Elucidation of the timescales and origins of quantum electronic coherence in LHCII View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-03-25

AUTHORS

Gabriela S. Schlau-Cohen, Akihito Ishizaki, Tessa R. Calhoun, Naomi S. Ginsberg, Matteo Ballottari, Roberto Bassi, Graham R. Fleming

ABSTRACT

Photosynthetic organisms harvest sunlight with near unity quantum efficiency. The complexity of the electronic structure and energy transfer pathways within networks of photosynthetic pigment–protein complexes often obscures the mechanisms behind the efficient light-absorption-to-charge conversion process. Recent experiments, particularly using two-dimensional spectroscopy, have detected long-lived quantum coherence, which theory suggests may contribute to the effectiveness of photosynthetic energy transfer. Here, we present a new, direct method to access coherence signals: a coherence-specific polarization sequence, which isolates the excitonic coherence features from the population signals that usually dominate two-dimensional spectra. With this polarization sequence, we elucidate coherent dynamics and determine the overall measurable lifetime of excitonic coherence in the major light-harvesting complex of photosystem II. Coherence decays on two distinct timescales of 47 fs and ~800 fs. We present theoretical calculations to show that these two timescales are from weakly and moderately strongly coupled pigments, respectively. More... »

PAGES

389-395

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nchem.1303

DOI

http://dx.doi.org/10.1038/nchem.1303

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031281408

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22522259


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Energy Transfer", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Half-Life", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Photosystem II Protein Complex", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pigments, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spectrum Analysis", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Present address: Department of Chemistry, Stanford University, Stanford, California 94305, USA (G.S.S-C.), Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan (A.I.), Lewis-Sigler Institue for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA (T.R.C.)", 
          "id": "http://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Chemistry, University of California, 94720, Berkeley, California, USA", 
            "Physical Biosciences Division, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, USA", 
            "Present address: Department of Chemistry, Stanford University, Stanford, California 94305, USA (G.S.S-C.), Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan (A.I.), Lewis-Sigler Institue for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA (T.R.C.)"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schlau-Cohen", 
        "givenName": "Gabriela S.", 
        "id": "sg:person.01246446421.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246446421.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Present address: Department of Chemistry, Stanford University, Stanford, California 94305, USA (G.S.S-C.), Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan (A.I.), Lewis-Sigler Institue for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA (T.R.C.)", 
          "id": "http://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Chemistry, University of California, 94720, Berkeley, California, USA", 
            "Physical Biosciences Division, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, USA", 
            "Present address: Department of Chemistry, Stanford University, Stanford, California 94305, USA (G.S.S-C.), Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan (A.I.), Lewis-Sigler Institue for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA (T.R.C.)"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ishizaki", 
        "givenName": "Akihito", 
        "id": "sg:person.01177606515.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177606515.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Present address: Department of Chemistry, Stanford University, Stanford, California 94305, USA (G.S.S-C.), Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan (A.I.), Lewis-Sigler Institue for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA (T.R.C.)", 
          "id": "http://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Chemistry, University of California, 94720, Berkeley, California, USA", 
            "Physical Biosciences Division, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, USA", 
            "Present address: Department of Chemistry, Stanford University, Stanford, California 94305, USA (G.S.S-C.), Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan (A.I.), Lewis-Sigler Institue for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA (T.R.C.)"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Calhoun", 
        "givenName": "Tessa R.", 
        "id": "sg:person.011000121545.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011000121545.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Physical Biosciences Division, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Department of Chemistry, University of California, 94720, Berkeley, California, USA", 
            "Physical Biosciences Division, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ginsberg", 
        "givenName": "Naomi S.", 
        "id": "sg:person.01337240700.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337240700.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Biotecnologie, Facolt\u00e0 di Scienze, Universit\u00e0 di Verona, I-37134, Strada Le Grazie, VeronaItalia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Dipartimento di Biotecnologie, Facolt\u00e0 di Scienze, Universit\u00e0 di Verona, I-37134, Strada Le Grazie, VeronaItalia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ballottari", 
