A PCR-based amplification method retaining the quantitative difference between two complex genomes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-09

AUTHORS

G. Mike Makrigiorgos, Subrata Chakrabarti, Yuzhi Zhang, Manjit Kaur, Brendan D. Price

ABSTRACT

With the increasing emergence of genome-wide analysis technologies (including comparative genomic hybridization (CGH), expression profiling on microarrays, differential display (DD), subtractive hybridization, and representational difference analysis (RDA)), there is frequently a need to amplify entire genomes or cDNAs by PCR to obtain enough material for comparisons among target and control samples. A major problem with PCR is that amplification occurs in a nonlinear manner and reproducibility is influenced by stray impurities. As a result, when two complex DNA populations are amplified separately, the quantitative relationship between two genes after amplification is generally not the same as their relation before amplification. Here we describe balanced PCR, a procedure that faithfully retains the difference among corresponding amplified genes by using a simple principle. Two distinct genomic DNA samples are tagged with oligonucleotides containing both a common and a unique DNA sequence. The genomic DNA samples are pooled and amplified in a single PCR tube using the common DNA tag. By mixing the two genomes, PCR loses the ability to discriminate among the different alleles and the influence of impurities is eliminated. The PCR-amplified pooled samples can be separated using the DNA tag unique to each individual genomic DNA sample. The principle of this method has been validated with synthetic DNA, genomic DNA, and cDNA applied on microarrays. By removing the bias of PCR, this method allows a balanced amplification of allelic fragments from two complex DNAs even after three sequential rounds of PCR. This balanced PCR approach should allow genetic analysis in minute laser-microdissected tissues, paraffin-embedded archived material, or single cells. More... »

PAGES

936-939

Journal

TITLE

Nature Biotechnology

ISSUE

9

VOLUME

20

Related Patents

  • Massively Parallel Single Cell Analysis
  • Method For Accurately Counting Starting Molecules
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • Methods And Systems For Digitally Counting Features On Arrays
  • Increasing Confidence Of Allele Calls With Molecular Counting
  • Increasing Confidence Of Allele Calls With Molecular Counting
  • Multiplex Amplification Methods
  • Increasing Confidence Of Allele Calls With Molecular Counting
  • Method Of Tagging Using A Split Dbr
  • Increasing Confidence Of Allele Calls With Molecular Counting
  • Gene Expression Analysis In Single Cells
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • Method For Preparing A Counter-Tagged Population Of Nucleic Acid Molecules
  • Method For Attaching A Counter Sequence To A Nucleic Acid Sample
  • Increasing Confidence Of Allele Calls With Molecular Counting
  • Nucleic Acid Encoding Reactions
  • Single-Particle Analysis Of Particle Populations
  • Multi-Primer Amplification Method For Tagging Of Target Nucleic Acids
  • Multiplex Amplification Methods
  • Spatially Addressable Molecular Barcoding
  • Method Of Adding A Dbr By Primer Extension
  • Spatially Addressable Molecular Barcoding
  • Polynucleotides For The Amplification And Analysis Of Whole Genome And Whole Transcriptome Libraries Generated By A Dna Polymerization Process
  • Increasing Confidence Of Allele Calls With Molecular Counting
  • 5-Methylcytosine Detection, Compositions And Methods Therefor
  • Gene Expression Analysis In Single Cells
  • Methods And Compositions For Generating And Amplifying Dna Libraries For Sensitive Detection And Analysis Of Dna Methylation
  • Species-Specific Primer Sets And Identification Of Species-Specific Dna Sequences Using Genome Fragment Enrichment
  • Methods And Compositions For Generating And Amplifying Dna Libraries For Sensitive Detection And Analysis Of Dna Methylation
  • Assay Methods For Increased Throughput Of Samples And/Or Targets
  • Methods For Detecting Multiple Target Nucleic Acids In Multiple Samples By Use Nucleotide Tags
  • Amplification And Analysis Of Whole Genome And Whole Transcriptome Libraries Generated By A Dna Polymerization Process
  • Massively Parallel Single Cell Analysis
  • Gene Expression Analysis In Single Cells
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • Increased Confidence Of Allele Calls With Molecular Counting
  • Massively Parallel Single Cell Analysis
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nbt724

