Single-molecule spectroscopy of LHCSR1 protein dynamics identifies two distinct states responsible for multi-timescale photosynthetic photoprotection View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-07-17

AUTHORS

Toru Kondo, Alberta Pinnola, Wei Jia Chen, Luca Dall'Osto, Roberto Bassi, Gabriela S. Schlau-Cohen

ABSTRACT

In oxygenic photosynthesis, light harvesting is regulated to safely dissipate excess energy and prevent the formation of harmful photoproducts. Regulation is known to be necessary for fitness, but the molecular mechanisms are not understood. One challenge has been that ensemble experiments average over active and dissipative behaviours, preventing identification of distinct states. Here, we use single-molecule spectroscopy to uncover the photoprotective states and dynamics of the light-harvesting complex stress-related 1 (LHCSR1) protein, which is responsible for dissipation in green algae and moss. We discover the existence of two dissipative states. We find that one of these states is activated by pH and the other by carotenoid composition, and that distinct protein dynamics regulate these states. Together, these two states enable the organism to respond to two types of intermittency in solar intensity—step changes (clouds and shadows) and ramp changes (sunrise), respectively. Our findings reveal key control mechanisms underlying photoprotective dissipation, with implications for increasing biomass yields and developing robust solar energy devices. More... »

PAGES

772-778

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nchem.2818

DOI

http://dx.doi.org/10.1038/nchem.2818

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090740429

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28754946


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Binding Sites", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotenoids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hydrogen-Ion Concentration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Light", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Light-Harvesting Protein Complexes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Photosynthesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Conformation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Single Molecule Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tobacco", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kondo", 
        "givenName": "Toru", 
        "id": "sg:person.01351621537.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351621537.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biotechnology, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134, Verona, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5611.3", 
          "name": [
            "Department of Biotechnology, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134, Verona, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pinnola", 
        "givenName": "Alberta", 
        "id": "sg:person.0670621660.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670621660.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Wei Jia", 
        "id": "sg:person.014606472533.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014606472533.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biotechnology, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134, Verona, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5611.3", 
          "name": [
            "Department of Biotechnology, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134, Verona, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dall'Osto", 
        "givenName": "Luca", 
        "id": "sg:person.01360021350.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360021350.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto per la Protezione delle Piante (IPP), Consiglio Nazionale delle Ricerche (CNR), Strada delle Cacce 73, 10135, Turin, Italy", 
          "id": "http://www.grid.ac/institutes/grid.503048.a", 
          "name": [
            "Department of Biotechnology, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134, Verona, Italy", 
            "Istituto per la Protezione delle Piante (IPP), Consiglio Nazionale delle Ricerche (CNR), Strada delle Cacce 73, 10135, Turin, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bassi", 
        "givenName": "Roberto", 
        "id": "sg:person.0605371157.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605371157.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schlau-Cohen", 
        "givenName": "Gabriela S.", 
        "id": "sg:person.01246446421.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246446421.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11120-013-9824-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025197531", 
          "https://doi.org/10.1007/s11120-013-9824-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08587", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036072520", 
          "https://doi.org/10.1038/nature08587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11120-013-9857-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019083914", 
          "https://doi.org/10.1007/s11120-013-9857-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-017-9032-1_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000684136", 
          "https://doi.org/10.1007/978-94-017-9032-1_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11738-016-2113-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000426586", 
          "https://doi.org/10.1007/s11738-016-2113-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050377161", 
          "https://doi.org/10.1038/nature06262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep21339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001869484", 
          "https://doi.org/10.1038/srep21339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nplants.2016.45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051372358", 
          "https://doi.org/10.1038/nplants.2016.45"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchembio.1755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014109674", 
          "https://doi.org/10.1038/nchembio.1755"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-07-17", 
    "datePublishedReg": "2017-07-17", 
    "description": "In oxygenic photosynthesis, light harvesting is regulated to safely dissipate excess energy and prevent the formation of harmful photoproducts. Regulation is known to be necessary for fitness, but the molecular mechanisms are not understood. One challenge has been that ensemble experiments average over active and dissipative behaviours, preventing identification of distinct states. Here, we use single-molecule spectroscopy to uncover the photoprotective states and dynamics of the light-harvesting complex stress-related 1 (LHCSR1) protein, which is responsible for dissipation in green algae and moss. We discover the existence of two dissipative states. We find that one of these states is activated by pH and the other by carotenoid composition, and that distinct protein dynamics regulate these states. Together, these two states enable the organism to respond to two types of intermittency in solar intensity\u2014step changes (clouds and shadows) and ramp changes (sunrise), respectively. Our findings reveal key control mechanisms underlying photoprotective dissipation, with implications for increasing biomass yields and developing robust solar energy devices.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nchem.2818", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4319230", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1041224", 
        "issn": [
          "1755-4330", 
          "1755-4349"
        ], 
        "name": "Nature Chemistry", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "protein dynamics", 
      "single-molecule spectroscopy", 
      "photoprotective state", 
      "key control mechanism", 
      "green algae", 
      "oxygenic photosynthesis", 
      "photoprotective dissipation", 
      "molecular mechanisms", 
      "distinct states", 
      "carotenoid composition", 
      "biomass yield", 
      "harmful photoproducts", 
      "photosynthesis", 
      "algae", 
      "light harvesting", 
      "control mechanisms", 
      "organisms", 
      "protein", 
      "mosses", 
      "photoprotection", 
      "fitness", 
      "regulation", 
      "mechanism", 
      "dynamics", 
      "identification", 
      "dissipative state", 
      "ensemble experiments", 
      "changes", 
      "composition", 
      "formation", 
      "yield", 
      "excess energy", 
      "photoproducts", 
      "harvesting", 
      "types", 
      "solar energy devices", 
      "experiments", 
      "state", 
      "findings", 
      "energy devices", 
      "implications", 
      "existence", 
      "spectroscopy", 
      "challenges", 
      "behavior", 
      "dissipation", 
      "energy", 
      "devices", 
      "type of intermittency", 
      "ramp changes", 
      "dissipative behavior", 
      "intermittency"
    ], 
    "name": "Single-molecule spectroscopy of LHCSR1 protein dynamics identifies two distinct states responsible for multi-timescale photosynthetic photoprotection", 
    "pagination": "772-778", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090740429"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nchem.2818"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28754946"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nchem.2818", 
      "https://app.dimensions.ai/details/publication/pub.1090740429"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_745.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nchem.2818"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nchem.2818'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nchem.2818'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nchem.2818'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nchem.2818'


