Observation of the isotope effect in sub-kelvin reactions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-04

AUTHORS

Etay Lavert-Ofir, Yuval Shagam, Alon B. Henson, Sasha Gersten, Jacek Kłos, Piotr S. Żuchowski, Julia Narevicius, Edvardas Narevicius

ABSTRACT

Quantum phenomena in the translational motion of reactants, which are usually negligible at room temperature, can dominate reaction dynamics at low temperatures. In such cold conditions, even the weak centrifugal force is enough to create a potential barrier that keeps reactants separated. However, reactions may still proceed through tunnelling because, at low temperatures, wave-like properties become important. At certain de Broglie wavelengths, the colliding particles can become trapped in long-lived metastable scattering states, leading to sharp increases in the total reaction rate. Here, we show that these metastable states are responsible for a dramatic, order-of-magnitude-strong, quantum kinetic isotope effect by measuring the absolute Penning ionization reaction rates between hydrogen isotopologues and metastable helium down to 0.01 K. We demonstrate that measurements of a single isotope are insufficient to constrain ab initio calculations, making the kinetic isotope effect in the cold regime necessary to remove ambiguity among possible potential energy surfaces. More... »

PAGES

332-335

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nchem.1857

DOI

http://dx.doi.org/10.1038/nchem.1857

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037603343

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24651201


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Weizmann Institute of Science", 
          "id": "https://www.grid.ac/institutes/grid.13992.30", 
          "name": [
            "Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lavert-Ofir", 
        "givenName": "Etay", 
        "id": "sg:person.01127135256.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127135256.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Weizmann Institute of Science", 
          "id": "https://www.grid.ac/institutes/grid.13992.30", 
          "name": [
            "Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shagam", 
        "givenName": "Yuval", 
        "id": "sg:person.0644425144.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644425144.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Weizmann Institute of Science", 
          "id": "https://www.grid.ac/institutes/grid.13992.30", 
          "name": [
            "Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Henson", 
        "givenName": "Alon B.", 
        "id": "sg:person.01243363656.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243363656.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Weizmann Institute of Science", 
          "id": "https://www.grid.ac/institutes/grid.13992.30", 
          "name": [
            "Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gersten", 
        "givenName": "Sasha", 
        "id": "sg:person.01311477056.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311477056.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Maryland, College Park", 
          "id": "https://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742-2021, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "K\u0142os", 
        "givenName": "Jacek", 
        "id": "sg:person.0674751035.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674751035.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nicolaus Copernicus University", 
          "id": "https://www.grid.ac/institutes/grid.5374.5", 
          "name": [
            "Institute of Physics, Nicolaus Copernicus University, Grudzi\u0105dzka 5, 87-100 Toru\u0144, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "\u017buchowski", 
        "givenName": "Piotr S.", 
        "id": "sg:person.0614750352.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614750352.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Weizmann Institute of Science", 
          "id": "https://www.grid.ac/institutes/grid.13992.30", 
          "name": [
            "Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Narevicius", 
        "givenName": "Julia", 
        "id": "sg:person.0771110167.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771110167.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Weizmann Institute of Science", 
          "id": "https://www.grid.ac/institutes/grid.13992.30", 
          "name": [
            "Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Narevicius", 
        "givenName": "Edvardas", 
        "id": "sg:person.01332152467.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332152467.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/00268970902724955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007016191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.18.7.496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013412455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b910118g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015373744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b910118g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015373744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0709974105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016953189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3570596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017826498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.83.022713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021207615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.83.022713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021207615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4812182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023479473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.79.062708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027241138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.79.062708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027241138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1024677318645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027659108", 
          "https://doi.org/10.1023/a:1024677318645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028004583", 
          "https://doi.org/10.1038/nature08953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35010053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029859286", 
          "https://doi.org/10.1038/35010053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35010053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029859286", 
          "https://doi.org/10.1038/35010053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1184121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031197761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.063201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031269136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.063201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031269136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01442350500167161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038169460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr60211a004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054061846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp4045868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056095583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1715212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057782670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3244085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057923711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.481041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058077426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.481405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058079227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/167444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058498734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.39.164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060446627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.39.164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060446627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.40.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060446833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.40.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060446833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.73.1002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060453723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.73.1002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060453723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.023201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.023201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.173201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.173201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.1206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.1206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.12.87", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060837121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.12.87", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060837121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.65.337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.65.337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1123452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062453446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1229141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062467124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1229549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062467146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1241395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062468862"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-04", 
    "datePublishedReg": "2014-04-01", 
    "description": "Quantum phenomena in the translational motion of reactants, which are usually negligible at room temperature, can dominate reaction dynamics at low temperatures. In such cold conditions, even the weak centrifugal force is enough to create a potential barrier that keeps reactants separated. However, reactions may still proceed through tunnelling because, at low temperatures, wave-like properties become important. At certain de Broglie wavelengths, the colliding particles can become trapped in long-lived metastable scattering states, leading to sharp increases in the total reaction rate. Here, we show that these metastable states are responsible for a dramatic, order-of-magnitude-strong, quantum kinetic isotope effect by measuring the absolute Penning ionization reaction rates between hydrogen isotopologues and metastable helium down to 0.01 K. We demonstrate that measurements of a single isotope are insufficient to constrain ab initio calculations, making the kinetic isotope effect in the cold regime necessary to remove ambiguity among possible potential energy surfaces.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nchem.1857", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3139466", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1041224", 
        "issn": [
          "1755-4330", 
          "1755-4349"
        ], 
        "name": "Nature Chemistry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Observation of the isotope effect in sub-kelvin reactions", 
    "pagination": "332-335", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b3215518c4701b1ddd1129ca898bbd14fe04813dde0ced5da1d768e5d560d8a1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24651201"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101499734"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nchem.1857"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037603343"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nchem.1857", 
      "https://app.dimensions.ai/details/publication/pub.1037603343"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000425.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/nchem/journal/v6/n4/full/nchem.1857.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nchem.1857'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nchem.1857'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nchem.1857'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nchem.1857'