        "givenName": "Matteo", 
        "id": "sg:person.01260322000.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260322000.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Biotecnologie, Facolt\u00e0 di Scienze, Universit\u00e0 di Verona, I-37134, Strada Le Grazie, VeronaItalia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Dipartimento di Biotecnologie, Facolt\u00e0 di Scienze, Universit\u00e0 di Verona, I-37134, Strada Le Grazie, VeronaItalia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bassi", 
        "givenName": "Roberto", 
        "id": "sg:person.0605371157.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605371157.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Physical Biosciences Division, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Department of Chemistry, University of California, 94720, Berkeley, California, USA", 
            "Physical Biosciences Division, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fleming", 
        "givenName": "Graham R.", 
        "id": "sg:person.0730605653.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730605653.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nchem.1145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038389219", 
          "https://doi.org/10.1038/nchem.1145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042993471", 
          "https://doi.org/10.1038/nature02373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030554219", 
          "https://doi.org/10.1038/nature05678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050086314", 
          "https://doi.org/10.1038/nature08811"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-03-25", 
    "datePublishedReg": "2012-03-25", 
    "description": "Photosynthetic organisms harvest sunlight with near unity quantum efficiency. The complexity of the electronic structure and energy transfer pathways within networks of photosynthetic pigment\u2013protein complexes often obscures the mechanisms behind the efficient light-absorption-to-charge conversion process. Recent experiments, particularly using two-dimensional spectroscopy, have detected long-lived quantum coherence, which theory suggests may contribute to the effectiveness of photosynthetic energy transfer. Here, we present a new, direct method to access coherence signals: a coherence-specific polarization sequence, which isolates the excitonic coherence features from the population signals that usually dominate two-dimensional spectra. With this polarization sequence, we elucidate coherent dynamics and determine the overall measurable lifetime of excitonic coherence in the major light-harvesting complex of photosystem II. Coherence decays on two distinct timescales of 47\u00a0fs and ~800\u00a0fs. We present theoretical calculations to show that these two timescales are from weakly and moderately strongly coupled pigments, respectively.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nchem.1303", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041224", 
        "issn": [
          "1755-4330", 
          "1755-4349"
        ], 
        "name": "Nature Chemistry", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "keywords": [
      "excitonic coherence", 
      "near-unity quantum efficiency", 
      "polarization sequences", 
      "quantum electronic coherences", 
      "unity quantum efficiency", 
      "two-dimensional spectroscopy", 
      "charge conversion process", 
      "photosynthetic energy transfer", 
      "photosynthetic pigment-protein complexes", 
      "two-dimensional spectra", 
      "quantum coherence", 
      "major light-harvesting complex", 
      "coherent dynamics", 
      "electronic coherence", 
      "pigment-protein complexes", 
      "coherence signals", 
      "energy transfer pathways", 
      "quantum efficiency", 
      "light-harvesting complex", 
      "electronic structure", 
      "recent experiments", 
      "theoretical calculations", 
      "transfer pathway", 
      "energy transfer", 
      "measurable lifetime", 
      "coherence", 
      "photosystem II", 
      "distinct timescales", 
      "FS", 
      "timescales", 
      "complexes", 
      "conversion process", 
      "photosynthetic organisms", 
      "direct method", 
      "spectroscopy", 
      "spectra", 
      "LHCII", 
      "calculations", 
      "lifetime", 
      "elucidation", 
      "population signals", 
      "signals", 
      "pigments", 
      "sunlight", 
      "dynamics", 
      "structure", 
      "transfer", 
      "theory", 
      "experiments", 
      "efficiency", 
      "origin", 
      "mechanism", 
      "process", 
      "method", 
      "pathway", 
      "organisms", 
      "sequence", 
      "network", 
      "complexity", 
      "effectiveness"
    ], 
    "name": "Elucidation of the timescales and origins of quantum electronic coherence in LHCII", 
    "pagination": "389-395", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031281408"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nchem.1303"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22522259"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nchem.1303", 
      "https://app.dimensions.ai/details/publication/pub.1031281408"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_573.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nchem.1303"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nchem.1303'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nchem.1303'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nchem.1303'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nchem.1303'


 

This table displays all metadata directly associated to this object as RDF triples.