    DOI

    http://dx.doi.org/10.1038/nbt724

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1024959327

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/12161758


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Complementary", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Expressed Sequence Tags", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Human", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lung", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polymerase Chain Reaction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Prostate", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Quality Control", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reproducibility of Results", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sensitivity and Specificity", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Department of Radiation Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Makrigiorgos", 
            "givenName": "G. Mike", 
            "id": "sg:person.01173617232.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173617232.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Radiation Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chakrabarti", 
            "givenName": "Subrata", 
            "id": "sg:person.01136361401.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136361401.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Radiation Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Yuzhi", 
            "id": "sg:person.01120533313.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120533313.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Radiation Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kaur", 
            "givenName": "Manjit", 
            "id": "sg:person.01067742717.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067742717.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Radiation Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Price", 
            "givenName": "Brendan D.", 
            "id": "sg:person.0645637500.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645637500.12"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1073/pnas.87.5.1663", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007853142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/29.13.e66", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015940105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.6.10.986", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018725591"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.91.6.2156", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022993456"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/abbi.2000.1700", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023129406"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/bbrc.1998.8471", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027042346"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1053/jhep.2001.23003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031440534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/22.25.5640", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040724924"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.96.8.4494", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049662628"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.91.12.5456", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050294969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.95.8.4487", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050813051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1354393", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062477287"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.270.5235.467", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062551475"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.274.5289.998", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062554765"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.8438152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062655586"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074557527", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074677024", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2002-09", 
        "datePublishedReg": "2002-09-01", 
        "description": "With the increasing emergence of genome-wide analysis technologies (including comparative genomic hybridization (CGH), expression profiling on microarrays, differential display (DD), subtractive hybridization, and representational difference analysis (RDA)), there is frequently a need to amplify entire genomes or cDNAs by PCR to obtain enough material for comparisons among target and control samples. A major problem with PCR is that amplification occurs in a nonlinear manner and reproducibility is influenced by stray impurities. As a result, when two complex DNA populations are amplified separately, the quantitative relationship between two genes after amplification is generally not the same as their relation before amplification. Here we describe balanced PCR, a procedure that faithfully retains the difference among corresponding amplified genes by using a simple principle. Two distinct genomic DNA samples are tagged with oligonucleotides containing both a common and a unique DNA sequence. The genomic DNA samples are pooled and amplified in a single PCR tube using the common DNA tag. By mixing the two genomes, PCR loses the ability to discriminate among the different alleles and the influence of impurities is eliminated. The PCR-amplified pooled samples can be separated using the DNA tag unique to each individual genomic DNA sample. The principle of this method has been validated with synthetic DNA, genomic DNA, and cDNA applied on microarrays. By removing the bias of PCR, this method allows a balanced amplification of allelic fragments from two complex DNAs even after three sequential rounds of PCR. This balanced PCR approach should allow genetic analysis in minute laser-microdissected tissues, paraffin-embedded archived material, or single cells.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nbt724", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1115214", 
            "issn": [
              "1087-0156", 
              "1546-1696"
            ], 
            "name": "Nature Biotechnology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "20"
          }
        ], 
        "name": "A PCR-based amplification method retaining the quantitative difference between two complex genomes", 
        "pagination": "936-939", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "76e79cf682da5559e4f6e4fc84338370f1b9c0920a0d3f93d583a9c92edf8b05"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "12161758"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9604648"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nbt724"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1024959327"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nbt724", 
          "https://app.dimensions.ai/details/publication/pub.1024959327"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87100_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/nbt724"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nbt724'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nbt724'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nbt724'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nbt724'


     

    This table displays all metadata directly associated to this object as RDF triples.

