A PCR-based amplification method retaining the quantitative difference between two complex genomes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-09

AUTHORS

G. Mike Makrigiorgos, Subrata Chakrabarti, Yuzhi Zhang, Manjit Kaur, Brendan D. Price

ABSTRACT

With the increasing emergence of genome-wide analysis technologies (including comparative genomic hybridization (CGH), expression profiling on microarrays, differential display (DD), subtractive hybridization, and representational difference analysis (RDA)), there is frequently a need to amplify entire genomes or cDNAs by PCR to obtain enough material for comparisons among target and control samples. A major problem with PCR is that amplification occurs in a nonlinear manner and reproducibility is influenced by stray impurities. As a result, when two complex DNA populations are amplified separately, the quantitative relationship between two genes after amplification is generally not the same as their relation before amplification. Here we describe balanced PCR, a procedure that faithfully retains the difference among corresponding amplified genes by using a simple principle. Two distinct genomic DNA samples are tagged with oligonucleotides containing both a common and a unique DNA sequence. The genomic DNA samples are pooled and amplified in a single PCR tube using the common DNA tag. By mixing the two genomes, PCR loses the ability to discriminate among the different alleles and the influence of impurities is eliminated. The PCR-amplified pooled samples can be separated using the DNA tag unique to each individual genomic DNA sample. The principle of this method has been validated with synthetic DNA, genomic DNA, and cDNA applied on microarrays. By removing the bias of PCR, this method allows a balanced amplification of allelic fragments from two complex DNAs even after three sequential rounds of PCR. This balanced PCR approach should allow genetic analysis in minute laser-microdissected tissues, paraffin-embedded archived material, or single cells. More... »

PAGES

936-939

Journal

TITLE

Nature Biotechnology

ISSUE

9

VOLUME

20

Related Patents

  • Method Of Tagging Using A Split Dbr
  • Increasing Confidence Of Allele Calls With Molecular Counting
  • Increasing Confidence Of Allele Calls With Molecular Counting
  • Increasing Confidence Of Allele Calls With Molecular Counting
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • Methods And Systems For Digitally Counting Features On Arrays
  • Method For Accurately Counting Starting Molecules
  • Massively Parallel Single Cell Analysis
  • Multiplex Amplification Methods
  • Increasing Confidence Of Allele Calls With Molecular Counting
  • Gene Expression Analysis In Single Cells
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • Method For Preparing A Counter-Tagged Population Of Nucleic Acid Molecules
  • Method For Attaching A Counter Sequence To A Nucleic Acid Sample
  • Increasing Confidence Of Allele Calls With Molecular Counting
  • Nucleic Acid Encoding Reactions
  • Single-Particle Analysis Of Particle Populations
  • Multi-Primer Amplification Method For Tagging Of Target Nucleic Acids
  • Multiplex Amplification Methods
  • Spatially Addressable Molecular Barcoding
  • Method Of Adding A Dbr By Primer Extension
  • Spatially Addressable Molecular Barcoding
  • Polynucleotides For The Amplification And Analysis Of Whole Genome And Whole Transcriptome Libraries Generated By A Dna Polymerization Process
  • Increasing Confidence Of Allele Calls With Molecular Counting
  • 5-Methylcytosine Detection, Compositions And Methods Therefor
  • Gene Expression Analysis In Single Cells
  • Methods And Compositions For Generating And Amplifying Dna Libraries For Sensitive Detection And Analysis Of Dna Methylation
  • Species-Specific Primer Sets And Identification Of Species-Specific Dna Sequences Using Genome Fragment Enrichment
  • Methods And Compositions For Generating And Amplifying Dna Libraries For Sensitive Detection And Analysis Of Dna Methylation
  • Assay Methods For Increased Throughput Of Samples And/Or Targets
  • Methods For Detecting Multiple Target Nucleic Acids In Multiple Samples By Use Nucleotide Tags
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • Massively Parallel Single Cell Analysis
  • Gene Expression Analysis In Single Cells
  • Increased Confidence Of Allele Calls With Molecular Counting
  • Amplification And Analysis Of Whole Genome And Whole Transcriptome Libraries Generated By A Dna Polymerization Process
  • Massively Parallel Single Cell Analysis
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nbt724