 

This table displays all metadata directly associated to this object as RDF triples.

229 TRIPLES      21 PREDICATES      95 URIs      78 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nchem.2818 schema:about N0d40d9a73f4d463a9c97c488dd567ebf
2 N4d35306802ad4dd9bb0b0a13504f09f2
3 N7d33e9bdcbe34d3f9afdf36a44f72bfd
4 N88e1ae4000b54353b7112e6fbf78cc76
5 N8f89f537b358413fafb714ecc0f5f0d0
6 Nad70b645f33d45dda21cb0fe0906af1b
7 Nc53e439246264855b5e0b0e1bc507024
8 Nca6100f1d0ef4488b0ebbaa3b709dbbd
9 Ncb23fa70dde24f2aac36c26b656f1b7e
10 anzsrc-for:03
11 anzsrc-for:0306
12 schema:author N4e0ed909727c4f56b6257fffe329ace8
13 schema:citation sg:pub.10.1007/978-94-017-9032-1_14
14 sg:pub.10.1007/s11120-013-9824-3
15 sg:pub.10.1007/s11120-013-9857-7
16 sg:pub.10.1007/s11738-016-2113-y
17 sg:pub.10.1038/nature06262
18 sg:pub.10.1038/nature08587
19 sg:pub.10.1038/nchembio.1755
20 sg:pub.10.1038/nplants.2016.45
21 sg:pub.10.1038/srep21339
22 schema:datePublished 2017-07-17
23 schema:datePublishedReg 2017-07-17
24 schema:description In oxygenic photosynthesis, light harvesting is regulated to safely dissipate excess energy and prevent the formation of harmful photoproducts. Regulation is known to be necessary for fitness, but the molecular mechanisms are not understood. One challenge has been that ensemble experiments average over active and dissipative behaviours, preventing identification of distinct states. Here, we use single-molecule spectroscopy to uncover the photoprotective states and dynamics of the light-harvesting complex stress-related 1 (LHCSR1) protein, which is responsible for dissipation in green algae and moss. We discover the existence of two dissipative states. We find that one of these states is activated by pH and the other by carotenoid composition, and that distinct protein dynamics regulate these states. Together, these two states enable the organism to respond to two types of intermittency in solar intensity—step changes (clouds and shadows) and ramp changes (sunrise), respectively. Our findings reveal key control mechanisms underlying photoprotective dissipation, with implications for increasing biomass yields and developing robust solar energy devices.
25 schema:genre article
26 schema:isAccessibleForFree false
27 schema:isPartOf N96a726eaa14042f9a61201a8735f736e
28 Ndd61061b61104ae4a09908cc04fc6e7d
29 sg:journal.1041224
30 schema:keywords algae
31 behavior
32 biomass yield
33 carotenoid composition
34 challenges
35 changes
36 composition
37 control mechanisms
38 devices
39 dissipation
40 dissipative behavior
41 dissipative state
42 distinct states
43 dynamics
44 energy
45 energy devices
46 ensemble experiments
47 excess energy
48 existence
49 experiments
50 findings
51 fitness
52 formation
53 green algae
54 harmful photoproducts
55 harvesting
56 identification
57 implications
58 intermittency
59 key control mechanism
60 light harvesting
61 mechanism
62 molecular mechanisms
63 mosses
64 organisms
65 oxygenic photosynthesis
66 photoproducts
67 photoprotection
68 photoprotective dissipation
69 photoprotective state
70 photosynthesis
71 protein
72 protein dynamics
73 ramp changes
74 regulation
75 single-molecule spectroscopy
76 solar energy devices
77 spectroscopy
78 state
79 type of intermittency
80 types
81 yield
82 schema:name Single-molecule spectroscopy of LHCSR1 protein dynamics identifies two distinct states responsible for multi-timescale photosynthetic photoprotection
83 schema:pagination 772-778
84 schema:productId N0b7632e4c3fd47fba8017a5f983bc426
85 N9e954048553e4f9089fd766e671defd3
86 Nd9f141e35b604f02aba89bbc4cda34dc
87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090740429
88 https://doi.org/10.1038/nchem.2818