    197 TRIPLES      21 PREDICATES      57 URIs      32 LITERALS      20 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nbt724 schema:about N0e9c2f89c0704bc680e94fb5f7e5f304
    2 N69351d0b52614a058739ab4ffa11f056
    3 N7d1ba7af75e74330b13317021e5ba720
    4 N9213b21442334b3c96524f0e198e3352
    5 N972a76f275894df9b428ce286b4391bd
    6 N9ab5189fb092462fb6a00cc8fa551e2f
    7 Nc8ccdb7d525d41fe817e1764c732bcb6
    8 Nd34ab37d0f494b57a4269c03dd60d55f
    9 Nebf41fa2bcfd48d2a82dd762e581a032
    10 Nf193d2fca26a499bb2b2022f16053f48
    11 Nff2e6b3d1fe3447c9a0050ce0c49f218
    12 anzsrc-for:06
    13 anzsrc-for:0604
    14 schema:author N5a1be21eb633468fa73c59072ea2407e
    15 schema:citation https://app.dimensions.ai/details/publication/pub.1074557527
    16 https://app.dimensions.ai/details/publication/pub.1074677024
    17 https://doi.org/10.1006/abbi.2000.1700
    18 https://doi.org/10.1006/bbrc.1998.8471
    19 https://doi.org/10.1053/jhep.2001.23003
    20 https://doi.org/10.1073/pnas.87.5.1663
    21 https://doi.org/10.1073/pnas.91.12.5456
    22 https://doi.org/10.1073/pnas.91.6.2156
    23 https://doi.org/10.1073/pnas.95.8.4487
    24 https://doi.org/10.1073/pnas.96.8.4494
    25 https://doi.org/10.1093/nar/22.25.5640
    26 https://doi.org/10.1093/nar/29.13.e66
    27 https://doi.org/10.1101/gr.6.10.986
    28 https://doi.org/10.1126/science.1354393
    29 https://doi.org/10.1126/science.270.5235.467
    30 https://doi.org/10.1126/science.274.5289.998
    31 https://doi.org/10.1126/science.8438152
    32 schema:datePublished 2002-09
    33 schema:datePublishedReg 2002-09-01
    34 schema:description With the increasing emergence of genome-wide analysis technologies (including comparative genomic hybridization (CGH), expression profiling on microarrays, differential display (DD), subtractive hybridization, and representational difference analysis (RDA)), there is frequently a need to amplify entire genomes or cDNAs by PCR to obtain enough material for comparisons among target and control samples. A major problem with PCR is that amplification occurs in a nonlinear manner and reproducibility is influenced by stray impurities. As a result, when two complex DNA populations are amplified separately, the quantitative relationship between two genes after amplification is generally not the same as their relation before amplification. Here we describe balanced PCR, a procedure that faithfully retains the difference among corresponding amplified genes by using a simple principle. Two distinct genomic DNA samples are tagged with oligonucleotides containing both a common and a unique DNA sequence. The genomic DNA samples are pooled and amplified in a single PCR tube using the common DNA tag. By mixing the two genomes, PCR loses the ability to discriminate among the different alleles and the influence of impurities is eliminated. The PCR-amplified pooled samples can be separated using the DNA tag unique to each individual genomic DNA sample. The principle of this method has been validated with synthetic DNA, genomic DNA, and cDNA applied on microarrays. By removing the bias of PCR, this method allows a balanced amplification of allelic fragments from two complex DNAs even after three sequential rounds of PCR. This balanced PCR approach should allow genetic analysis in minute laser-microdissected tissues, paraffin-embedded archived material, or single cells.
    35 schema:genre research_article
    36 schema:inLanguage en
    37 schema:isAccessibleForFree false
    38 schema:isPartOf N692bff76e0f54b219f82ee4adca08e66
    39 N80981a8ba61f47f7be11aad10a2a6cda
    40 sg:journal.1115214
    41 schema:name A PCR-based amplification method retaining the quantitative difference between two complex genomes
    42 schema:pagination 936-939
    43 schema:productId N1c4a54d716ef494ca7d11a696ec7d6b8
    44 N50d01e52ddf1449ca596f824f15eb9c6
    45 N5214331b2ad1475d8f270d6031c61fc8
    46 N5230dc09abd846ec8daed9ff3f1f4b84
    47 Nce97e1d9792f488cb504a4d7e8ad34fd
    48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024959327
    49 https://doi.org/10.1038/nbt724
    50 schema:sdDatePublished 2019-04-11T12:24
