Etching and narrowing of graphene from the edges View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-08

AUTHORS

Xinran Wang, Hongjie Dai

ABSTRACT

Large-scale graphene electronics requires lithographic patterning of narrow graphene nanoribbons for device integration. However, conventional lithography can only reliably pattern approximately 20-nm-wide GNR arrays limited by lithography resolution, while sub-5-nm GNRs are desirable for high on/off ratio field-effect transistors at room temperature. Here, we devised a gas phase chemical approach to etch graphene from the edges without damaging its basal plane. The reaction involved high temperature oxidation of graphene in a slightly reducing environment in the presence of ammonia to afford controlled etch rate (less than or approximately 1 nm min(-1)). We fabricated approximately 20-30-nm-wide graphene nanoribbon arrays lithographically, and used the gas phase etching chemistry to narrow the ribbons down to <10 nm. For the first time, a high on/off ratio up to approximately 10(4) was achieved at room temperature for field-effect transistors built with sub-5-nm-wide graphene nanoribbon semiconductors derived from lithographic patterning and narrowing. Our controlled etching method opens up a chemical way to control the size of various graphene nano-structures beyond the capability of top-down lithography. More... »

PAGES

661

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nchem.719

DOI

http://dx.doi.org/10.1038/nchem.719

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003521282

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20651729


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microscopy, Atomic Force", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nanostructures", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oxidation-Reduction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Semiconductors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spectrum Analysis, Raman", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Chemistry and Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Xinran", 
        "id": "sg:person.01014575676.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014575676.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Chemistry and Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dai", 
        "givenName": "Hongjie", 
        "id": "sg:person.01320646106.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320646106.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1021/ja8023059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002070626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja8023059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002070626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12274-008-8043-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003787824", 
          "https://doi.org/10.1007/s12274-008-8043-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl900811r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007122118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl900811r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007122118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.206805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008582960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.206805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008582960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl070133j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009133348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl070133j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009133348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1158877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010593797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1158877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010593797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn800459e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011067471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.216803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012453170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.216803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012453170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12274-008-8039-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014105318", 
          "https://doi.org/10.1007/s12274-008-8039-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.205433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016492548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.205433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016492548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1150878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017724475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ssc.2007.03.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018103421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja907098f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018495285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja907098f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018495285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1102896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019008412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physe.2007.06.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021016859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023528767", 
          "https://doi.org/10.1038/nature07919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023528767", 
          "https://doi.org/10.1038/nature07919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12274-010-1015-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029838515", 
          "https://doi.org/10.1007/s12274-010-1015-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12274-010-1015-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029838515", 
          "https://doi.org/10.1007/s12274-010-1015-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033318923", 
          "https://doi.org/10.1038/nature07872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033318923", 
          "https://doi.org/10.1038/nature07872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.206803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040170470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.206803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040170470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2769764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042768085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1170335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047077248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1170335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047077248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12274-008-8020-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049726473", 
          "https://doi.org/10.1007/s12274-008-8020-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl080583r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049986580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl080583r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049986580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/20/5/055202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050849073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0617033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052359345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0617033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052359345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052791836", 
          "https://doi.org/10.1038/nmat1849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp9920895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056131263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp9920895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056131263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl900531n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056221866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl900531n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056221866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.17954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060582080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.17954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060582080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060819097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060819097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1116/1.1763897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062169746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1154663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062457512"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-08", 
    "datePublishedReg": "2010-08-01", 
    "description": "Large-scale graphene electronics requires lithographic patterning of narrow graphene nanoribbons for device integration. However, conventional lithography can only reliably pattern approximately 20-nm-wide GNR arrays limited by lithography resolution, while sub-5-nm GNRs are desirable for high on/off ratio field-effect transistors at room temperature. Here, we devised a gas phase chemical approach to etch graphene from the edges without damaging its basal plane. The reaction involved high temperature oxidation of graphene in a slightly reducing environment in the presence of ammonia to afford controlled etch rate (less than or approximately 1 nm min(-1)). We fabricated approximately 20-30-nm-wide graphene nanoribbon arrays lithographically, and used the gas phase etching chemistry to narrow the ribbons down to <10 nm. For the first time, a high on/off ratio up to approximately 10(4) was achieved at room temperature for field-effect transistors built with sub-5-nm-wide graphene nanoribbon semiconductors derived from lithographic patterning and narrowing. Our controlled etching method opens up a chemical way to control the size of various graphene nano-structures beyond the capability of top-down lithography.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nchem.719", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041224", 
        "issn": [
          "1755-4330", 
          "1755-4349"
        ], 
        "name": "Nature Chemistry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "name": "Etching and narrowing of graphene from the edges", 
    "pagination": "661", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "10c6457130163ee8b3427743ff3d597b8dcf6b6c978e2359eafa5db8cc239f2f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20651729"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101499734"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nchem.719"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003521282"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nchem.719", 
      "https://app.dimensions.ai/details/publication/pub.1003521282"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000435.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nchem.719"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nchem.719'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nchem.719'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nchem.719'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nchem.719'


 

This table displays all metadata directly associated to this object as RDF triples.