    DOI

    http://dx.doi.org/10.1038/nbt724

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1024959327

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/12161758


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Complementary", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Expressed Sequence Tags", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Human", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Lung", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polymerase Chain Reaction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Prostate", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Quality Control", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reproducibility of Results", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sensitivity and Specificity", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Department of Radiation Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Makrigiorgos", 
            "givenName": "G. Mike", 
            "id": "sg:person.01173617232.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173617232.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Radiation Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chakrabarti", 
            "givenName": "Subrata", 
            "id": "sg:person.01136361401.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136361401.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Radiation Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Yuzhi", 
            "id": "sg:person.01120533313.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120533313.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Radiation Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kaur", 
            "givenName": "Manjit", 
            "id": "sg:person.01067742717.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067742717.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Radiation Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Price", 
            "givenName": "Brendan D.", 
            "id": "sg:person.0645637500.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645637500.12"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1073/pnas.87.5.1663", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007853142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/29.13.e66", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015940105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.6.10.986", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018725591"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.91.6.2156", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022993456"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/abbi.2000.1700", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023129406"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/bbrc.1998.8471", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027042346"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1053/jhep.2001.23003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031440534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/22.25.5640", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040724924"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.96.8.4494", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049662628"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.91.12.5456", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050294969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.95.8.4487", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050813051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1354393", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062477287"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.270.5235.467", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062551475"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.274.5289.998", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062554765"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.8438152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062655586"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074557527", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074677024", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2002-09", 
        "datePublishedReg": "2002-09-01", 
        "description": "With the increasing emergence of genome-wide analysis technologies (including comparative genomic hybridization (CGH), expression profiling on microarrays, differential display (DD), subtractive hybridization, and representational difference analysis (RDA)), there is frequently a need to amplify entire genomes or cDNAs by PCR to obtain enough material for comparisons among target and control samples. A major problem with PCR is that amplification occurs in a nonlinear manner and reproducibility is influenced by stray impurities. As a result, when two complex DNA populations are amplified separately, the quantitative relationship between two genes after amplification is generally not the same as their relation before amplification. Here we describe balanced PCR, a procedure that faithfully retains the difference among corresponding amplified genes by using a simple principle. Two distinct genomic DNA samples are tagged with oligonucleotides containing both a common and a unique DNA sequence. The genomic DNA samples are pooled and amplified in a single PCR tube using the common DNA tag. By mixing the two genomes, PCR loses the ability to discriminate among the different alleles and the influence of impurities is eliminated. The PCR-amplified pooled samples can be separated using the DNA tag unique to each individual genomic DNA sample. The principle of this method has been validated with synthetic DNA, genomic DNA, and cDNA applied on microarrays. By removing the bias of PCR, this method allows a balanced amplification of allelic fragments from two complex DNAs even after three sequential rounds of PCR. This balanced PCR approach should allow genetic analysis in minute laser-microdissected tissues, paraffin-embedded archived material, or single cells.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nbt724", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1115214", 
            "issn": [
              "1087-0156", 
              "1546-1696"
            ], 
            "name": "Nature Biotechnology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "20"
          }
        ], 
        "name": "A PCR-based amplification method retaining the quantitative difference between two complex genomes", 
        "pagination": "936-939", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "76e79cf682da5559e4f6e4fc84338370f1b9c0920a0d3f93d583a9c92edf8b05"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "12161758"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9604648"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nbt724"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1024959327"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nbt724", 
          "https://app.dimensions.ai/details/publication/pub.1024959327"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87100_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/nbt724"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nbt724'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nbt724'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nbt724'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nbt724'


     

    This table displays all metadata directly associated to this object as RDF triples.

