Single-molecule spectroscopy of LHCSR1 protein dynamics identifies two distinct states responsible for multi-timescale photosynthetic photoprotection View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-07-17

AUTHORS

Toru Kondo, Alberta Pinnola, Wei Jia Chen, Luca Dall'Osto, Roberto Bassi, Gabriela S. Schlau-Cohen

ABSTRACT

In oxygenic photosynthesis, light harvesting is regulated to safely dissipate excess energy and prevent the formation of harmful photoproducts. Regulation is known to be necessary for fitness, but the molecular mechanisms are not understood. One challenge has been that ensemble experiments average over active and dissipative behaviours, preventing identification of distinct states. Here, we use single-molecule spectroscopy to uncover the photoprotective states and dynamics of the light-harvesting complex stress-related 1 (LHCSR1) protein, which is responsible for dissipation in green algae and moss. We discover the existence of two dissipative states. We find that one of these states is activated by pH and the other by carotenoid composition, and that distinct protein dynamics regulate these states. Together, these two states enable the organism to respond to two types of intermittency in solar intensity—step changes (clouds and shadows) and ramp changes (sunrise), respectively. Our findings reveal key control mechanisms underlying photoprotective dissipation, with implications for increasing biomass yields and developing robust solar energy devices. More... »

PAGES

772-778

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nchem.2818

DOI

http://dx.doi.org/10.1038/nchem.2818

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090740429

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28754946


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Binding Sites", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotenoids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hydrogen-Ion Concentration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Light", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Light-Harvesting Protein Complexes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Photosynthesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Conformation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Single Molecule Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tobacco", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kondo", 
        "givenName": "Toru", 
        "id": "sg:person.01351621537.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351621537.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biotechnology, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134, Verona, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5611.3", 
          "name": [
            "Department of Biotechnology, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134, Verona, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pinnola", 
        "givenName": "Alberta", 
        "id": "sg:person.0670621660.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670621660.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Wei Jia", 
        "id": "sg:person.014606472533.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014606472533.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biotechnology, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134, Verona, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5611.3", 
          "name": [
            "Department of Biotechnology, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134, Verona, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dall'Osto", 
        "givenName": "Luca", 
        "id": "sg:person.01360021350.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360021350.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto per la Protezione delle Piante (IPP), Consiglio Nazionale delle Ricerche (CNR), Strada delle Cacce 73, 10135, Turin, Italy", 
          "id": "http://www.grid.ac/institutes/grid.503048.a", 
          "name": [
            "Department of Biotechnology, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134, Verona, Italy", 
            "Istituto per la Protezione delle Piante (IPP), Consiglio Nazionale delle Ricerche (CNR), Strada delle Cacce 73, 10135, Turin, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bassi", 
        "givenName": "Roberto", 
        "id": "sg:person.0605371157.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605371157.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schlau-Cohen", 
        "givenName": "Gabriela S.", 
        "id": "sg:person.01246446421.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246446421.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nplants.2016.45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051372358", 
          "https://doi.org/10.1038/nplants.2016.45"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08587", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036072520", 
          "https://doi.org/10.1038/nature08587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11738-016-2113-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000426586", 
          "https://doi.org/10.1007/s11738-016-2113-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050377161", 
          "https://doi.org/10.1038/nature06262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11120-013-9824-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025197531", 
          "https://doi.org/10.1007/s11120-013-9824-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep21339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001869484", 
          "https://doi.org/10.1038/srep21339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchembio.1755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014109674", 
          "https://doi.org/10.1038/nchembio.1755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-017-9032-1_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000684136", 
          "https://doi.org/10.1007/978-94-017-9032-1_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11120-013-9857-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019083914", 
          "https://doi.org/10.1007/s11120-013-9857-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-07-17", 
    "datePublishedReg": "2017-07-17", 
    "description": "In oxygenic photosynthesis, light harvesting is regulated to safely dissipate excess energy and prevent the formation of harmful photoproducts. Regulation is known to be necessary for fitness, but the molecular mechanisms are not understood. One challenge has been that ensemble experiments average over active and dissipative behaviours, preventing identification of distinct states. Here, we use single-molecule spectroscopy to uncover the photoprotective states and dynamics of the light-harvesting complex stress-related 1 (LHCSR1) protein, which is responsible for dissipation in green algae and moss. We discover the existence of two dissipative states. We find that one of these states is activated by pH and the other by carotenoid composition, and that distinct protein dynamics regulate these states. Together, these two states enable the organism to respond to two types of intermittency in solar intensity\u2014step changes (clouds and shadows) and ramp changes (sunrise), respectively. Our findings reveal key control mechanisms underlying photoprotective dissipation, with implications for increasing biomass yields and developing robust solar energy devices.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nchem.2818", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4319230", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1041224", 
        "issn": [
          "1755-4330", 
          "1755-4349"
        ], 
        "name": "Nature Chemistry", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "protein dynamics", 
      "single-molecule spectroscopy", 
      "photoprotective state", 
      "key control mechanism", 
      "green algae", 
      "oxygenic photosynthesis", 
      "photoprotective dissipation", 
      "molecular mechanisms", 
      "distinct states", 
      "carotenoid composition", 
      "biomass yield", 
      "harmful photoproducts", 
      "photosynthesis", 
      "algae", 
      "light harvesting", 
      "control mechanisms", 
      "organisms", 
      "protein", 
      "mosses", 
      "photoprotection", 
      "fitness", 
      "regulation", 
      "mechanism", 
      "dynamics", 
      "identification", 
      "dissipative state", 
      "ensemble experiments", 
      "changes", 
      "composition", 
      "formation", 
      "yield", 
      "excess energy", 
      "photoproducts", 
      "harvesting", 
      "types", 
      "solar energy devices", 
      "experiments", 
      "state", 
      "findings", 
      "energy devices", 
      "implications", 
      "existence", 
      "spectroscopy", 
      "challenges", 
      "behavior", 
      "dissipation", 
      "energy", 
      "devices", 
      "type of intermittency", 
      "ramp changes", 
      "dissipative behavior", 
      "intermittency"
    ], 
    "name": "Single-molecule spectroscopy of LHCSR1 protein dynamics identifies two distinct states responsible for multi-timescale photosynthetic photoprotection", 
    "pagination": "772-778", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090740429"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nchem.2818"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28754946"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nchem.2818", 
      "https://app.dimensions.ai/details/publication/pub.1090740429"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_750.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nchem.2818"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nchem.2818'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nchem.2818'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nchem.2818'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nchem.2818'


