High-throughput classification of yeast mutants for functional genomics using metabolic footprinting View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-05-12

AUTHORS

Jess Allen, Hazel M Davey, David Broadhurst, Jim K Heald, Jem J Rowland, Stephen G Oliver, Douglas B Kell

ABSTRACT

Many technologies have been developed to help explain the function of genes discovered by systematic genome sequencing. At present, transcriptome and proteome studies dominate large-scale functional analysis strategies. Yet the metabolome, because it is 'downstream', should show greater effects of genetic or physiological changes and thus should be much closer to the phenotype of the organism. We earlier presented a functional analysis strategy that used metabolic fingerprinting to reveal the phenotype of silent mutations of yeast genes1. However, this is difficult to scale up for high-throughput screening. Here we present an alternative that has the required throughput (2 min per sample). This 'metabolic footprinting' approach recognizes the significance of 'overflow metabolism' in appropriate media. Measuring intracellular metabolites is time-consuming and subject to technical difficulties caused by the rapid turnover of intracellular metabolites and the need to quench metabolism and separate metabolites from the extracellular space. We therefore focused instead on direct, noninvasive, mass spectrometric monitoring of extracellular metabolites in spent culture medium. Metabolic footprinting can distinguish between different physiological states of wild-type yeast and between yeast single-gene deletion mutants even from related areas of metabolism. By using appropriate clustering and machine learning techniques, the latter based on genetic programming2,3,4,5,6,7,8, we show that metabolic footprinting is an effective method to classify 'unknown' mutants by genetic defect. More... »