 

This table displays all metadata directly associated to this object as RDF triples.

228 TRIPLES      21 PREDICATES      62 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nchem.1857 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N85ec7bec621448ce94cbbe19fc7d8b1a
4 schema:citation sg:pub.10.1023/a:1024677318645
5 sg:pub.10.1038/35010053
6 sg:pub.10.1038/nature08953
7 https://doi.org/10.1021/cr60211a004
8 https://doi.org/10.1021/jp4045868
9 https://doi.org/10.1039/b910118g
10 https://doi.org/10.1063/1.1715212
11 https://doi.org/10.1063/1.3244085
12 https://doi.org/10.1063/1.3570596
13 https://doi.org/10.1063/1.481041
14 https://doi.org/10.1063/1.4812182
15 https://doi.org/10.1063/1.481405
16 https://doi.org/10.1073/pnas.0709974105
17 https://doi.org/10.1073/pnas.18.7.496
18 https://doi.org/10.1080/00268970902724955
19 https://doi.org/10.1080/01442350500167161
20 https://doi.org/10.1086/167444
21 https://doi.org/10.1103/physrev.39.164
22 https://doi.org/10.1103/physrev.40.1
23 https://doi.org/10.1103/physrev.73.1002
24 https://doi.org/10.1103/physreva.79.062708
25 https://doi.org/10.1103/physreva.83.022713
26 https://doi.org/10.1103/physrevlett.109.023201
27 https://doi.org/10.1103/physrevlett.109.173201
28 https://doi.org/10.1103/physrevlett.110.063201
29 https://doi.org/10.1103/physrevlett.85.1206
30 https://doi.org/10.1103/revmodphys.12.87
31 https://doi.org/10.1103/revmodphys.65.337
32 https://doi.org/10.1126/science.1123452
33 https://doi.org/10.1126/science.1184121
34 https://doi.org/10.1126/science.1229141
35 https://doi.org/10.1126/science.1229549
36 https://doi.org/10.1126/science.1241395
37 schema:datePublished 2014-04
38 schema:datePublishedReg 2014-04-01
39 schema:description Quantum phenomena in the translational motion of reactants, which are usually negligible at room temperature, can dominate reaction dynamics at low temperatures. In such cold conditions, even the weak centrifugal force is enough to create a potential barrier that keeps reactants separated. However, reactions may still proceed through tunnelling because, at low temperatures, wave-like properties become important. At certain de Broglie wavelengths, the colliding particles can become trapped in long-lived metastable scattering states, leading to sharp increases in the total reaction rate. Here, we show that these metastable states are responsible for a dramatic, order-of-magnitude-strong, quantum kinetic isotope effect by measuring the absolute Penning ionization reaction rates between hydrogen isotopologues and metastable helium down to 0.01 K. We demonstrate that measurements of a single isotope are insufficient to constrain ab initio calculations, making the kinetic isotope effect in the cold regime necessary to remove ambiguity among possible potential energy surfaces.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree false
43 schema:isPartOf Nb3db9f604a0749609837d402d8e49ab3
44 Ncac5ed081d814c40b8b9a7763a4e088f
45 sg:journal.1041224
46 schema:name Observation of the isotope effect in sub-kelvin reactions
47 schema:pagination 332-335
48 schema:productId N25b1a869d39e4b05a4c791370949e467
49 N43929d4d5e9e446d988fbb6d305ed0bd
50 N4c24785fe0144853a63a4dec2bff256d
51 Na29d5e1fb9c24c63b2e3641cce3e7f1a
52 Nd5e34474ca3b47c19cc3ebea917363fc
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037603343
54 https://doi.org/10.1038/nchem.1857
55 schema:sdDatePublished 2019-04-11T01:47
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N635ea11e93bf4da09f8625e3aa6bb022
58 schema:url http://www.nature.com/nchem/journal/v6/n4/full/nchem.1857.html
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N25b1a869d39e4b05a4c791370949e467 schema:name pubmed_id
63 schema:value 24651201
64 rdf:type schema:PropertyValue
65 N43929d4d5e9e446d988fbb6d305ed0bd schema:name readcube_id
66 schema:value b3215518c4701b1ddd1129ca898bbd14fe04813dde0ced5da1d768e5d560d8a1
67 rdf:type schema:PropertyValue
68 N4be3a9b79f9a4cc7858e05f490cec77d rdf:first sg:person.0771110167.09
69 rdf:rest N8ca0f58406114c129e2f09f9c8687b59
70 N4c24785fe0144853a63a4dec2bff256d schema:name nlm_unique_id
71 schema:value 101499734
72 rdf:type schema:PropertyValue
73 N54cdc12151d940b78f5695a0fe4a7c3c rdf:first sg:person.01243363656.41
74 rdf:rest Nee01d77580174d6f809962cfaa33041c
75 N635ea11e93bf4da09f8625e3aa6bb022 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 N741caf21cb7549b39655f880cc16b2ac rdf:first sg:person.0674751035.80
