Allosteric regulation and catalysis emerge via a common route View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-07-18

AUTHORS

Nina M Goodey, Stephen J Benkovic

ABSTRACT

Allosteric regulation of protein function is a mechanism by which an event in one place of a protein structure causes an effect at another site, much like the behavior of a telecommunications network in which a collection of transmitters, receivers and transceivers communicate with each other across long distances. For example, ligand binding or an amino acid mutation at an allosteric site can alter enzymatic activity or binding affinity in a distal region such as the active site or a second binding site. The mechanism of this site-to-site communication is of great interest, especially since allosteric effects must be considered in drug design and protein engineering. In this review, conformational mobility as the common route between allosteric regulation and catalysis is discussed. We summarize recent experimental data and the resulting insights into allostery within proteins, and we discuss the nature of future studies and the new applications that may result from increased understanding of this regulatory mechanism. More... »

PAGES

474-482

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nchembio.98

DOI

http://dx.doi.org/10.1038/nchembio.98

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007403685

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18641628


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Allosteric Regulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Catalysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Conformation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteins", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Chemistry and Biochemistry, Montclair State University, 1 Normal Avenue, 07043, Montclair, New Jersey, USA", 
          "id": "http://www.grid.ac/institutes/grid.260201.7", 
          "name": [
            "Department of Chemistry and Biochemistry, Montclair State University, 1 Normal Avenue, 07043, Montclair, New Jersey, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goodey", 
        "givenName": "Nina M", 
        "id": "sg:person.0621021206.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621021206.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, The Pennsylvania State University, 414 Wartik Laboratory, 16802, College Park, Pennsylvania, USA", 
          "id": "http://www.grid.ac/institutes/grid.29857.31", 
          "name": [
            "Department of Chemistry, The Pennsylvania State University, 414 Wartik Laboratory, 16802, College Park, Pennsylvania, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Benkovic", 
        "givenName": "Stephen J", 
        "id": "sg:person.01116565451.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116565451.56"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature06407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026409826", 
          "https://doi.org/10.1038/nature06407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020920568", 
          "https://doi.org/10.1038/nbt1308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nsb881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025773167", 
          "https://doi.org/10.1038/nsb881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031658914", 
          "https://doi.org/10.1038/nature06524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nsb770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030730287", 
          "https://doi.org/10.1038/nsb770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035333913", 
          "https://doi.org/10.1038/nature06410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037055738", 
          "https://doi.org/10.1038/nature06522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/181662a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033258334", 
          "https://doi.org/10.1038/181662a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00276625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035768199", 
          "https://doi.org/10.1007/bf00276625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nsmb747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023816670", 
          "https://doi.org/10.1038/nsmb747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nsmb1132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002995490", 
          "https://doi.org/10.1038/nsmb1132"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-07-18", 
    "datePublishedReg": "2008-07-18", 
    "description": "Allosteric regulation of protein function is a mechanism by which an event in one place of a protein structure causes an effect at another site, much like the behavior of a telecommunications network in which a collection of transmitters, receivers and transceivers communicate with each other across long distances. For example, ligand binding or an amino acid mutation at an allosteric site can alter enzymatic activity or binding affinity in a distal region such as the active site or a second binding site. The mechanism of this site-to-site communication is of great interest, especially since allosteric effects must be considered in drug design and protein engineering. In this review, conformational mobility as the common route between allosteric regulation and catalysis is discussed. We summarize recent experimental data and the resulting insights into allostery within proteins, and we discuss the nature of future studies and the new applications that may result from increased understanding of this regulatory mechanism.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nchembio.98", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327431", 
        "issn": [
          "1552-4450", 
          "1552-4469"
        ], 
        "name": "Nature Chemical Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "keywords": [
      "allosteric regulation", 
      "amino acid mutations", 
      "protein function", 
      "protein engineering", 
      "regulatory mechanisms", 
      "protein structure", 
      "ligand binding", 
      "allosteric site", 
      "acid mutations", 
      "allosteric effects", 
      "enzymatic activity", 
      "drug design", 
      "distal region", 
      "regulation", 
      "site communication", 
      "active site", 
      "collection of transmitters", 
      "conformational mobility", 
      "allostery", 
      "sites", 
      "mechanism", 
      "protein", 
      "catalysis", 
      "mutations", 
      "long distances", 
      "binding", 
      "future studies", 
      "common route", 
      "great interest", 
      "affinity", 
      "route", 
      "new applications", 
      "insights", 
      "activity", 
      "region", 
      "function", 
      "understanding", 
      "experimental data", 
      "events", 
      "effect", 
      "structure", 
      "engineering", 
      "recent experimental data", 
      "collection", 
      "review", 
      "mobility", 
      "applications", 
      "study", 
      "nature", 
      "distance", 
      "data", 
      "behavior", 
      "interest", 
      "network", 
      "example", 
      "place", 
      "design", 
      "communication", 
      "transmitter", 
      "receiver", 
      "telecommunication networks", 
      "transceiver"
    ], 
    "name": "Allosteric regulation and catalysis emerge via a common route", 
    "pagination": "474-482", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007403685"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nchembio.98"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18641628"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nchembio.98", 
      "https://app.dimensions.ai/details/publication/pub.1007403685"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_463.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nchembio.98"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nchembio.98'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nchembio.98'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nchembio.98'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nchembio.98'