89 schema:sdDatePublished 2022-10-01T06:43
90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
91 schema:sdPublisher Nf8c58cc66073449a9f120745c49ce51d
92 schema:url https://doi.org/10.1038/nchem.2818
93 sgo:license sg:explorer/license/
94 sgo:sdDataset articles
95 rdf:type schema:ScholarlyArticle
96 N0b7632e4c3fd47fba8017a5f983bc426 schema:name dimensions_id
97 schema:value pub.1090740429
98 rdf:type schema:PropertyValue
99 N0d40d9a73f4d463a9c97c488dd567ebf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Hydrogen-Ion Concentration
101 rdf:type schema:DefinedTerm
102 N10f8dd11a2f74f69b0dec05a6ee0e8ca rdf:first sg:person.0670621660.42
103 rdf:rest N6c34b257a5c24c12aa4dfe90a4b146f6
104 N4d35306802ad4dd9bb0b0a13504f09f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Single Molecule Imaging
106 rdf:type schema:DefinedTerm
107 N4e0ed909727c4f56b6257fffe329ace8 rdf:first sg:person.01351621537.37
108 rdf:rest N10f8dd11a2f74f69b0dec05a6ee0e8ca
109 N6c34b257a5c24c12aa4dfe90a4b146f6 rdf:first sg:person.014606472533.17
110 rdf:rest Nc5128e08636e41028ba2f26d1e50dcb3
111 N7d33e9bdcbe34d3f9afdf36a44f72bfd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Protein Conformation
113 rdf:type schema:DefinedTerm
114 N88e1ae4000b54353b7112e6fbf78cc76 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Carotenoids
116 rdf:type schema:DefinedTerm
117 N8edc364a97f5495181829d9603c106b2 rdf:first sg:person.0605371157.35
118 rdf:rest Ndef471d73024402b99213d95a7088083
119 N8f89f537b358413fafb714ecc0f5f0d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Light-Harvesting Protein Complexes
121 rdf:type schema:DefinedTerm
122 N96a726eaa14042f9a61201a8735f736e schema:volumeNumber 9
123 rdf:type schema:PublicationVolume
124 N9e954048553e4f9089fd766e671defd3 schema:name pubmed_id
125 schema:value 28754946
126 rdf:type schema:PropertyValue
127 Nad70b645f33d45dda21cb0fe0906af1b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Light
129 rdf:type schema:DefinedTerm
130 Nc5128e08636e41028ba2f26d1e50dcb3 rdf:first sg:person.01360021350.97
131 rdf:rest N8edc364a97f5495181829d9603c106b2
132 Nc53e439246264855b5e0b0e1bc507024 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Tobacco
134 rdf:type schema:DefinedTerm
135 Nca6100f1d0ef4488b0ebbaa3b709dbbd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Photosynthesis
137 rdf:type schema:DefinedTerm
138 Ncb23fa70dde24f2aac36c26b656f1b7e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Binding Sites
140 rdf:type schema:DefinedTerm
141 Nd9f141e35b604f02aba89bbc4cda34dc schema:name doi
142 schema:value 10.1038/nchem.2818
143 rdf:type schema:PropertyValue
144 Ndd61061b61104ae4a09908cc04fc6e7d schema:issueNumber 8
145 rdf:type schema:PublicationIssue
146 Ndef471d73024402b99213d95a7088083 rdf:first sg:person.01246446421.54
147 rdf:rest rdf:nil
148 Nf8c58cc66073449a9f120745c49ce51d schema:name Springer Nature - SN SciGraph project
149 rdf:type schema:Organization
150 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
151 schema:name Chemical Sciences
152 rdf:type schema:DefinedTerm
153 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
154 schema:name Physical Chemistry (incl. Structural)
155 rdf:type schema:DefinedTerm
156 sg:grant.4319230 http://pending.schema.org/fundedItem sg:pub.10.1038/nchem.2818
157 rdf:type schema:MonetaryGrant
158 sg:journal.1041224 schema:issn 1755-4330
159 1755-4349
160 schema:name Nature Chemistry
161 schema:publisher Springer Nature
162 rdf:type schema:Periodical
163 sg:person.01246446421.54 schema:affiliation grid-institutes:grid.116068.8
164 schema:familyName Schlau-Cohen
165 schema:givenName Gabriela S.
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246446421.54
167 rdf:type schema:Person