78 rdf:rest Nb75df81cd3b0498390810e755b77045e
79 N85ec7bec621448ce94cbbe19fc7d8b1a rdf:first sg:person.01127135256.37
80 rdf:rest Nc5eba2f872cd4778be6e3a946b86788a
81 N8ca0f58406114c129e2f09f9c8687b59 rdf:first sg:person.01332152467.20
82 rdf:rest rdf:nil
83 Na29d5e1fb9c24c63b2e3641cce3e7f1a schema:name doi
84 schema:value 10.1038/nchem.1857
85 rdf:type schema:PropertyValue
86 Nb3db9f604a0749609837d402d8e49ab3 schema:issueNumber 4
87 rdf:type schema:PublicationIssue
88 Nb75df81cd3b0498390810e755b77045e rdf:first sg:person.0614750352.22
89 rdf:rest N4be3a9b79f9a4cc7858e05f490cec77d
90 Nc5eba2f872cd4778be6e3a946b86788a rdf:first sg:person.0644425144.05
91 rdf:rest N54cdc12151d940b78f5695a0fe4a7c3c
92 Ncac5ed081d814c40b8b9a7763a4e088f schema:volumeNumber 6
93 rdf:type schema:PublicationVolume
94 Nd5e34474ca3b47c19cc3ebea917363fc schema:name dimensions_id
95 schema:value pub.1037603343
96 rdf:type schema:PropertyValue
97 Nee01d77580174d6f809962cfaa33041c rdf:first sg:person.01311477056.30
98 rdf:rest N741caf21cb7549b39655f880cc16b2ac
99 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
100 schema:name Physical Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
103 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
104 rdf:type schema:DefinedTerm
105 sg:grant.3139466 http://pending.schema.org/fundedItem sg:pub.10.1038/nchem.1857
106 rdf:type schema:MonetaryGrant
107 sg:journal.1041224 schema:issn 1755-4330
108 1755-4349
109 schema:name Nature Chemistry
110 rdf:type schema:Periodical
111 sg:person.01127135256.37 schema:affiliation https://www.grid.ac/institutes/grid.13992.30
112 schema:familyName Lavert-Ofir
113 schema:givenName Etay
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127135256.37
115 rdf:type schema:Person
116 sg:person.01243363656.41 schema:affiliation https://www.grid.ac/institutes/grid.13992.30
117 schema:familyName Henson
118 schema:givenName Alon B.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243363656.41
120 rdf:type schema:Person
121 sg:person.01311477056.30 schema:affiliation https://www.grid.ac/institutes/grid.13992.30
122 schema:familyName Gersten
123 schema:givenName Sasha
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311477056.30
125 rdf:type schema:Person
126 sg:person.01332152467.20 schema:affiliation https://www.grid.ac/institutes/grid.13992.30
127 schema:familyName Narevicius
128 schema:givenName Edvardas
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332152467.20
130 rdf:type schema:Person
131 sg:person.0614750352.22 schema:affiliation https://www.grid.ac/institutes/grid.5374.5
132 schema:familyName Żuchowski
133 schema:givenName Piotr S.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614750352.22
135 rdf:type schema:Person
136 sg:person.0644425144.05 schema:affiliation https://www.grid.ac/institutes/grid.13992.30
137 schema:familyName Shagam
138 schema:givenName Yuval
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644425144.05
140 rdf:type schema:Person
141 sg:person.0674751035.80 schema:affiliation https://www.grid.ac/institutes/grid.164295.d
142 schema:familyName Kłos
143 schema:givenName Jacek
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674751035.80
145 rdf:type schema:Person
146 sg:person.0771110167.09 schema:affiliation https://www.grid.ac/institutes/grid.13992.30
147 schema:familyName Narevicius
148 schema:givenName Julia
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771110167.09
150 rdf:type schema:Person
151 sg:pub.10.1023/a:1024677318645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027659108
152 https://doi.org/10.1023/a:1024677318645
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/35010053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029859286
155 https://doi.org/10.1038/35010053
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/nature08953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028004583
158 https://doi.org/10.1038/nature08953
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1021/cr60211a004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054061846
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1021/jp4045868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056095583
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1039/b910118g schema:sameAs https://app.dimensions.ai/details/publication/pub.1015373744
