Computer-aided design of functional protein interactions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-10-19

AUTHORS

Daniel J Mandell, Tanja Kortemme

ABSTRACT

Predictive methods for the computational design of proteins search for amino acid sequences adopting desired structures that perform specific functions. Typically, design of 'function' is formulated as engineering new and altered binding activities into proteins. Progress in the design of functional protein-protein interactions is directed toward engineering proteins to precisely control biological processes by specifically recognizing desired interaction partners while avoiding competitors. The field is aiming for strategies to harness recent advances in high-resolution computational modeling—particularly those exploiting protein conformational variability—to engineer new functions and incorporate many functional requirements simultaneously. More... »

PAGES

797-807

References to SciGraph publications

  • 2009-08. Sub-angstrom accuracy in protein loop reconstruction by robotics-inspired conformational sampling in NATURE METHODS
  • 2007-06. Eris: an automated estimator of protein stability in NATURE METHODS
  • 2008-03-19. Kemp elimination catalysts by computational enzyme design in NATURE
  • 2006-03-22. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae in NATURE
  • 2006-06. Computational redesign of endonuclease DNA binding and cleavage specificity in NATURE
  • 2007-09-23. Computational design of antibody-affinity improvement beyond in vivo maturation in NATURE BIOTECHNOLOGY
  • 2002-12-02. Automated design of specificity in molecular recognition in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2004-03-21. Computational redesign of protein-protein interaction specificity in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2000-09. A chemical switch for inhibitor-sensitive alleles of any protein kinase in NATURE
  • 2002-06-24. Computer-aided design of a PDZ domain to recognize new target sequences in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 1992-04. The dead-end elimination theorem and its use in protein side-chain positioning in NATURE
  • 1999-07. Rational design of a GCN4-derived mimetic of interleukin-4 in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2003-05. Computational design of receptor and sensor proteins with novel functions in NATURE
  • 2009-04. Design of protein-interaction specificity gives selective bZIP-binding peptides in NATURE
  • 2004-06-09. Evidence for dynamically organized modularity in the yeast protein–protein interaction network in NATURE
  • 2006-01-22. Proteome survey reveals modularity of the yeast cell machinery in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nchembio.251