 

This table displays all metadata directly associated to this object as RDF triples.

229 TRIPLES      21 PREDICATES      95 URIs      78 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nchem.2818 schema:about N0b694c62205840f8ad9c98d2b55a5ee6
2 N268674c7313c4af0a8bd4902d7c8f226
3 N2b5889b8642141898b74cc90057513c1
4 N4325e4a3cc1947d9889f718d9cf7d787
5 N4cb2e033b2694984b27b6353a4ce8e76
6 N73681eae75fb4b16a69fcc2750415744
7 N7746202c45b14c9e966cc3ef6c48ab85
8 Nd223c6f900ae43bd92ed9155ca38b497
9 Nfb75cb66c2f64fa5a96431d65b9962a2
10 anzsrc-for:03
11 anzsrc-for:0306
12 schema:author Nced0b1f9547d4334a18de87658733ccb
13 schema:citation sg:pub.10.1007/978-94-017-9032-1_14
14 sg:pub.10.1007/s11120-013-9824-3
15 sg:pub.10.1007/s11120-013-9857-7
16 sg:pub.10.1007/s11738-016-2113-y
17 sg:pub.10.1038/nature06262
18 sg:pub.10.1038/nature08587
19 sg:pub.10.1038/nchembio.1755
20 sg:pub.10.1038/nplants.2016.45
21 sg:pub.10.1038/srep21339
22 schema:datePublished 2017-07-17
23 schema:datePublishedReg 2017-07-17
24 schema:description In oxygenic photosynthesis, light harvesting is regulated to safely dissipate excess energy and prevent the formation of harmful photoproducts. Regulation is known to be necessary for fitness, but the molecular mechanisms are not understood. One challenge has been that ensemble experiments average over active and dissipative behaviours, preventing identification of distinct states. Here, we use single-molecule spectroscopy to uncover the photoprotective states and dynamics of the light-harvesting complex stress-related 1 (LHCSR1) protein, which is responsible for dissipation in green algae and moss. We discover the existence of two dissipative states. We find that one of these states is activated by pH and the other by carotenoid composition, and that distinct protein dynamics regulate these states. Together, these two states enable the organism to respond to two types of intermittency in solar intensity—step changes (clouds and shadows) and ramp changes (sunrise), respectively. Our findings reveal key control mechanisms underlying photoprotective dissipation, with implications for increasing biomass yields and developing robust solar energy devices.
25 schema:genre article
26 schema:isAccessibleForFree false
27 schema:isPartOf N524748990f9543d8b60121da0bd8d100
28 N5e3215c32764448f8816c233c495c795
29 sg:journal.1041224
30 schema:keywords algae
31 behavior
32 biomass yield
33 carotenoid composition
34 challenges
35 changes
36 composition
37 control mechanisms
38 devices
39 dissipation
40 dissipative behavior
41 dissipative state
42 distinct states
43 dynamics
44 energy
45 energy devices
46 ensemble experiments
47 excess energy
48 existence
49 experiments
50 findings
51 fitness
52 formation
53 green algae
54 harmful photoproducts
55 harvesting
56 identification
57 implications
58 intermittency
59 key control mechanism
60 light harvesting
61 mechanism
62 molecular mechanisms
63 mosses
64 organisms
65 oxygenic photosynthesis
66 photoproducts
67 photoprotection
68 photoprotective dissipation
69 photoprotective state
70 photosynthesis
71 protein
72 protein dynamics
73 ramp changes
74 regulation
75 single-molecule spectroscopy
76 solar energy devices
77 spectroscopy
78 state
79 type of intermittency
80 types
81 yield
82 schema:name Single-molecule spectroscopy of LHCSR1 protein dynamics identifies two distinct states responsible for multi-timescale photosynthetic photoprotection
83 schema:pagination 772-778
84 schema:productId N6ce4d2d363414eac97194293b373db20
85 Ndc55b922a6ec4bd4a576c5e284b7a182
86 Nf56d664ee63d4c98af4a161496152770
87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090740429
88 https://doi.org/10.1038/nchem.2818
