20686731f4c0eb8c2c229216b5c15 schema:volumeNumber 2
109 rdf:type schema:PublicationVolume
110 N0e8c090c833946bab54ceaff047586a5 rdf:first sg:person.012777077121.27
111 rdf:rest Nb2b84aec7f8140af8f2c3d158134b624
112 N21f04d50ea804700a80decac8edc0729 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Mice
114 rdf:type schema:DefinedTerm
115 N2913d4560e8c457d8b53fbbeb77164c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Actins
117 rdf:type schema:DefinedTerm
118 N29230effefe548988f7d7e7eead361a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Protein Conformation
120 rdf:type schema:DefinedTerm
121 N5f1029d83c1a47fb87aa8b2350369649 schema:name Springer Nature - SN SciGraph project
122 rdf:type schema:Organization
123 N67e61e2bce36423da2c6b860d48de813 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Actin Cytoskeleton
125 rdf:type schema:DefinedTerm
126 N6cb628e018dc4af799724ce4578d5e98 rdf:first sg:person.011616353165.56
127 rdf:rest N0e8c090c833946bab54ceaff047586a5
128 N6e26ef81c6284221926830596e541226 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Fluorescence Resonance Energy Transfer
130 rdf:type schema:DefinedTerm
131 N708d305fbff8465fa372d45457274258 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Rabbits
133 rdf:type schema:DefinedTerm
134 N8684235b115a4360a3058b7dd2153a16 schema:name dimensions_id
135 schema:value pub.1011183086
136 rdf:type schema:PropertyValue
137 N8ed559880e0c45389222a5d17cd2e405 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Animals
139 rdf:type schema:DefinedTerm
140 N902cc7e78d8249e9a81b7afcc27d81fe schema:name doi
141 schema:value 10.1038/nchembio763
142 rdf:type schema:PropertyValue
143 Nb2b84aec7f8140af8f2c3d158134b624 rdf:first sg:person.01220026401.88
144 rdf:rest Nfa146a3f85b74f59b75981b60206832c
145 Nde3ebc092f6740a18fc93408beeb3a4b schema:issueNumber 2
146 rdf:type schema:PublicationIssue
147 Ndefa4347460640419e0791d9dc1ac0a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Muscle, Skeletal
149 rdf:type schema:DefinedTerm
150 Ne002e06dcdf646aa994e342600b0315e rdf:first sg:person.01222560535.17
151 rdf:rest N6cb628e018dc4af799724ce4578d5e98
152 Nef798cc0a6a749edab6bfa3d989fa789 schema:name pubmed_id
153 schema:value 16415860
154 rdf:type schema:PropertyValue
155 Nfa146a3f85b74f59b75981b60206832c rdf:first sg:person.015141357621.93
156 rdf:rest rdf:nil
157 Nfcf46cf53dbd484b8f1b7fe958a71e51 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Myosin Type V
159 rdf:type schema:DefinedTerm
160 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
161 schema:name Biological Sciences
162 rdf:type schema:DefinedTerm
163 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
164 schema:name Biochemistry and Cell Biology
165 rdf:type schema:DefinedTerm
166 sg:journal.1327431 schema:issn 1552-4450
167 1552-4469
168 schema:name Nature Chemical Biology
169 schema:publisher Springer Nature
170 rdf:type schema:Periodical
171 sg:person.011616353165.56 schema:affiliation grid-institutes:grid.272456.0
172 schema:familyName Yokota
173 schema:givenName Hiroaki
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011616353165.56
175 rdf:type schema:Person
176 sg:person.01220026401.88 schema:affiliation grid-institutes:grid.419082.6
177 schema:familyName Ishii
178 schema:givenName Yoshiharu
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220026401.88
180 rdf:type schema:Person
181 sg:person.01222560535.17 schema:affiliation grid-institutes:grid.136593.b
182 schema:familyName Kozuka
183 schema:givenName Jun
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222560535.17
185 rdf:type schema:Person
186 sg:person.012777077121.27 schema:affiliation grid-institutes:grid.136593.b
187 schema:familyName Arai
188 schema:givenName Yoshiyuki
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012777077121.27
190 rdf:type schema:Person
191 sg:person.015141357621.93 schema:affiliation grid-institutes:grid.136593.b
192 schema:familyName Yanagida
193 schema:givenName Toshio
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015141357621.93
195 rdf:type schema:Person
196 sg:pub.10.1038/298131a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023582309
197 https://doi.org/10.1038/298131a0
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/307058a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053227057
200 https://doi.org/10.1038/307058a0
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/347037a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037388616
203 https://doi.org/10.1038/347037a0
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/35090597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030336457
206 https://doi.org/10.1038/35090597
207 rdf:type schema:CreativeWork
208 sg:pub.10.1038/374555a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006208507
209 https://doi.org/10.1038/374555a0
210 rdf:type schema:CreativeWork
211 sg:pub.10.1038/416413a schema:sameAs https://app.dimensions.ai/details/publication/pub.1012621438
212 https://doi.org/10.1038/416413a
213 rdf:type schema:CreativeWork
214 sg:pub.10.1038/nature01083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042807650
215 https://doi.org/10.1038/nature01083
216 rdf:type schema:CreativeWork
217 sg:pub.10.1038/nature02881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032520692
218 https://doi.org/10.1038/nature02881
219 rdf:type schema:CreativeWork
220 sg:pub.10.1038/nature04105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019275455
221 https://doi.org/10.1038/nature04105
222 rdf:type schema:CreativeWork
223 grid-institutes:grid.136593.b schema:alternateName Department of Biophysical Engineering, Osaka University, 1-3, Machikaneyama, Toyonaka, 560-8531, Osaka, Japan
224 Soft Biosystem Group, Laboratories for Nanobiology, Graduate School of Frontier Biosciences, University of Osaka, 1-3, Yamadaoka, Suita, 565-0871, Osaka, Japan
225 schema:name Department of Biophysical Engineering, Osaka University, 1-3, Machikaneyama, Toyonaka, 560-8531, Osaka, Japan
226 Formation of Soft Nanomachines, Core Research for Evolution Science and Technology, Japan Science and Technology Agency, Suita, 563-0871, Osaka, Japan
227 Soft Biosystem Group, Laboratories for Nanobiology, Graduate School of Frontier Biosciences, University of Osaka, 1-3, Yamadaoka, Suita, 565-0871, Osaka, Japan
228 rdf:type schema:Organization
229 grid-institutes:grid.272456.0 schema:alternateName Department of Molecular Physiology, The Tokyo Metropolitan Institute of Medical Science, 3-18-22, Honkomagome, Bunkyo-ku, 113-8613, Tokyo, Japan
230 schema:name Department of Molecular Physiology, The Tokyo Metropolitan Institute of Medical Science, 3-18-22, Honkomagome, Bunkyo-ku, 113-8613, Tokyo, Japan
231 rdf:type schema:Organization
232 grid-institutes:grid.419082.6 schema:alternateName Formation of Soft Nanomachines, Core Research for Evolution Science and Technology, Japan Science and Technology Agency, Suita, 563-0871, Osaka, Japan
233 schema:name Formation of Soft Nanomachines, Core Research for Evolution Science and Technology, Japan Science and Technology Agency, Suita, 563-0871, Osaka, Japan
234 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...