    197 TRIPLES      21 PREDICATES      57 URIs      32 LITERALS      20 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nbt724 schema:about N44c2bea3b05748b2a637d3b7ac9ec1ff
    2 N48b92590af3f47ef99cf954f4a93472b
    3 N4dc77a3dc82046b8b587bb07d6d5aff2
    4 N6506bc4f08074796bd8fad67cb843f8b
    5 N678297abf0e94ed987616367b19ce8c0
    6 N7a77ce5411f24c1d9f8729a4469585c6
    7 N94f9e60c732e46b2b8289bb4a817af7f
    8 N9d31650e58214495b927f65b172aeac9
    9 Naca74c73521f427f8da91577351c2396
    10 Nd315748d188347959809e8cdbf6203a4
    11 Nfb80b29bae1545be98730c9b760bf032
    12 anzsrc-for:06
    13 anzsrc-for:0604
    14 schema:author N6ac984c66a2f4f37bb23e30c9a861f62
    15 schema:citation https://app.dimensions.ai/details/publication/pub.1074557527
    16 https://app.dimensions.ai/details/publication/pub.1074677024
    17 https://doi.org/10.1006/abbi.2000.1700
    18 https://doi.org/10.1006/bbrc.1998.8471
    19 https://doi.org/10.1053/jhep.2001.23003
    20 https://doi.org/10.1073/pnas.87.5.1663
    21 https://doi.org/10.1073/pnas.91.12.5456
    22 https://doi.org/10.1073/pnas.91.6.2156
    23 https://doi.org/10.1073/pnas.95.8.4487
    24 https://doi.org/10.1073/pnas.96.8.4494
    25 https://doi.org/10.1093/nar/22.25.5640
    26 https://doi.org/10.1093/nar/29.13.e66
    27 https://doi.org/10.1101/gr.6.10.986
    28 https://doi.org/10.1126/science.1354393
    29 https://doi.org/10.1126/science.270.5235.467
    30 https://doi.org/10.1126/science.274.5289.998
    31 https://doi.org/10.1126/science.8438152
    32 schema:datePublished 2002-09
    33 schema:datePublishedReg 2002-09-01
    34 schema:description With the increasing emergence of genome-wide analysis technologies (including comparative genomic hybridization (CGH), expression profiling on microarrays, differential display (DD), subtractive hybridization, and representational difference analysis (RDA)), there is frequently a need to amplify entire genomes or cDNAs by PCR to obtain enough material for comparisons among target and control samples. A major problem with PCR is that amplification occurs in a nonlinear manner and reproducibility is influenced by stray impurities. As a result, when two complex DNA populations are amplified separately, the quantitative relationship between two genes after amplification is generally not the same as their relation before amplification. Here we describe balanced PCR, a procedure that faithfully retains the difference among corresponding amplified genes by using a simple principle. Two distinct genomic DNA samples are tagged with oligonucleotides containing both a common and a unique DNA sequence. The genomic DNA samples are pooled and amplified in a single PCR tube using the common DNA tag. By mixing the two genomes, PCR loses the ability to discriminate among the different alleles and the influence of impurities is eliminated. The PCR-amplified pooled samples can be separated using the DNA tag unique to each individual genomic DNA sample. The principle of this method has been validated with synthetic DNA, genomic DNA, and cDNA applied on microarrays. By removing the bias of PCR, this method allows a balanced amplification of allelic fragments from two complex DNAs even after three sequential rounds of PCR. This balanced PCR approach should allow genetic analysis in minute laser-microdissected tissues, paraffin-embedded archived material, or single cells.
    35 schema:genre research_article
    36 schema:inLanguage en
    37 schema:isAccessibleForFree false
    38 schema:isPartOf N6eb45e6d424741b29da68342d0bcc496
    39 Nd19c2bc1a5be43888e0952b75bcb74af
    40 sg:journal.1115214
    41 schema:name A PCR-based amplification method retaining the quantitative difference between two complex genomes
    42 schema:pagination 936-939
    43 schema:productId N32d65ae2eb5c4529b00c6da200be0240
    44 N3eff48b3f3be47a48312bee0aedc9a2f
    45 N45cce4239d60412c9041ebfcbc6bab1c
    46 N5ae9cca9f7f1406f84ca2a40af5bf907
    47 Nd338b09ab87143ed81d951d8528ed496
    48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024959327
    49 https://doi.org/10.1038/nbt724
    50 schema:sdDatePublished 2019-04-11T12:24