    51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    52 schema:sdPublisher N4e838fa9474f41da93a0016f5f51123a
    53 schema:url http://www.nature.com/articles/nbt724
    54 sgo:license sg:explorer/license/
    55 sgo:sdDataset articles
    56 rdf:type schema:ScholarlyArticle
    57 N0e9c2f89c0704bc680e94fb5f7e5f304 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    58 schema:name Quality Control
    59 rdf:type schema:DefinedTerm
    60 N0ebea2b2d5184e42baecb449e6ee9472 schema:name Department of Radiation Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
    61 rdf:type schema:Organization
    62 N1c4a54d716ef494ca7d11a696ec7d6b8 schema:name readcube_id
    63 schema:value 76e79cf682da5559e4f6e4fc84338370f1b9c0920a0d3f93d583a9c92edf8b05
    64 rdf:type schema:PropertyValue
    65 N4e1db66d237445f88d3f2d332cd2bd1c schema:name Department of Radiation Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
    66 rdf:type schema:Organization
    67 N4e838fa9474f41da93a0016f5f51123a schema:name Springer Nature - SN SciGraph project
    68 rdf:type schema:Organization
    69 N50d01e52ddf1449ca596f824f15eb9c6 schema:name dimensions_id
    70 schema:value pub.1024959327
    71 rdf:type schema:PropertyValue
    72 N5214331b2ad1475d8f270d6031c61fc8 schema:name nlm_unique_id
    73 schema:value 9604648
    74 rdf:type schema:PropertyValue
    75 N5230dc09abd846ec8daed9ff3f1f4b84 schema:name doi
    76 schema:value 10.1038/nbt724
    77 rdf:type schema:PropertyValue
    78 N5a1be21eb633468fa73c59072ea2407e rdf:first sg:person.01173617232.38
    79 rdf:rest N82c852998f7c46d599312fd578ba4ad4
    80 N692bff76e0f54b219f82ee4adca08e66 schema:volumeNumber 20
    81 rdf:type schema:PublicationVolume
    82 N69351d0b52614a058739ab4ffa11f056 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    83 schema:name Humans
    84 rdf:type schema:DefinedTerm
    85 N7302d28d3aca4d20b9fa24dc3d0f29d3 rdf:first sg:person.0645637500.12
    86 rdf:rest rdf:nil
    87 N7d1ba7af75e74330b13317021e5ba720 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    88 schema:name Reproducibility of Results
    89 rdf:type schema:DefinedTerm
    90 N80981a8ba61f47f7be11aad10a2a6cda schema:issueNumber 9
    91 rdf:type schema:PublicationIssue
    92 N82c852998f7c46d599312fd578ba4ad4 rdf:first sg:person.01136361401.03
    93 rdf:rest N8851ad4cc2db435c90e5297805df1a08
    94 N8851ad4cc2db435c90e5297805df1a08 rdf:first sg:person.01120533313.55
    95 rdf:rest Nf4e56ee860ae41fcbae9e988de2c1bad
    96 N9213b21442334b3c96524f0e198e3352 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    97 schema:name Lung
    98 rdf:type schema:DefinedTerm
    99 N972a76f275894df9b428ce286b4391bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    100 schema:name DNA, Complementary
    101 rdf:type schema:DefinedTerm
    102 N9ab5189fb092462fb6a00cc8fa551e2f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Expressed Sequence Tags
    104 rdf:type schema:DefinedTerm
    105 Naeff9a6ae09d48c8a410cc58504fecfb schema:name Department of Radiation Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
    106 rdf:type schema:Organization
    107 Nb403289bc181482eb109e900fd298bd7 schema:name Department of Radiation Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
    108 rdf:type schema:Organization
    109 Nbb3f25bdacdf46adaeb7aa25cbd86156 schema:name Department of Radiation Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
    110 rdf:type schema:Organization
    111 Nc8ccdb7d525d41fe817e1764c732bcb6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Prostate
    113 rdf:type schema:DefinedTerm
    114 Nce97e1d9792f488cb504a4d7e8ad34fd schema:name pubmed_id
    115 schema:value 12161758
    116 rdf:type schema:PropertyValue
    117 Nd34ab37d0f494b57a4269c03dd60d55f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Genome, Human
    119 rdf:type schema:DefinedTerm
    120 Nebf41fa2bcfd48d2a82dd762e581a032 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Polymerase Chain Reaction
    122 rdf:type schema:DefinedTerm
    123 Nf193d2fca26a499bb2b2022f16053f48 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Male
    125 rdf:type schema:DefinedTerm