    DOI

    http://dx.doi.org/10.1038/nchembio.251

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1000087030

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/19841629


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biological Phenomena", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Catalysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computer-Aided Design", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Dimerization", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Molecular", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Peptides", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Conformation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Multimerization", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Research Design", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Signal Transduction", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "and Department of Bioengineering and Therapeutic Sciences, Graduate Program in Bioinformatics and Computational Biology, California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California, USA", 
              "id": "http://www.grid.ac/institutes/grid.266102.1", 
              "name": [
                "and Department of Bioengineering and Therapeutic Sciences, Graduate Program in Bioinformatics and Computational Biology, California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mandell", 
            "givenName": "Daniel J", 
            "id": "sg:person.0713706036.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713706036.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "and Department of Bioengineering and Therapeutic Sciences, Graduate Program in Bioinformatics and Computational Biology, California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California, USA", 
              "id": "http://www.grid.ac/institutes/grid.266102.1", 
              "name": [
                "and Department of Bioengineering and Therapeutic Sciences, Graduate Program in Bioinformatics and Computational Biology, California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kortemme", 
            "givenName": "Tanja", 
            "id": "sg:person.01033715365.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033715365.77"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nsmb749", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000957972", 
              "https://doi.org/10.1038/nsmb749"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsb877", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010823494", 
              "https://doi.org/10.1038/nsb877"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/356539a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000184640", 
              "https://doi.org/10.1038/356539a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06879", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027980204", 
              "https://doi.org/10.1038/nature06879"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04818", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012756616", 
              "https://doi.org/10.1038/nature04818"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth0809-551", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022615416", 
              "https://doi.org/10.1038/nmeth0809-551"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04670", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033456836", 
              "https://doi.org/10.1038/nature04670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35030148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007129994", 
              "https://doi.org/10.1038/35030148"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth0607-466", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023522076", 
              "https://doi.org/10.1038/nmeth0607-466"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsb815", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024650580", 
              "https://doi.org/10.1038/nsb815"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01556", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018600865", 
              "https://doi.org/10.1038/nature01556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07885", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001761618", 
              "https://doi.org/10.1038/nature07885"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02555", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011649705", 
              "https://doi.org/10.1038/nature02555"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1336", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049676781", 
              "https://doi.org/10.1038/nbt1336"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/10706", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000558267", 
              "https://doi.org/10.1038/10706"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04532", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043981355", 
              "https://doi.org/10.1038/nature04532"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-10-19", 
        "datePublishedReg": "2009-10-19", 
        "description": "Predictive methods for the computational design of proteins search for amino acid sequences adopting desired structures that perform specific functions. Typically, design of 'function' is formulated as engineering new and altered binding activities into proteins. Progress in the design of functional protein-protein interactions is directed toward engineering proteins to precisely control biological processes by specifically recognizing desired interaction partners while avoiding competitors. The field is aiming for strategies to harness recent advances in high-resolution computational modeling\u2014particularly those exploiting protein conformational variability\u2014to engineer new functions and incorporate many functional requirements simultaneously.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nchembio.251", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1327431", 
            "issn": [
              "1552-4450", 
              "1552-4469"
            ], 
            "name": "Nature Chemical Biology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "5"
          }
        ], 
        "keywords": [
          "functional protein-protein interactions", 
          "functional protein interactions", 
          "protein-protein interactions", 
          "protein conformational variability", 
          "amino acid sequence", 
          "protein interactions", 
          "acid sequence", 
          "engineering proteins", 
          "interaction partners", 
          "biological processes", 
          "conformational variability", 
          "specific functions", 
          "protein", 
          "new functions", 
          "High-resolution computational modeling", 
          "recent advances", 
          "computational design", 
          "computational modeling", 
          "sequence", 
          "function", 
          "interaction", 
          "competitors", 
          "functional requirements", 
          "activity", 
          "partners", 
          "variability", 
          "advances", 
          "structure", 
          "predictive methods", 
          "progress", 
          "process", 
          "strategies", 
          "requirements", 
          "field", 
          "modeling", 
          "method", 
          "design", 
          "computer-aided design"
        ], 
        "name": "Computer-aided design of functional protein interactions", 
        "pagination": "797-807", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1000087030"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nchembio.251"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "19841629"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nchembio.251", 
          "https://app.dimensions.ai/details/publication/pub.1000087030"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_492.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nchembio.251"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nchembio.251'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nchembio.251'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nchembio.251'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nchembio.251'


     

    This table displays all metadata directly associated to this object as RDF triples.