 

This table displays all metadata directly associated to this object as RDF triples.

193 TRIPLES      21 PREDICATES      102 URIs      83 LITERALS      11 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nchembio.98 schema:about N19f9791040e84e96ac4d2d05f25631e8
2 N3405aeb3c710433e89d3f621fed610e2
3 N9e29ec9046004a8dbd074778caac5ff9
4 Nd38d4d2aa7f24115986266c7833e513f
5 anzsrc-for:06
6 anzsrc-for:0601
7 schema:author N6c5ddfccc4e54ce4ad3a6eb9ef8ee139
8 schema:citation sg:pub.10.1007/bf00276625
9 sg:pub.10.1038/181662a0
10 sg:pub.10.1038/nature06407
11 sg:pub.10.1038/nature06410
12 sg:pub.10.1038/nature06522
13 sg:pub.10.1038/nature06524
14 sg:pub.10.1038/nbt1308
15 sg:pub.10.1038/nsb770
16 sg:pub.10.1038/nsb881
17 sg:pub.10.1038/nsmb1132
18 sg:pub.10.1038/nsmb747
19 schema:datePublished 2008-07-18
20 schema:datePublishedReg 2008-07-18
21 schema:description Allosteric regulation of protein function is a mechanism by which an event in one place of a protein structure causes an effect at another site, much like the behavior of a telecommunications network in which a collection of transmitters, receivers and transceivers communicate with each other across long distances. For example, ligand binding or an amino acid mutation at an allosteric site can alter enzymatic activity or binding affinity in a distal region such as the active site or a second binding site. The mechanism of this site-to-site communication is of great interest, especially since allosteric effects must be considered in drug design and protein engineering. In this review, conformational mobility as the common route between allosteric regulation and catalysis is discussed. We summarize recent experimental data and the resulting insights into allostery within proteins, and we discuss the nature of future studies and the new applications that may result from increased understanding of this regulatory mechanism.
22 schema:genre article
23 schema:isAccessibleForFree false
24 schema:isPartOf N4ea79f46a1654d9ca41ace6e5f97805f
25 N59f630684a97441a81df85774accbcda
26 sg:journal.1327431
27 schema:keywords acid mutations
28 active site
29 activity
30 affinity
31 allosteric effects
32 allosteric regulation
33 allosteric site
34 allostery
35 amino acid mutations
36 applications
37 behavior
38 binding
39 catalysis
40 collection
41 collection of transmitters
42 common route
43 communication
44 conformational mobility
45 data
46 design
47 distal region
48 distance
49 drug design
50 effect
51 engineering
52 enzymatic activity
53 events
54 example
55 experimental data
56 function
57 future studies
58 great interest
59 insights
60 interest
61 ligand binding
62 long distances
63 mechanism
64 mobility
65 mutations
66 nature
67 network
68 new applications
69 place
70 protein
71 protein engineering
72 protein function
73 protein structure
74 receiver
75 recent experimental data
76 region
77 regulation
78 regulatory mechanisms
79 review
80 route
81 site communication
82 sites
83 structure
84 study
85 telecommunication networks
86 transceiver
87 transmitter
88 understanding
89 schema:name Allosteric regulation and catalysis emerge via a common route
90 schema:pagination 474-482
91 schema:productId N073c85fcdf2843c8b59a8df7fe015502
92 N8e85305ee8a6444dabd5eba3de8a00d0
93 Nfe6cc4a8d6a441368b13c791500943a5
94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007403685
95 https://doi.org/10.1038/nchembio.98
96 schema:sdDatePublished 2022-10-01T06:34
97 schema:sdLicense https://scigraph.springernature.com/explorer/license/
98 schema:sdPublisher N40bad0427cf34eebb44f4c7b663260cb
99 schema:url https://doi.org/10.1038/nchembio.98
100 sgo:license sg:explorer/license/
101 sgo:sdDataset articles
102 rdf:type schema:ScholarlyArticle
103 N073c85fcdf2843c8b59a8df7fe015502 schema:name doi
104 schema:value 10.1038/nchembio.98
105 rdf:type schema:PropertyValue
106 N19f9791040e84e96ac4d2d05f25631e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Protein Conformation
108 rdf:type schema:DefinedTerm
109 N2ccddc6160a14d0aba279694012b4a07 rdf:first sg:person.01116565451.56
110 rdf:rest rdf:nil
111 N3405aeb3c710433e89d3f621fed610e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Allosteric Regulation
113 rdf:type schema:DefinedTerm
114 N40bad0427cf34eebb44f4c7b663260cb schema:name Springer Nature - SN SciGraph project