89 schema:sdDatePublished 2022-11-24T21:03
90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
91 schema:sdPublisher N05248fda249d4397a7105282acdf0039
92 schema:url https://doi.org/10.1038/nchem.2818
93 sgo:license sg:explorer/license/
94 sgo:sdDataset articles
95 rdf:type schema:ScholarlyArticle
96 N05248fda249d4397a7105282acdf0039 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 N0b694c62205840f8ad9c98d2b55a5ee6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Single Molecule Imaging
100 rdf:type schema:DefinedTerm
101 N218311c68a7f4c568a4939ea2777a102 rdf:first sg:person.01360021350.97
102 rdf:rest N5cfa707320e241eca03aa5ec8e2485a7
103 N268674c7313c4af0a8bd4902d7c8f226 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Photosynthesis
105 rdf:type schema:DefinedTerm
106 N2b5889b8642141898b74cc90057513c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Hydrogen-Ion Concentration
108 rdf:type schema:DefinedTerm
109 N4325e4a3cc1947d9889f718d9cf7d787 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Carotenoids
111 rdf:type schema:DefinedTerm
112 N46ab705f12584d35aeb149639c9a0ee8 rdf:first sg:person.0670621660.42
113 rdf:rest N660732ce74ea46239b8ed06eb9dca3ce
114 N4cb2e033b2694984b27b6353a4ce8e76 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Tobacco
116 rdf:type schema:DefinedTerm
117 N524748990f9543d8b60121da0bd8d100 schema:issueNumber 8
118 rdf:type schema:PublicationIssue
119 N56a213f92e5348f3a933a6be0d302c58 rdf:first sg:person.01246446421.54
120 rdf:rest rdf:nil
121 N5cfa707320e241eca03aa5ec8e2485a7 rdf:first sg:person.0605371157.35
122 rdf:rest N56a213f92e5348f3a933a6be0d302c58
123 N5e3215c32764448f8816c233c495c795 schema:volumeNumber 9
124 rdf:type schema:PublicationVolume
125 N660732ce74ea46239b8ed06eb9dca3ce rdf:first sg:person.014606472533.17
126 rdf:rest N218311c68a7f4c568a4939ea2777a102
127 N6ce4d2d363414eac97194293b373db20 schema:name doi
128 schema:value 10.1038/nchem.2818
129 rdf:type schema:PropertyValue
130 N73681eae75fb4b16a69fcc2750415744 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Light
132 rdf:type schema:DefinedTerm
133 N7746202c45b14c9e966cc3ef6c48ab85 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Light-Harvesting Protein Complexes
135 rdf:type schema:DefinedTerm
136 Nced0b1f9547d4334a18de87658733ccb rdf:first sg:person.01351621537.37
137 rdf:rest N46ab705f12584d35aeb149639c9a0ee8
138 Nd223c6f900ae43bd92ed9155ca38b497 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Binding Sites
140 rdf:type schema:DefinedTerm
141 Ndc55b922a6ec4bd4a576c5e284b7a182 schema:name pubmed_id
142 schema:value 28754946
143 rdf:type schema:PropertyValue
144 Nf56d664ee63d4c98af4a161496152770 schema:name dimensions_id
145 schema:value pub.1090740429
146 rdf:type schema:PropertyValue
147 Nfb75cb66c2f64fa5a96431d65b9962a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Protein Conformation
149 rdf:type schema:DefinedTerm
150 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
151 schema:name Chemical Sciences
152 rdf:type schema:DefinedTerm
153 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
154 schema:name Physical Chemistry (incl. Structural)
155 rdf:type schema:DefinedTerm
156 sg:grant.4319230 http://pending.schema.org/fundedItem sg:pub.10.1038/nchem.2818
157 rdf:type schema:MonetaryGrant
158 sg:journal.1041224 schema:issn 1755-4330
159 1755-4349
160 schema:name Nature Chemistry
161 schema:publisher Springer Nature
162 rdf:type schema:Periodical
163 sg:person.01246446421.54 schema:affiliation grid-institutes:grid.116068.8
164 schema:familyName Schlau-Cohen
165 schema:givenName Gabriela S.
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246446421.54
167 rdf:type schema:Person