    218 TRIPLES      21 PREDICATES      91 URIs      67 LITERALS      19 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nchembio.251 schema:about N19b68e2aa94341abb0811869ad1f3b9d
    2 N5c7af3814e354a209a9bdf3c776423ac
    3 N6d224bf128a44dc6a46d21f54fd8c380
    4 N723373fc48654731b85b390abd0f25b5
    5 N77dca8f749a84be29eea86f68fce18d1
    6 N86c15a0003c24d449f5e839a84765346
    7 N90dc1d7023cf4f61b0c8a7dc86331c63
    8 N92b979409cd34e51a4e80913d77afceb
    9 Na8c69c033fba4aff8233300a202da946
    10 Nd0db549c08d14ec1bffdf6809562c052
    11 Nd7048c82e4874d60a4330dd7933d9c13
    12 Nf423bacfda14445b843c7c518f11296f
    13 anzsrc-for:06
    14 anzsrc-for:0601
    15 schema:author N4eb8647ee4754ec09e5cfb31a6f9872f
    16 schema:citation sg:pub.10.1038/10706
    17 sg:pub.10.1038/35030148
    18 sg:pub.10.1038/356539a0
    19 sg:pub.10.1038/nature01556
    20 sg:pub.10.1038/nature02555
    21 sg:pub.10.1038/nature04532
    22 sg:pub.10.1038/nature04670
    23 sg:pub.10.1038/nature04818
    24 sg:pub.10.1038/nature06879
    25 sg:pub.10.1038/nature07885
    26 sg:pub.10.1038/nbt1336
    27 sg:pub.10.1038/nmeth0607-466
    28 sg:pub.10.1038/nmeth0809-551
    29 sg:pub.10.1038/nsb815
    30 sg:pub.10.1038/nsb877
    31 sg:pub.10.1038/nsmb749
    32 schema:datePublished 2009-10-19
    33 schema:datePublishedReg 2009-10-19
    34 schema:description Predictive methods for the computational design of proteins search for amino acid sequences adopting desired structures that perform specific functions. Typically, design of 'function' is formulated as engineering new and altered binding activities into proteins. Progress in the design of functional protein-protein interactions is directed toward engineering proteins to precisely control biological processes by specifically recognizing desired interaction partners while avoiding competitors. The field is aiming for strategies to harness recent advances in high-resolution computational modeling—particularly those exploiting protein conformational variability—to engineer new functions and incorporate many functional requirements simultaneously.
    35 schema:genre article
    36 schema:isAccessibleForFree false
    37 schema:isPartOf N170a551dab034478b69ef95fcd27ae50
    38 N9f4ac6765c2f4f70acc35bcc67ffeb79
    39 sg:journal.1327431
    40 schema:keywords High-resolution computational modeling
    41 acid sequence
    42 activity
    43 advances
    44 amino acid sequence
    45 biological processes
    46 competitors
    47 computational design
    48 computational modeling
    49 computer-aided design
    50 conformational variability
    51 design
    52 engineering proteins
    53 field
    54 function
    55 functional protein interactions
    56 functional protein-protein interactions
    57 functional requirements
    58 interaction
    59 interaction partners
    60 method
    61 modeling
    62 new functions
    63 partners
    64 predictive methods
    65 process
    66 progress
    67 protein
    68 protein conformational variability
    69 protein interactions
    70 protein-protein interactions
    71 recent advances
    72 requirements
    73 sequence
    74 specific functions
    75 strategies
    76 structure
    77 variability
    78 schema:name Computer-aided design of functional protein interactions
    79 schema:pagination 797-807
    80 schema:productId N27cbb236a6254082ac1cfe8fd4268a53
    81 Nc29f1852f46740ae82c22b96fcc8b3a3
    82 Ne0ba4f0069f74a5ea4cec375cd25a64f
    83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000087030
    84 https://doi.org/10.1038/nchembio.251
    85 schema:sdDatePublished 2022-12-01T06:27
    86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    87 schema:sdPublisher Nf9844bbbf90c43cfba43db4594929a8c
    88 schema:url https://doi.org/10.1038/nchembio.251
    89 sgo:license sg:explorer/license/
    90 sgo:sdDataset articles
    91 rdf:type schema:ScholarlyArticle
    92 N170a551dab034478b69ef95fcd27ae50 schema:issueNumber 11
    93 rdf:type schema:PublicationIssue
    94 N19b68e2aa94341abb0811869ad1f3b9d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    95 schema:name Computer-Aided Design
    96 rdf:type schema:DefinedTerm
    97 N27cbb236a6254082ac1cfe8fd4268a53 schema:name pubmed_id
    98 schema:value 19841629
    99 rdf:type schema:PropertyValue
    100 N4eb8647ee4754ec09e5cfb31a6f9872f rdf:first sg:person.0713706036.43
    101 rdf:rest Na662f5e8bab44ca88997c83a996e608d
    102 N5c7af3814e354a209a9bdf3c776423ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Peptides
    104 rdf:type schema:DefinedTerm
    105 N6d224bf128a44dc6a46d21f54fd8c380 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    106 schema:name Research Design
    107 rdf:type schema:DefinedTerm
    108 N723373fc48654731b85b390abd0f25b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name Biological Phenomena
    110 rdf:type schema:DefinedTerm
    111 N77dca8f749a84be29eea86f68fce18d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Proteins
    113 rdf:type schema:DefinedTerm
    114 N86c15a0003c24d449f5e839a84765346 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name Catalysis
    116 rdf:type schema:DefinedTerm
    117 N90dc1d7023cf4f61b0c8a7dc86331c63 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Signal Transduction
    119 rdf:type schema:DefinedTerm
    120 N92b979409cd34e51a4e80913d77afceb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Protein Conformation