203 TRIPLES      21 PREDICATES      67 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nchem.719 schema:about N4b3b6e4e305a4263ba8983f3489b0164
2 N9f6524e16e1e49baaf149a32699d6016
3 Nac2dd04f657f450896938bd1df66bf16
4 Nc2b7f10123044b4a950b56cd3a28c609
5 Ndebde14b2086443799e558ba03670062
6 Nebcf1531f38b45a48b49f54046dc8893
7 anzsrc-for:10
8 anzsrc-for:1007
9 schema:author Nf44ca9d5334348e8b4da47b7c703002f
10 schema:citation sg:pub.10.1007/s12274-008-8020-9
11 sg:pub.10.1007/s12274-008-8039-y
12 sg:pub.10.1007/s12274-008-8043-2
13 sg:pub.10.1007/s12274-010-1015-3
14 sg:pub.10.1038/nature07872
15 sg:pub.10.1038/nature07919
16 sg:pub.10.1038/nmat1849
17 https://doi.org/10.1016/j.physe.2007.06.020
18 https://doi.org/10.1016/j.ssc.2007.03.052
19 https://doi.org/10.1021/ja8023059
20 https://doi.org/10.1021/ja907098f
21 https://doi.org/10.1021/jp9920895
22 https://doi.org/10.1021/nl0617033
23 https://doi.org/10.1021/nl070133j
24 https://doi.org/10.1021/nl080583r
25 https://doi.org/10.1021/nl900531n
26 https://doi.org/10.1021/nl900811r
27 https://doi.org/10.1021/nn800459e
28 https://doi.org/10.1063/1.2769764
29 https://doi.org/10.1088/0957-4484/20/5/055202
30 https://doi.org/10.1103/physrevb.54.17954
31 https://doi.org/10.1103/physrevb.79.205433
32 https://doi.org/10.1103/physrevlett.100.206803
33 https://doi.org/10.1103/physrevlett.82.217
34 https://doi.org/10.1103/physrevlett.97.216803
35 https://doi.org/10.1103/physrevlett.98.206805
36 https://doi.org/10.1116/1.1763897
37 https://doi.org/10.1126/science.1102896
38 https://doi.org/10.1126/science.1150878
39 https://doi.org/10.1126/science.1154663
40 https://doi.org/10.1126/science.1158877
41 https://doi.org/10.1126/science.1170335
42 schema:datePublished 2010-08
43 schema:datePublishedReg 2010-08-01
44 schema:description Large-scale graphene electronics requires lithographic patterning of narrow graphene nanoribbons for device integration. However, conventional lithography can only reliably pattern approximately 20-nm-wide GNR arrays limited by lithography resolution, while sub-5-nm GNRs are desirable for high on/off ratio field-effect transistors at room temperature. Here, we devised a gas phase chemical approach to etch graphene from the edges without damaging its basal plane. The reaction involved high temperature oxidation of graphene in a slightly reducing environment in the presence of ammonia to afford controlled etch rate (less than or approximately 1 nm min(-1)). We fabricated approximately 20-30-nm-wide graphene nanoribbon arrays lithographically, and used the gas phase etching chemistry to narrow the ribbons down to <10 nm. For the first time, a high on/off ratio up to approximately 10(4) was achieved at room temperature for field-effect transistors built with sub-5-nm-wide graphene nanoribbon semiconductors derived from lithographic patterning and narrowing. Our controlled etching method opens up a chemical way to control the size of various graphene nano-structures beyond the capability of top-down lithography.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf N25b3310f09da432dadf0065420c003dd
49 Nd924ea1f1bd84ec9a5d3fd58535f3eb3
50 sg:journal.1041224
51 schema:name Etching and narrowing of graphene from the edges
52 schema:pagination 661
53 schema:productId N1683794477754ea581f8db028e8ce6a3
54 N3fb4e0f4902045b28d1fce3eabf6f2b8
55 N4ff4d30d016f4e0980fe1abeb327677c
56 Nc5861b362eca48809f7708b70857d424
57 Nf058bedbeb1c4142af511d3dc28b53ce
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003521282
59 https://doi.org/10.1038/nchem.719
60 schema:sdDatePublished 2019-04-11T00:05
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N4139290bc7b64dd7b60b210ffdcf2814
63 schema:url https://www.nature.com/articles/nchem.719
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N1683794477754ea581f8db028e8ce6a3 schema:name pubmed_id
68 schema:value 20651729
69 rdf:type schema:PropertyValue
70 N25b3310f09da432dadf0065420c003dd schema:issueNumber 8
71 rdf:type schema:PublicationIssue
72 N3fb4e0f4902045b28d1fce3eabf6f2b8 schema:name dimensions_id
73 schema:value pub.1003521282
74 rdf:type schema:PropertyValue
75 N4139290bc7b64dd7b60b210ffdcf2814 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 N4b3b6e4e305a4263ba8983f3489b0164 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Microscopy, Atomic Force
79 rdf:type schema:DefinedTerm
80 N4ff4d30d016f4e0980fe1abeb327677c schema:name doi
81 schema:value 10.1038/nchem.719
82 rdf:type schema:PropertyValue
83 N9f6524e16e1e49baaf149a32699d6016 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Semiconductors
85 rdf:type schema:DefinedTerm
86 Nac2dd04f657f450896938bd1df66bf16 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Nanostructures
88 rdf:type schema:DefinedTerm
89 Nc2b7f10123044b4a950b56cd3a28c609 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Spectrum Analysis, Raman
91 rdf:type schema:DefinedTerm
92 Nc5861b362eca48809f7708b70857d424 schema:name nlm_unique_id
93 schema:value 101499734
94 rdf:type schema:PropertyValue
95 Nd924ea1f1bd84ec9a5d3fd58535f3eb3 schema:volumeNumber 2
96 rdf:type schema:PublicationVolume
97 Ndebde14b2086443799e558ba03670062 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Gases
99 rdf:type schema:DefinedTerm
100 Ne293bc2e96a74aa09cfc5bdde57b2dde rdf:first sg:person.01320646106.00
101 rdf:rest rdf:nil
102 Nebcf1531f38b45a48b49f54046dc8893 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Oxidation-Reduction
104 rdf:type schema:DefinedTerm
105 Nf058bedbeb1c4142af511d3dc28b53ce schema:name readcube_id
106 schema:value 10c6457130163ee8b3427743ff3d597b8dcf6b6c978e2359eafa5db8cc239f2f
107 rdf:type schema:PropertyValue
108 Nf44ca9d5334348e8b4da47b7c703002f rdf:first sg:person.01014575676.43