168 sg:person.01351621537.37 schema:affiliation grid-institutes:grid.116068.8
169 schema:familyName Kondo
170 schema:givenName Toru
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351621537.37
172 rdf:type schema:Person
173 sg:person.01360021350.97 schema:affiliation grid-institutes:grid.5611.3
174 schema:familyName Dall'Osto
175 schema:givenName Luca
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360021350.97
177 rdf:type schema:Person
178 sg:person.014606472533.17 schema:affiliation grid-institutes:grid.116068.8
179 schema:familyName Chen
180 schema:givenName Wei Jia
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014606472533.17
182 rdf:type schema:Person
183 sg:person.0605371157.35 schema:affiliation grid-institutes:grid.503048.a
184 schema:familyName Bassi
185 schema:givenName Roberto
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605371157.35
187 rdf:type schema:Person
188 sg:person.0670621660.42 schema:affiliation grid-institutes:grid.5611.3
189 schema:familyName Pinnola
190 schema:givenName Alberta
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670621660.42
192 rdf:type schema:Person
193 sg:pub.10.1007/978-94-017-9032-1_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000684136
194 https://doi.org/10.1007/978-94-017-9032-1_14
195 rdf:type schema:CreativeWork
196 sg:pub.10.1007/s11120-013-9824-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025197531
197 https://doi.org/10.1007/s11120-013-9824-3
198 rdf:type schema:CreativeWork
199 sg:pub.10.1007/s11120-013-9857-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019083914
200 https://doi.org/10.1007/s11120-013-9857-7
201 rdf:type schema:CreativeWork
202 sg:pub.10.1007/s11738-016-2113-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1000426586
203 https://doi.org/10.1007/s11738-016-2113-y
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/nature06262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050377161
206 https://doi.org/10.1038/nature06262
207 rdf:type schema:CreativeWork
208 sg:pub.10.1038/nature08587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036072520
209 https://doi.org/10.1038/nature08587
210 rdf:type schema:CreativeWork
211 sg:pub.10.1038/nchembio.1755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014109674
212 https://doi.org/10.1038/nchembio.1755
213 rdf:type schema:CreativeWork
214 sg:pub.10.1038/nplants.2016.45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051372358
215 https://doi.org/10.1038/nplants.2016.45
216 rdf:type schema:CreativeWork
217 sg:pub.10.1038/srep21339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001869484
218 https://doi.org/10.1038/srep21339
219 rdf:type schema:CreativeWork
220 grid-institutes:grid.116068.8 schema:alternateName Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, Massachusetts, USA
221 schema:name Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, Massachusetts, USA
222 rdf:type schema:Organization
223 grid-institutes:grid.503048.a schema:alternateName Istituto per la Protezione delle Piante (IPP), Consiglio Nazionale delle Ricerche (CNR), Strada delle Cacce 73, 10135, Turin, Italy
224 schema:name Department of Biotechnology, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134, Verona, Italy
225 Istituto per la Protezione delle Piante (IPP), Consiglio Nazionale delle Ricerche (CNR), Strada delle Cacce 73, 10135, Turin, Italy
226 rdf:type schema:Organization
227 grid-institutes:grid.5611.3 schema:alternateName Department of Biotechnology, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134, Verona, Italy
228 schema:name Department of Biotechnology, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134, Verona, Italy
229 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...