204 TRIPLES      21 PREDICATES      93 URIs      82 LITERALS      12 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nchem.1303 schema:about N1ace4df022be49aa843a5ed43388ca29
2 N4667d7e44e494fee89544ee1dd7fed1d
3 Na7ddd6a5608449329540fd6996a2e93b
4 Nae0b9f04712141d8a5846721b8052308
5 Nf920348cc4594a3b8a8105d99a4c7bc8
6 anzsrc-for:03
7 schema:author N57b6fc81c34a4a3babc1d0fe8dd6b750
8 schema:citation sg:pub.10.1038/nature02373
9 sg:pub.10.1038/nature05678
10 sg:pub.10.1038/nature08811
11 sg:pub.10.1038/nchem.1145
12 schema:datePublished 2012-03-25
13 schema:datePublishedReg 2012-03-25
14 schema:description Photosynthetic organisms harvest sunlight with near unity quantum efficiency. The complexity of the electronic structure and energy transfer pathways within networks of photosynthetic pigment–protein complexes often obscures the mechanisms behind the efficient light-absorption-to-charge conversion process. Recent experiments, particularly using two-dimensional spectroscopy, have detected long-lived quantum coherence, which theory suggests may contribute to the effectiveness of photosynthetic energy transfer. Here, we present a new, direct method to access coherence signals: a coherence-specific polarization sequence, which isolates the excitonic coherence features from the population signals that usually dominate two-dimensional spectra. With this polarization sequence, we elucidate coherent dynamics and determine the overall measurable lifetime of excitonic coherence in the major light-harvesting complex of photosystem II. Coherence decays on two distinct timescales of 47 fs and ~800 fs. We present theoretical calculations to show that these two timescales are from weakly and moderately strongly coupled pigments, respectively.
15 schema:genre article
16 schema:isAccessibleForFree false
17 schema:isPartOf N15746094b8664a36b4db0bdfdc68f23d
18 Nfbc990a4f4634bce913debdccc292c27
19 sg:journal.1041224
20 schema:keywords FS
21 LHCII
22 calculations
23 charge conversion process
24 coherence
25 coherence signals
26 coherent dynamics
27 complexes
28 complexity
29 conversion process
30 direct method
31 distinct timescales
32 dynamics
33 effectiveness
34 efficiency
35 electronic coherence
36 electronic structure
37 elucidation
38 energy transfer
39 energy transfer pathways
40 excitonic coherence
41 experiments
42 lifetime
43 light-harvesting complex
44 major light-harvesting complex
45 measurable lifetime
46 mechanism
47 method
48 near-unity quantum efficiency
49 network
50 organisms
51 origin
52 pathway
53 photosynthetic energy transfer
54 photosynthetic organisms
55 photosynthetic pigment-protein complexes
56 photosystem II
57 pigment-protein complexes
58 pigments
59 polarization sequences
60 population signals
61 process
62 quantum coherence
63 quantum efficiency
64 quantum electronic coherences
65 recent experiments
66 sequence
67 signals
68 spectra
69 spectroscopy
70 structure
71 sunlight
72 theoretical calculations
73 theory
74 timescales
75 transfer
76 transfer pathway
77 two-dimensional spectra
78 two-dimensional spectroscopy
79 unity quantum efficiency
80 schema:name Elucidation of the timescales and origins of quantum electronic coherence in LHCII
81 schema:pagination 389-395
82 schema:productId N1cfaf5f9db8f42aa9ce0b141797c57f8
83 N99a7e9889f9b49dc9f7c80ef23696d4b
84 Naa83448c950d42f7bfbde72e4405e744
85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031281408
86 https://doi.org/10.1038/nchem.1303
87 schema:sdDatePublished 2022-09-02T15:57
88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
89 schema:sdPublisher N3342a82defd74a6893be319412227623
90 schema:url https://doi.org/10.1038/nchem.1303
91 sgo:license sg:explorer/license/
92 sgo:sdDataset articles
93 rdf:type schema:ScholarlyArticle
94 N01b1467a34b24e93acff108a57c90026 rdf:first sg:person.0730605653.42
95 rdf:rest rdf:nil
96 N033c7a96f3f84a3296d4d0b0494c1dfd rdf:first sg:person.01260322000.32
97 rdf:rest N73d11487cdec4825a2ae7a30f637572b
98 N15746094b8664a36b4db0bdfdc68f23d schema:volumeNumber 4
99 rdf:type schema:PublicationVolume
100 N1ace4df022be49aa843a5ed43388ca29 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Energy Transfer
102 rdf:type schema:DefinedTerm
103 N1cfaf5f9db8f42aa9ce0b141797c57f8 schema:name dimensions_id
104 schema:value pub.1031281408
105 rdf:type schema:PropertyValue
106 N262d0ff2359f4328b17c7b64fb5f0fd6 rdf:first sg:person.01337240700.49
107 rdf:rest N033c7a96f3f84a3296d4d0b0494c1dfd
108 N3342a82defd74a6893be319412227623 schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 N4667d7e44e494fee89544ee1dd7fed1d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Pigments, Biological
112 rdf:type schema:DefinedTerm
113 N57b6fc81c34a4a3babc1d0fe8dd6b750 rdf:first sg:person.01246446421.54
114 rdf:rest N63a66c5394dd43a39a21bb5e1fda40d8
115 N63a66c5394dd43a39a21bb5e1fda40d8 rdf:first sg:person.01177606515.86
116 rdf:rest Na9dc422dbd9b4cdfaff3c7a5c945537e
117 N73d11487cdec4825a2ae7a30f637572b rdf:first sg:person.0605371157.35