PAGES

692-696

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nbt823

DOI

http://dx.doi.org/10.1038/nbt823

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051888256

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/12740584


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cells, Cultured", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Culture Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Energy Metabolism", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Extracellular Space", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mass Spectrometry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multivariate Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quality Control", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saccharomyces cerevisiae", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spectrometry, Mass, Electrospray Ionization", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Biological Sciences, Cledwyn Building, University of Wales, SY23 3DD, Aberystwyth, Aberystwyth, UK", 
          "id": "http://www.grid.ac/institutes/grid.8155.9", 
          "name": [
            "Institute of Biological Sciences, Cledwyn Building, University of Wales, SY23 3DD, Aberystwyth, Aberystwyth, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Allen", 
        "givenName": "Jess", 
        "id": "sg:person.01333452462.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333452462.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Biological Sciences, Cledwyn Building, University of Wales, SY23 3DD, Aberystwyth, Aberystwyth, UK", 
          "id": "http://www.grid.ac/institutes/grid.8155.9", 
          "name": [
            "Institute of Biological Sciences, Cledwyn Building, University of Wales, SY23 3DD, Aberystwyth, Aberystwyth, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Davey", 
        "givenName": "Hazel M", 
        "id": "sg:person.01133602725.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133602725.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Biological Sciences, Cledwyn Building, University of Wales, SY23 3DD, Aberystwyth, Aberystwyth, UK", 
          "id": "http://www.grid.ac/institutes/grid.8155.9", 
          "name": [
            "Institute of Biological Sciences, Cledwyn Building, University of Wales, SY23 3DD, Aberystwyth, Aberystwyth, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Broadhurst", 
        "givenName": "David", 
        "id": "sg:person.01140423003.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140423003.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Biological Sciences, Cledwyn Building, University of Wales, SY23 3DD, Aberystwyth, Aberystwyth, UK", 
          "id": "http://www.grid.ac/institutes/grid.8155.9", 
          "name": [
            "Institute of Biological Sciences, Cledwyn Building, University of Wales, SY23 3DD, Aberystwyth, Aberystwyth, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heald", 
        "givenName": "Jim K", 
        "id": "sg:person.0615641117.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615641117.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of Wales, SY23 3DB, Aberystwyth, Aberystwyth, UK", 
          "id": "http://www.grid.ac/institutes/grid.8155.9", 
          "name": [
            "Department of Computer Science, University of Wales, SY23 3DB, Aberystwyth, Aberystwyth, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rowland", 
        "givenName": "Jem J", 
        "id": "sg:person.0673236772.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673236772.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Oxford Rd., M13 9PT, Manchester, UK", 
          "id": "http://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Oxford Rd., M13 9PT, Manchester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oliver", 
        "givenName": "Stephen G", 
        "id": "sg:person.01355602150.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355602150.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Biological Sciences, Cledwyn Building, University of Wales, SY23 3DD, Aberystwyth, Aberystwyth, UK", 
          "id": "http://www.grid.ac/institutes/grid.8155.9", 
          "name": [
            "Institute of Biological Sciences, Cledwyn Building, University of Wales, SY23 3DD, Aberystwyth, Aberystwyth, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kell", 
        "givenName": "Douglas B", 
        "id": "sg:person.01032405132.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032405132.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/83496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011462196", 
          "https://doi.org/10.1038/83496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-21606-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022356842", 
          "https://doi.org/10.1007/978-0-387-21606-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1013713905833", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027843923", 
          "https://doi.org/10.1023/a:1013713905833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0055923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108496411", 
          "https://doi.org/10.1007/bfb0055923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-5731-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004229077", 
          "https://doi.org/10.1007/978-1-4615-5731-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35001165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030909824", 
          "https://doi.org/10.1038/35001165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-04726-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032753834", 
          "https://doi.org/10.1007/978-3-662-04726-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-1904-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031639131", 
          "https://doi.org/10.1007/978-1-4757-1904-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-05-12", 
    "datePublishedReg": "2003-05-12", 
    "description": "Many technologies have been developed to help explain the function of genes discovered by systematic genome sequencing. At present, transcriptome and proteome studies dominate large-scale functional analysis strategies. Yet the metabolome, because it is 'downstream', should show greater effects of genetic or physiological changes and thus should be much closer to the phenotype of the organism. We earlier presented a functional analysis strategy that used metabolic fingerprinting to reveal the phenotype of silent mutations of yeast genes1. However, this is difficult to scale up for high-throughput screening. Here we present an alternative that has the required throughput (2 min per sample). This 'metabolic footprinting' approach recognizes the significance of 'overflow metabolism' in appropriate media. Measuring intracellular metabolites is time-consuming and subject to technical difficulties caused by the rapid turnover of intracellular metabolites and the need to quench metabolism and separate metabolites from the extracellular space. We therefore focused instead on direct, noninvasive, mass spectrometric monitoring of extracellular metabolites in spent culture medium. Metabolic footprinting can distinguish between different physiological states of wild-type yeast and between yeast single-gene deletion mutants even from related areas of metabolism. By using appropriate clustering and machine learning techniques, the latter based on genetic programming2,3,4,5,6,7,8, we show that metabolic footprinting is an effective method to classify 'unknown' mutants by genetic defect.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nbt823", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1115214", 
        "issn": [
          "1087-0156", 
          "1546-1696"
        ], 
        "name": "Nature Biotechnology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "keywords": [
      "metabolic footprinting", 
      "yeast single-gene deletion mutants", 
      "single-gene deletion mutants", 
      "function of genes", 
      "wild-type yeast", 
      "intracellular metabolites", 
      "yeast mutants", 
      "functional genomics", 
      "deletion mutants", 
      "high-throughput screening", 
      "proteome studies", 
      "genome sequencing", 
      "different physiological states", 
      "overflow metabolism", 
      "footprinting", 
      "mutants", 
      "extracellular metabolites", 
      "rapid turnover", 
      "high-throughput classification", 
      "silent mutations", 
      "physiological state", 
      "genetic defects", 
      "extracellular space", 
      "appropriate clustering", 
      "metabolic fingerprinting", 
      "phenotype", 
      "metabolism", 
      "physiological changes", 
      "culture medium", 
      "separate metabolites", 
      "mass spectrometric monitoring", 
      "genes1", 
      "metabolites", 
      "transcriptome", 
      "analysis strategy", 
      "genomics", 
      "throughput", 
      "yeast", 
      "genes", 
      "organisms", 
      "sequencing", 
      "mutations", 
      "metabolome", 
      "spectrometric monitoring", 
      "fingerprinting", 
      "turnover", 
      "effective method", 
      "appropriate media", 
      "technology", 
      "greater effect", 
      "related areas", 
      "medium", 
      "machine learning techniques", 
      "function", 
      "monitoring", 
      "defects", 
      "strategies", 
      "technique", 
      "screening", 
      "technical difficulties", 
      "clustering", 
      "changes", 
      "alternative", 
      "method", 
      "significance", 
      "area", 
      "study", 
      "effect", 
      "approach", 
      "learning techniques", 
      "need", 
      "state", 
      "classification", 
      "difficulties", 
      "space"
    ], 
    "name": "High-throughput classification of yeast mutants for functional genomics using metabolic footprinting", 
    "pagination": "692-696", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051888256"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nbt823"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "12740584"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nbt823", 
      "https://app.dimensions.ai/details/publication/pub.1051888256"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_373.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nbt823"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nbt823'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nbt823'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nbt823'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nbt823'


 

This table displays all metadata directly associated to this object as RDF triples.