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1063/1.1715212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057782670
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1063/1.3244085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057923711
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1063/1.3570596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017826498
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1063/1.481041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058077426
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1063/1.4812182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023479473
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1063/1.481405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058079227
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1073/pnas.0709974105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016953189
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1073/pnas.18.7.496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013412455
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1080/00268970902724955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007016191
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1080/01442350500167161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038169460
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1086/167444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058498734
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physrev.39.164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060446627
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrev.40.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060446833
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physrev.73.1002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060453723
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physreva.79.062708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027241138
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1103/physreva.83.022713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021207615
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1103/physrevlett.109.023201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060760043
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1103/physrevlett.109.173201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060760483
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1103/physrevlett.110.063201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031269136
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1103/physrevlett.85.1206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060821649
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1103/revmodphys.12.87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060837121
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/revmodphys.65.337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839288
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1126/science.1123452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062453446
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1126/science.1184121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031197761
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1126/science.1229141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062467124
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1126/science.1229549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062467146
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1126/science.1241395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062468862
219 rdf:type schema:CreativeWork
220 https://www.grid.ac/institutes/grid.13992.30 schema:alternateName Weizmann Institute of Science
221 schema:name Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
222 rdf:type schema:Organization
223 https://www.grid.ac/institutes/grid.164295.d schema:alternateName University of Maryland, College Park
224 schema:name Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742-2021, USA
225 rdf:type schema:Organization
226 https://www.grid.ac/institutes/grid.5374.5 schema:alternateName Nicolaus Copernicus University
227 schema:name Institute of Physics, Nicolaus Copernicus University, Grudziądzka 5, 87-100 Toruń, Poland
228 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...