118 rdf:rest N01b1467a34b24e93acff108a57c90026
119 N99a7e9889f9b49dc9f7c80ef23696d4b schema:name pubmed_id
120 schema:value 22522259
121 rdf:type schema:PropertyValue
122 Na7ddd6a5608449329540fd6996a2e93b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Photosystem II Protein Complex
124 rdf:type schema:DefinedTerm
125 Na9dc422dbd9b4cdfaff3c7a5c945537e rdf:first sg:person.011000121545.22
126 rdf:rest N262d0ff2359f4328b17c7b64fb5f0fd6
127 Naa83448c950d42f7bfbde72e4405e744 schema:name doi
128 schema:value 10.1038/nchem.1303
129 rdf:type schema:PropertyValue
130 Nae0b9f04712141d8a5846721b8052308 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Half-Life
132 rdf:type schema:DefinedTerm
133 Nf920348cc4594a3b8a8105d99a4c7bc8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Spectrum Analysis
135 rdf:type schema:DefinedTerm
136 Nfbc990a4f4634bce913debdccc292c27 schema:issueNumber 5
137 rdf:type schema:PublicationIssue
138 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
139 schema:name Chemical Sciences
140 rdf:type schema:DefinedTerm
141 sg:journal.1041224 schema:issn 1755-4330
142 1755-4349
143 schema:name Nature Chemistry
144 schema:publisher Springer Nature
145 rdf:type schema:Periodical
146 sg:person.011000121545.22 schema:affiliation grid-institutes:grid.168010.e
147 schema:familyName Calhoun
148 schema:givenName Tessa R.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011000121545.22
150 rdf:type schema:Person
151 sg:person.01177606515.86 schema:affiliation grid-institutes:grid.168010.e
152 schema:familyName Ishizaki
153 schema:givenName Akihito
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177606515.86
155 rdf:type schema:Person
156 sg:person.01246446421.54 schema:affiliation grid-institutes:grid.168010.e
157 schema:familyName Schlau-Cohen
158 schema:givenName Gabriela S.
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246446421.54
160 rdf:type schema:Person
161 sg:person.01260322000.32 schema:affiliation grid-institutes:None
162 schema:familyName Ballottari
163 schema:givenName Matteo
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260322000.32
165 rdf:type schema:Person
166 sg:person.01337240700.49 schema:affiliation grid-institutes:grid.184769.5
167 schema:familyName Ginsberg
168 schema:givenName Naomi S.
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337240700.49
170 rdf:type schema:Person
171 sg:person.0605371157.35 schema:affiliation grid-institutes:None
172 schema:familyName Bassi
173 schema:givenName Roberto
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605371157.35
175 rdf:type schema:Person
176 sg:person.0730605653.42 schema:affiliation grid-institutes:grid.184769.5
177 schema:familyName Fleming
178 schema:givenName Graham R.
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730605653.42
180 rdf:type schema:Person
181 sg:pub.10.1038/nature02373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042993471
182 https://doi.org/10.1038/nature02373
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/nature05678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030554219
185 https://doi.org/10.1038/nature05678
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/nature08811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050086314
188 https://doi.org/10.1038/nature08811
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/nchem.1145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038389219
191 https://doi.org/10.1038/nchem.1145
192 rdf:type schema:CreativeWork
193 grid-institutes:None schema:alternateName Dipartimento di Biotecnologie, Facoltà di Scienze, Università di Verona, I-37134, Strada Le Grazie, VeronaItalia
194 schema:name Dipartimento di Biotecnologie, Facoltà di Scienze, Università di Verona, I-37134, Strada Le Grazie, VeronaItalia
195 rdf:type schema:Organization
196 grid-institutes:grid.168010.e schema:alternateName Present address: Department of Chemistry, Stanford University, Stanford, California 94305, USA (G.S.S-C.), Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan (A.I.), Lewis-Sigler Institue for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA (T.R.C.)
197 schema:name Department of Chemistry, University of California, 94720, Berkeley, California, USA
198 Physical Biosciences Division, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, USA
199 Present address: Department of Chemistry, Stanford University, Stanford, California 94305, USA (G.S.S-C.), Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan (A.I.), Lewis-Sigler Institue for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA (T.R.C.)
200 rdf:type schema:Organization
201 grid-institutes:grid.184769.5 schema:alternateName Physical Biosciences Division, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, USA
202 schema:name Department of Chemistry, University of California, 94720, Berkeley, California, USA
203 Physical Biosciences Division, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, USA
204 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...