    122 rdf:type schema:DefinedTerm
    123 N9f4ac6765c2f4f70acc35bcc67ffeb79 schema:volumeNumber 5
    124 rdf:type schema:PublicationVolume
    125 Na662f5e8bab44ca88997c83a996e608d rdf:first sg:person.01033715365.77
    126 rdf:rest rdf:nil
    127 Na8c69c033fba4aff8233300a202da946 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Models, Molecular
    129 rdf:type schema:DefinedTerm
    130 Nc29f1852f46740ae82c22b96fcc8b3a3 schema:name dimensions_id
    131 schema:value pub.1000087030
    132 rdf:type schema:PropertyValue
    133 Nd0db549c08d14ec1bffdf6809562c052 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Protein Engineering
    135 rdf:type schema:DefinedTerm
    136 Nd7048c82e4874d60a4330dd7933d9c13 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Dimerization
    138 rdf:type schema:DefinedTerm
    139 Ne0ba4f0069f74a5ea4cec375cd25a64f schema:name doi
    140 schema:value 10.1038/nchembio.251
    141 rdf:type schema:PropertyValue
    142 Nf423bacfda14445b843c7c518f11296f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Protein Multimerization
    144 rdf:type schema:DefinedTerm
    145 Nf9844bbbf90c43cfba43db4594929a8c schema:name Springer Nature - SN SciGraph project
    146 rdf:type schema:Organization
    147 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    148 schema:name Biological Sciences
    149 rdf:type schema:DefinedTerm
    150 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    151 schema:name Biochemistry and Cell Biology
    152 rdf:type schema:DefinedTerm
    153 sg:journal.1327431 schema:issn 1552-4450
    154 1552-4469
    155 schema:name Nature Chemical Biology
    156 schema:publisher Springer Nature
    157 rdf:type schema:Periodical
    158 sg:person.01033715365.77 schema:affiliation grid-institutes:grid.266102.1
    159 schema:familyName Kortemme
    160 schema:givenName Tanja
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033715365.77
    162 rdf:type schema:Person
    163 sg:person.0713706036.43 schema:affiliation grid-institutes:grid.266102.1
    164 schema:familyName Mandell
    165 schema:givenName Daniel J
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713706036.43
    167 rdf:type schema:Person
    168 sg:pub.10.1038/10706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000558267
    169 https://doi.org/10.1038/10706
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1038/35030148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007129994
    172 https://doi.org/10.1038/35030148
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1038/356539a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000184640
    175 https://doi.org/10.1038/356539a0
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1038/nature01556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018600865
    178 https://doi.org/10.1038/nature01556
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1038/nature02555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011649705
    181 https://doi.org/10.1038/nature02555
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1038/nature04532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043981355
    184 https://doi.org/10.1038/nature04532
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1038/nature04670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033456836
    187 https://doi.org/10.1038/nature04670
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1038/nature04818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012756616
    190 https://doi.org/10.1038/nature04818
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1038/nature06879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027980204
    193 https://doi.org/10.1038/nature06879
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1038/nature07885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001761618
    196 https://doi.org/10.1038/nature07885
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/nbt1336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049676781
    199 https://doi.org/10.1038/nbt1336
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/nmeth0607-466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023522076
    202 https://doi.org/10.1038/nmeth0607-466
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1038/nmeth0809-551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022615416
    205 https://doi.org/10.1038/nmeth0809-551
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/nsb815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024650580
    208 https://doi.org/10.1038/nsb815
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/nsb877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010823494
    211 https://doi.org/10.1038/nsb877
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/nsmb749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000957972
    214 https://doi.org/10.1038/nsmb749
    215 rdf:type schema:CreativeWork
    216 grid-institutes:grid.266102.1 schema:alternateName and Department of Bioengineering and Therapeutic Sciences, Graduate Program in Bioinformatics and Computational Biology, California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California, USA
    217 schema:name and Department of Bioengineering and Therapeutic Sciences, Graduate Program in Bioinformatics and Computational Biology, California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California, USA
    218 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...