    126 Nf4e56ee860ae41fcbae9e988de2c1bad rdf:first sg:person.01067742717.52
    127 rdf:rest N7302d28d3aca4d20b9fa24dc3d0f29d3
    128 Nff2e6b3d1fe3447c9a0050ce0c49f218 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name Sensitivity and Specificity
    130 rdf:type schema:DefinedTerm
    131 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    132 schema:name Biological Sciences
    133 rdf:type schema:DefinedTerm
    134 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    135 schema:name Genetics
    136 rdf:type schema:DefinedTerm
    137 sg:journal.1115214 schema:issn 1087-0156
    138 1546-1696
    139 schema:name Nature Biotechnology
    140 rdf:type schema:Periodical
    141 sg:person.01067742717.52 schema:affiliation N0ebea2b2d5184e42baecb449e6ee9472
    142 schema:familyName Kaur
    143 schema:givenName Manjit
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067742717.52
    145 rdf:type schema:Person
    146 sg:person.01120533313.55 schema:affiliation Naeff9a6ae09d48c8a410cc58504fecfb
    147 schema:familyName Zhang
    148 schema:givenName Yuzhi
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120533313.55
    150 rdf:type schema:Person
    151 sg:person.01136361401.03 schema:affiliation Nb403289bc181482eb109e900fd298bd7
    152 schema:familyName Chakrabarti
    153 schema:givenName Subrata
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136361401.03
    155 rdf:type schema:Person
    156 sg:person.01173617232.38 schema:affiliation Nbb3f25bdacdf46adaeb7aa25cbd86156
    157 schema:familyName Makrigiorgos
    158 schema:givenName G. Mike
    159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173617232.38
    160 rdf:type schema:Person
    161 sg:person.0645637500.12 schema:affiliation N4e1db66d237445f88d3f2d332cd2bd1c
    162 schema:familyName Price
    163 schema:givenName Brendan D.
    164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645637500.12
    165 rdf:type schema:Person
    166 https://app.dimensions.ai/details/publication/pub.1074557527 schema:CreativeWork
    167 https://app.dimensions.ai/details/publication/pub.1074677024 schema:CreativeWork
    168 https://doi.org/10.1006/abbi.2000.1700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023129406
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1006/bbrc.1998.8471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027042346
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1053/jhep.2001.23003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031440534
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1073/pnas.87.5.1663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007853142
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1073/pnas.91.12.5456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050294969
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1073/pnas.91.6.2156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022993456
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1073/pnas.95.8.4487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050813051
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1073/pnas.96.8.4494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049662628
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1093/nar/22.25.5640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040724924
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1093/nar/29.13.e66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015940105
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1101/gr.6.10.986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018725591
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1126/science.1354393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062477287
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1126/science.270.5235.467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062551475
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1126/science.274.5289.998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062554765
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1126/science.8438152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062655586
    197 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...