115 rdf:type schema:Organization
116 N4ea79f46a1654d9ca41ace6e5f97805f schema:issueNumber 8
117 rdf:type schema:PublicationIssue
118 N59f630684a97441a81df85774accbcda schema:volumeNumber 4
119 rdf:type schema:PublicationVolume
120 N6c5ddfccc4e54ce4ad3a6eb9ef8ee139 rdf:first sg:person.0621021206.56
121 rdf:rest N2ccddc6160a14d0aba279694012b4a07
122 N8e85305ee8a6444dabd5eba3de8a00d0 schema:name pubmed_id
123 schema:value 18641628
124 rdf:type schema:PropertyValue
125 N9e29ec9046004a8dbd074778caac5ff9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Catalysis
127 rdf:type schema:DefinedTerm
128 Nd38d4d2aa7f24115986266c7833e513f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Proteins
130 rdf:type schema:DefinedTerm
131 Nfe6cc4a8d6a441368b13c791500943a5 schema:name dimensions_id
132 schema:value pub.1007403685
133 rdf:type schema:PropertyValue
134 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
135 schema:name Biological Sciences
136 rdf:type schema:DefinedTerm
137 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
138 schema:name Biochemistry and Cell Biology
139 rdf:type schema:DefinedTerm
140 sg:journal.1327431 schema:issn 1552-4450
141 1552-4469
142 schema:name Nature Chemical Biology
143 schema:publisher Springer Nature
144 rdf:type schema:Periodical
145 sg:person.01116565451.56 schema:affiliation grid-institutes:grid.29857.31
146 schema:familyName Benkovic
147 schema:givenName Stephen J
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116565451.56
149 rdf:type schema:Person
150 sg:person.0621021206.56 schema:affiliation grid-institutes:grid.260201.7
151 schema:familyName Goodey
152 schema:givenName Nina M
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621021206.56
154 rdf:type schema:Person
155 sg:pub.10.1007/bf00276625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035768199
156 https://doi.org/10.1007/bf00276625
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/181662a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033258334
159 https://doi.org/10.1038/181662a0
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/nature06407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026409826
162 https://doi.org/10.1038/nature06407
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/nature06410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035333913
165 https://doi.org/10.1038/nature06410
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/nature06522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037055738
168 https://doi.org/10.1038/nature06522
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/nature06524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031658914
171 https://doi.org/10.1038/nature06524
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/nbt1308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020920568
174 https://doi.org/10.1038/nbt1308
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/nsb770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030730287
177 https://doi.org/10.1038/nsb770
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/nsb881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025773167
180 https://doi.org/10.1038/nsb881
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/nsmb1132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002995490
183 https://doi.org/10.1038/nsmb1132
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/nsmb747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023816670
186 https://doi.org/10.1038/nsmb747
187 rdf:type schema:CreativeWork
188 grid-institutes:grid.260201.7 schema:alternateName Department of Chemistry and Biochemistry, Montclair State University, 1 Normal Avenue, 07043, Montclair, New Jersey, USA
189 schema:name Department of Chemistry and Biochemistry, Montclair State University, 1 Normal Avenue, 07043, Montclair, New Jersey, USA
190 rdf:type schema:Organization
191 grid-institutes:grid.29857.31 schema:alternateName Department of Chemistry, The Pennsylvania State University, 414 Wartik Laboratory, 16802, College Park, Pennsylvania, USA
192 schema:name Department of Chemistry, The Pennsylvania State University, 414 Wartik Laboratory, 16802, College Park, Pennsylvania, USA
193 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...