263 TRIPLES      21 PREDICATES      120 URIs      104 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nbt823 schema:about N2070471499044351bfcdb3ad5ebdd82c
2 N367a9affa3894a028fabb80cf25d623b
3 N3a04ac1e64e74df2bca3a258a9328b50
4 N585ab14bef954f05be4f4e169c67ae2f
5 N6c4fba9bf0334fc0b074118de2fcf65d
6 N81897b02780f4263855adab4b2c8db16
7 N8e3966b359bb4ab8aa00e34b6d9c3102
8 N9bbe01821552475991acac40ba670338
9 N9ce231d290fd46d58e7d7411c4d9b411
10 Nb6516e317ce8491da824c551384851fa
11 Nee45b2b3521c4de79a1e9a402b831874
12 Nf01d68b522454f3e90dbacfa15a1ebee
13 anzsrc-for:06
14 anzsrc-for:0604
15 schema:author N1a489af0a0ca47e7981ff804b4796d55
16 schema:citation sg:pub.10.1007/978-0-387-21606-5
17 sg:pub.10.1007/978-1-4615-5731-9
18 sg:pub.10.1007/978-1-4757-1904-8
19 sg:pub.10.1007/978-3-662-04726-2
20 sg:pub.10.1007/bfb0055923
21 sg:pub.10.1023/a:1013713905833
22 sg:pub.10.1038/35001165
23 sg:pub.10.1038/83496
24 schema:datePublished 2003-05-12
25 schema:datePublishedReg 2003-05-12
26 schema:description Many technologies have been developed to help explain the function of genes discovered by systematic genome sequencing. At present, transcriptome and proteome studies dominate large-scale functional analysis strategies. Yet the metabolome, because it is 'downstream', should show greater effects of genetic or physiological changes and thus should be much closer to the phenotype of the organism. We earlier presented a functional analysis strategy that used metabolic fingerprinting to reveal the phenotype of silent mutations of yeast genes1. However, this is difficult to scale up for high-throughput screening. Here we present an alternative that has the required throughput (2 min per sample). This 'metabolic footprinting' approach recognizes the significance of 'overflow metabolism' in appropriate media. Measuring intracellular metabolites is time-consuming and subject to technical difficulties caused by the rapid turnover of intracellular metabolites and the need to quench metabolism and separate metabolites from the extracellular space. We therefore focused instead on direct, noninvasive, mass spectrometric monitoring of extracellular metabolites in spent culture medium. Metabolic footprinting can distinguish between different physiological states of wild-type yeast and between yeast single-gene deletion mutants even from related areas of metabolism. By using appropriate clustering and machine learning techniques, the latter based on genetic programming2,3,4,5,6,7,8, we show that metabolic footprinting is an effective method to classify 'unknown' mutants by genetic defect.
27 schema:genre article
28 schema:isAccessibleForFree false
29 schema:isPartOf N7160b2c6b68d4ff3a5fed151b433b691
30 Nc2184d244f324cfcbe1d8d131c695a09
31 sg:journal.1115214
32 schema:keywords alternative
33 analysis strategy
34 approach
35 appropriate clustering
36 appropriate media
37 area
38 changes
39 classification
40 clustering
41 culture medium
42 defects
43 deletion mutants
44 different physiological states
45 difficulties
46 effect
47 effective method
48 extracellular metabolites
49 extracellular space
50 fingerprinting
51 footprinting
52 function
53 function of genes
54 functional genomics
55 genes
56 genes1
57 genetic defects
58 genome sequencing
59 genomics
60 greater effect
61 high-throughput classification
62 high-throughput screening
63 intracellular metabolites
64 learning techniques
65 machine learning techniques
66 mass spectrometric monitoring
67 medium
68 metabolic fingerprinting
69 metabolic footprinting
70 metabolism
71 metabolites
72 metabolome
73 method
74 monitoring
75 mutants
76 mutations
77 need
78 organisms
79 overflow metabolism
80 phenotype
81 physiological changes
82 physiological state
83 proteome studies
84 rapid turnover
85 related areas
86 screening
87 separate metabolites
88 sequencing
89 significance
90 silent mutations
91 single-gene deletion mutants
92 space
93 spectrometric monitoring
94 state
95 strategies
96 study
97 technical difficulties
98 technique
99 technology
100 throughput
101 transcriptome
102 turnover