109 rdf:rest Ne293bc2e96a74aa09cfc5bdde57b2dde
110 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
111 schema:name Technology
112 rdf:type schema:DefinedTerm
113 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
114 schema:name Nanotechnology
115 rdf:type schema:DefinedTerm
116 sg:journal.1041224 schema:issn 1755-4330
117 1755-4349
118 schema:name Nature Chemistry
119 rdf:type schema:Periodical
120 sg:person.01014575676.43 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
121 schema:familyName Wang
122 schema:givenName Xinran
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014575676.43
124 rdf:type schema:Person
125 sg:person.01320646106.00 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
126 schema:familyName Dai
127 schema:givenName Hongjie
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320646106.00
129 rdf:type schema:Person
130 sg:pub.10.1007/s12274-008-8020-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049726473
131 https://doi.org/10.1007/s12274-008-8020-9
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/s12274-008-8039-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1014105318
134 https://doi.org/10.1007/s12274-008-8039-y
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/s12274-008-8043-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003787824
137 https://doi.org/10.1007/s12274-008-8043-2
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s12274-010-1015-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029838515
140 https://doi.org/10.1007/s12274-010-1015-3
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/nature07872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033318923
143 https://doi.org/10.1038/nature07872
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/nature07919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023528767
146 https://doi.org/10.1038/nature07919
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/nmat1849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052791836
149 https://doi.org/10.1038/nmat1849
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.physe.2007.06.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021016859
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.ssc.2007.03.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018103421
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1021/ja8023059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002070626
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1021/ja907098f schema:sameAs https://app.dimensions.ai/details/publication/pub.1018495285
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1021/jp9920895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056131263
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1021/nl0617033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052359345
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1021/nl070133j schema:sameAs https://app.dimensions.ai/details/publication/pub.1009133348
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1021/nl080583r schema:sameAs https://app.dimensions.ai/details/publication/pub.1049986580
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1021/nl900531n schema:sameAs https://app.dimensions.ai/details/publication/pub.1056221866
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1021/nl900811r schema:sameAs https://app.dimensions.ai/details/publication/pub.1007122118
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1021/nn800459e schema:sameAs https://app.dimensions.ai/details/publication/pub.1011067471
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1063/1.2769764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042768085
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1088/0957-4484/20/5/055202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050849073
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physrevb.54.17954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060582080
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physrevb.79.205433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016492548
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physrevlett.100.206803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040170470
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physrevlett.82.217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060819097
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physrevlett.97.216803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012453170
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physrevlett.98.206805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008582960
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1116/1.1763897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062169746
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1126/science.1102896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019008412
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1126/science.1150878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017724475
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1126/science.1154663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062457512
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1126/science.1158877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010593797
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1126/science.1170335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047077248
200 rdf:type schema:CreativeWork
201 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
202 schema:name Department of Chemistry and Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA
203 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...