    51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    52 schema:sdPublisher Nd031aeee72ef4c25b3476687bcca7e39
    53 schema:url http://www.nature.com/articles/nbt724
    54 sgo:license sg:explorer/license/
    55 sgo:sdDataset articles
    56 rdf:type schema:ScholarlyArticle
    57 N278b83141215446bb3fee873a0ed34b0 schema:name Department of Radiation Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
    58 rdf:type schema:Organization
    59 N32d65ae2eb5c4529b00c6da200be0240 schema:name nlm_unique_id
    60 schema:value 9604648
    61 rdf:type schema:PropertyValue
    62 N3b902b405084412a886f255611305b23 rdf:first sg:person.01067742717.52
    63 rdf:rest N6d0d731a62ee4bf892bef2bb67954b03
    64 N3eff48b3f3be47a48312bee0aedc9a2f schema:name readcube_id
    65 schema:value 76e79cf682da5559e4f6e4fc84338370f1b9c0920a0d3f93d583a9c92edf8b05
    66 rdf:type schema:PropertyValue
    67 N40a47fbfe8044336a1ef89a304b07ad1 rdf:first sg:person.01120533313.55
    68 rdf:rest N3b902b405084412a886f255611305b23
    69 N44c2bea3b05748b2a637d3b7ac9ec1ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    70 schema:name Polymerase Chain Reaction
    71 rdf:type schema:DefinedTerm
    72 N45cce4239d60412c9041ebfcbc6bab1c schema:name doi
    73 schema:value 10.1038/nbt724
    74 rdf:type schema:PropertyValue
    75 N48b92590af3f47ef99cf954f4a93472b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    76 schema:name Quality Control
    77 rdf:type schema:DefinedTerm
    78 N4dc77a3dc82046b8b587bb07d6d5aff2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    79 schema:name Male
    80 rdf:type schema:DefinedTerm
    81 N521721b51ed243f691f507771869a10a rdf:first sg:person.01136361401.03
    82 rdf:rest N40a47fbfe8044336a1ef89a304b07ad1
    83 N5ae9cca9f7f1406f84ca2a40af5bf907 schema:name pubmed_id
    84 schema:value 12161758
    85 rdf:type schema:PropertyValue
    86 N6506bc4f08074796bd8fad67cb843f8b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    87 schema:name Sensitivity and Specificity
    88 rdf:type schema:DefinedTerm
    89 N678297abf0e94ed987616367b19ce8c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    90 schema:name Lung
    91 rdf:type schema:DefinedTerm
    92 N6ac984c66a2f4f37bb23e30c9a861f62 rdf:first sg:person.01173617232.38
    93 rdf:rest N521721b51ed243f691f507771869a10a
    94 N6d0d731a62ee4bf892bef2bb67954b03 rdf:first sg:person.0645637500.12
    95 rdf:rest rdf:nil
    96 N6eb45e6d424741b29da68342d0bcc496 schema:volumeNumber 20
    97 rdf:type schema:PublicationVolume
    98 N7a77ce5411f24c1d9f8729a4469585c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    99 schema:name Reproducibility of Results
    100 rdf:type schema:DefinedTerm
    101 N8dc32e5a41074cbcbc0dc64e7aef78a1 schema:name Department of Radiation Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
    102 rdf:type schema:Organization
    103 N8f38624a354e47049b1a82fad2cdf42e schema:name Department of Radiation Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
    104 rdf:type schema:Organization
    105 N94f9e60c732e46b2b8289bb4a817af7f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    106 schema:name Humans
    107 rdf:type schema:DefinedTerm
    108 N9d31650e58214495b927f65b172aeac9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name Genome, Human
    110 rdf:type schema:DefinedTerm
    111 Na6c93c3d2eb24e7687ab54a88a661683 schema:name Department of Radiation Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
    112 rdf:type schema:Organization
    113 Naca74c73521f427f8da91577351c2396 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Prostate
    115 rdf:type schema:DefinedTerm
    116 Nc144b4fb9af04c4db44151a084fede7f schema:name Department of Radiation Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
    117 rdf:type schema:Organization
    118 Nd031aeee72ef4c25b3476687bcca7e39 schema:name Springer Nature - SN SciGraph project
    119 rdf:type schema:Organization
    120 Nd19c2bc1a5be43888e0952b75bcb74af schema:issueNumber 9
    121 rdf:type schema:PublicationIssue
    122 Nd315748d188347959809e8cdbf6203a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name Expressed Sequence Tags
    124 rdf:type schema:DefinedTerm