168 sg:person.01351621537.37 schema:affiliation grid-institutes:grid.116068.8
169 schema:familyName Kondo
170 schema:givenName Toru
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351621537.37
172 rdf:type schema:Person
173 sg:person.01360021350.97 schema:affiliation grid-institutes:grid.5611.3
174 schema:familyName Dall'Osto
175 schema:givenName Luca
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360021350.97
177 rdf:type schema:Person
178 sg:person.014606472533.17 schema:affiliation grid-institutes:grid.116068.8
179 schema:familyName Chen
180 schema:givenName Wei Jia
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014606472533.17
182 rdf:type schema:Person
183 sg:person.0605371157.35 schema:affiliation grid-institutes:grid.503048.a
184 schema:familyName Bassi
185 schema:givenName Roberto
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605371157.35
187 rdf:type schema:Person
188 sg:person.0670621660.42 schema:affiliation grid-institutes:grid.5611.3
189 schema:familyName Pinnola
190 schema:givenName Alberta
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670621660.42
192 rdf:type schema:Person
193 sg:pub.10.1007/978-94-017-9032-1_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000684136
194 https://doi.org/10.1007/978-94-017-9032-1_14
195 rdf:type schema:CreativeWork
196 sg:pub.10.1007/s11120-013-9824-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025197531
197 https://doi.org/10.1007/s11120-013-9824-3
198 rdf:type schema:CreativeWork
199 sg:pub.10.1007/s11120-013-9857-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019083914
200 https://doi.org/10.1007/s11120-013-9857-7
201 rdf:type schema:CreativeWork
202 sg:pub.10.1007/s11738-016-2113-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1000426586
203 https://doi.org/10.1007/s11738-016-2113-y
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/nature06262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050377161
206 https://doi.org/10.1038/nature06262
207 rdf:type schema:CreativeWork
208 sg:pub.10.1038/nature08587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036072520
209 https://doi.org/10.1038/nature08587
210 rdf:type schema:CreativeWork
211 sg:pub.10.1038/nchembio.1755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014109674
212 https://doi.org/10.1038/nchembio.1755
213 rdf:type schema:CreativeWork
214 sg:pub.10.1038/nplants.2016.45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051372358
215 https://doi.org/10.1038/nplants.2016.45
216 rdf:type schema:CreativeWork
217 sg:pub.10.1038/srep21339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001869484
218 https://doi.org/10.1038/srep21339
219 rdf:type schema:CreativeWork
220 grid-institutes:grid.116068.8 schema:alternateName Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, Massachusetts, USA
221 schema:name Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, Massachusetts, USA
222 rdf:type schema:Organization
223 grid-institutes:grid.503048.a schema:alternateName Istituto per la Protezione delle Piante (IPP), Consiglio Nazionale delle Ricerche (CNR), Strada delle Cacce 73, 10135, Turin, Italy
224 schema:name Department of Biotechnology, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134, Verona, Italy
225 Istituto per la Protezione delle Piante (IPP), Consiglio Nazionale delle Ricerche (CNR), Strada delle Cacce 73, 10135, Turin, Italy
226 rdf:type schema:Organization
227 grid-institutes:grid.5611.3 schema:alternateName Department of Biotechnology, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134, Verona, Italy
228 schema:name Department of Biotechnology, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134, Verona, Italy
229 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...