103 wild-type yeast
104 yeast
105 yeast mutants
106 yeast single-gene deletion mutants
107 schema:name High-throughput classification of yeast mutants for functional genomics using metabolic footprinting
108 schema:pagination 692-696
109 schema:productId N116f29d6ca434832b05789dd45fdfba1
110 N261c0f2beceb49a985522c25b1f0d5a4
111 N7b8ef98b559c48fab1e37b78fca48963
112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051888256
113 https://doi.org/10.1038/nbt823
114 schema:sdDatePublished 2022-09-02T15:51
115 schema:sdLicense https://scigraph.springernature.com/explorer/license/
116 schema:sdPublisher Nd2cf42355b97401bac26d6d68ce23f09
117 schema:url https://doi.org/10.1038/nbt823
118 sgo:license sg:explorer/license/
119 sgo:sdDataset articles
120 rdf:type schema:ScholarlyArticle
121 N116f29d6ca434832b05789dd45fdfba1 schema:name doi
122 schema:value 10.1038/nbt823
123 rdf:type schema:PropertyValue
124 N1a489af0a0ca47e7981ff804b4796d55 rdf:first sg:person.01333452462.69
125 rdf:rest Nffc924902b2e42baad95cc9eac6badf4
126 N2070471499044351bfcdb3ad5ebdd82c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Energy Metabolism
128 rdf:type schema:DefinedTerm
129 N237f7d352c274b11a954b9247efeb30b rdf:first sg:person.01032405132.18
130 rdf:rest rdf:nil
131 N261c0f2beceb49a985522c25b1f0d5a4 schema:name pubmed_id
132 schema:value 12740584
133 rdf:type schema:PropertyValue
134 N332b329843d84388998b69379d2e0a05 rdf:first sg:person.01140423003.13
135 rdf:rest N9f2cdfd6c59e404faf30e5ed89abd87c
136 N367a9affa3894a028fabb80cf25d623b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Cells, Cultured
138 rdf:type schema:DefinedTerm
139 N39326e4f00cd4eef821fade44a221d36 rdf:first sg:person.0673236772.72
140 rdf:rest N4fa6a330c38b43d3b167479f7735e82d
141 N3a04ac1e64e74df2bca3a258a9328b50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Extracellular Space
143 rdf:type schema:DefinedTerm
144 N4fa6a330c38b43d3b167479f7735e82d rdf:first sg:person.01355602150.15
145 rdf:rest N237f7d352c274b11a954b9247efeb30b
146 N585ab14bef954f05be4f4e169c67ae2f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Quality Control
148 rdf:type schema:DefinedTerm
149 N6c4fba9bf0334fc0b074118de2fcf65d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Multivariate Analysis
151 rdf:type schema:DefinedTerm
152 N7160b2c6b68d4ff3a5fed151b433b691 schema:volumeNumber 21
153 rdf:type schema:PublicationVolume
154 N7b8ef98b559c48fab1e37b78fca48963 schema:name dimensions_id
155 schema:value pub.1051888256
156 rdf:type schema:PropertyValue
157 N81897b02780f4263855adab4b2c8db16 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Gene Expression Profiling
159 rdf:type schema:DefinedTerm
160 N8e3966b359bb4ab8aa00e34b6d9c3102 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Culture Media
162 rdf:type schema:DefinedTerm
163 N9bbe01821552475991acac40ba670338 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Genomics
165 rdf:type schema:DefinedTerm
166 N9ce231d290fd46d58e7d7411c4d9b411 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Mass Spectrometry
168 rdf:type schema:DefinedTerm
169 N9f2cdfd6c59e404faf30e5ed89abd87c rdf:first sg:person.0615641117.21
170 rdf:rest N39326e4f00cd4eef821fade44a221d36
171 Nb6516e317ce8491da824c551384851fa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Proteomics
173 rdf:type schema:DefinedTerm
174 Nc2184d244f324cfcbe1d8d131c695a09 schema:issueNumber 6
175 rdf:type schema:PublicationIssue
176 Nd2cf42355b97401bac26d6d68ce23f09 schema:name Springer Nature - SN SciGraph project
177 rdf:type schema:Organization
178 Nee45b2b3521c4de79a1e9a402b831874 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Spectrometry, Mass, Electrospray Ionization
180 rdf:type schema:DefinedTerm
181 Nf01d68b522454f3e90dbacfa15a1ebee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Saccharomyces cerevisiae
183 rdf:type schema:DefinedTerm
184 Nffc924902b2e42baad95cc9eac6badf4 rdf:first sg:person.01133602725.40
185 rdf:rest N332b329843d84388998b69379d2e0a05
186 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
187 schema:name Biological Sciences