    125 Nd338b09ab87143ed81d951d8528ed496 schema:name dimensions_id
    126 schema:value pub.1024959327
    127 rdf:type schema:PropertyValue
    128 Nfb80b29bae1545be98730c9b760bf032 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name DNA, Complementary
    130 rdf:type schema:DefinedTerm
    131 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    132 schema:name Biological Sciences
    133 rdf:type schema:DefinedTerm
    134 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    135 schema:name Genetics
    136 rdf:type schema:DefinedTerm
    137 sg:journal.1115214 schema:issn 1087-0156
    138 1546-1696
    139 schema:name Nature Biotechnology
    140 rdf:type schema:Periodical
    141 sg:person.01067742717.52 schema:affiliation Na6c93c3d2eb24e7687ab54a88a661683
    142 schema:familyName Kaur
    143 schema:givenName Manjit
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067742717.52
    145 rdf:type schema:Person
    146 sg:person.01120533313.55 schema:affiliation N278b83141215446bb3fee873a0ed34b0
    147 schema:familyName Zhang
    148 schema:givenName Yuzhi
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120533313.55
    150 rdf:type schema:Person
    151 sg:person.01136361401.03 schema:affiliation N8f38624a354e47049b1a82fad2cdf42e
    152 schema:familyName Chakrabarti
    153 schema:givenName Subrata
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136361401.03
    155 rdf:type schema:Person
    156 sg:person.01173617232.38 schema:affiliation N8dc32e5a41074cbcbc0dc64e7aef78a1
    157 schema:familyName Makrigiorgos
    158 schema:givenName G. Mike
    159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173617232.38
    160 rdf:type schema:Person
    161 sg:person.0645637500.12 schema:affiliation Nc144b4fb9af04c4db44151a084fede7f
    162 schema:familyName Price
    163 schema:givenName Brendan D.
    164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645637500.12
    165 rdf:type schema:Person
    166 https://app.dimensions.ai/details/publication/pub.1074557527 schema:CreativeWork
    167 https://app.dimensions.ai/details/publication/pub.1074677024 schema:CreativeWork
    168 https://doi.org/10.1006/abbi.2000.1700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023129406
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1006/bbrc.1998.8471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027042346
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1053/jhep.2001.23003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031440534
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1073/pnas.87.5.1663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007853142
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1073/pnas.91.12.5456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050294969
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1073/pnas.91.6.2156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022993456
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1073/pnas.95.8.4487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050813051
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1073/pnas.96.8.4494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049662628
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1093/nar/22.25.5640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040724924
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1093/nar/29.13.e66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015940105
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1101/gr.6.10.986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018725591
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1126/science.1354393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062477287
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1126/science.270.5235.467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062551475
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1126/science.274.5289.998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062554765
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1126/science.8438152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062655586
    197 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...