188 rdf:type schema:DefinedTerm
189 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
190 schema:name Genetics
191 rdf:type schema:DefinedTerm
192 sg:journal.1115214 schema:issn 1087-0156
193 1546-1696
194 schema:name Nature Biotechnology
195 schema:publisher Springer Nature
196 rdf:type schema:Periodical
197 sg:person.01032405132.18 schema:affiliation grid-institutes:grid.8155.9
198 schema:familyName Kell
199 schema:givenName Douglas B
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032405132.18
201 rdf:type schema:Person
202 sg:person.01133602725.40 schema:affiliation grid-institutes:grid.8155.9
203 schema:familyName Davey
204 schema:givenName Hazel M
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133602725.40
206 rdf:type schema:Person
207 sg:person.01140423003.13 schema:affiliation grid-institutes:grid.8155.9
208 schema:familyName Broadhurst
209 schema:givenName David
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140423003.13
211 rdf:type schema:Person
212 sg:person.01333452462.69 schema:affiliation grid-institutes:grid.8155.9
213 schema:familyName Allen
214 schema:givenName Jess
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333452462.69
216 rdf:type schema:Person
217 sg:person.01355602150.15 schema:affiliation grid-institutes:grid.5379.8
218 schema:familyName Oliver
219 schema:givenName Stephen G
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355602150.15
221 rdf:type schema:Person
222 sg:person.0615641117.21 schema:affiliation grid-institutes:grid.8155.9
223 schema:familyName Heald
224 schema:givenName Jim K
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615641117.21
226 rdf:type schema:Person
227 sg:person.0673236772.72 schema:affiliation grid-institutes:grid.8155.9
228 schema:familyName Rowland
229 schema:givenName Jem J
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673236772.72
231 rdf:type schema:Person
232 sg:pub.10.1007/978-0-387-21606-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022356842
233 https://doi.org/10.1007/978-0-387-21606-5
234 rdf:type schema:CreativeWork
235 sg:pub.10.1007/978-1-4615-5731-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004229077
236 https://doi.org/10.1007/978-1-4615-5731-9
237 rdf:type schema:CreativeWork
238 sg:pub.10.1007/978-1-4757-1904-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031639131
239 https://doi.org/10.1007/978-1-4757-1904-8
240 rdf:type schema:CreativeWork
241 sg:pub.10.1007/978-3-662-04726-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032753834
242 https://doi.org/10.1007/978-3-662-04726-2
243 rdf:type schema:CreativeWork
244 sg:pub.10.1007/bfb0055923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108496411
245 https://doi.org/10.1007/bfb0055923
246 rdf:type schema:CreativeWork
247 sg:pub.10.1023/a:1013713905833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027843923
248 https://doi.org/10.1023/a:1013713905833
249 rdf:type schema:CreativeWork
250 sg:pub.10.1038/35001165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030909824
251 https://doi.org/10.1038/35001165
252 rdf:type schema:CreativeWork
253 sg:pub.10.1038/83496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011462196
254 https://doi.org/10.1038/83496
255 rdf:type schema:CreativeWork
256 grid-institutes:grid.5379.8 schema:alternateName School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Oxford Rd., M13 9PT, Manchester, UK
257 schema:name School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Oxford Rd., M13 9PT, Manchester, UK
258 rdf:type schema:Organization
259 grid-institutes:grid.8155.9 schema:alternateName Department of Computer Science, University of Wales, SY23 3DB, Aberystwyth, Aberystwyth, UK
260 Institute of Biological Sciences, Cledwyn Building, University of Wales, SY23 3DD, Aberystwyth, Aberystwyth, UK
261 schema:name Department of Computer Science, University of Wales, SY23 3DB, Aberystwyth, Aberystwyth, UK
262 Institute of Biological Sciences, Cledwyn Building, University of Wales, SY23 3DD, Aberystwyth, Aberystwyth, UK
263 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...