Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-07

AUTHORS

Danwei Huangfu, René Maehr, Wenjun Guo, Astrid Eijkelenboom, Melinda Snitow, Alice E Chen, Douglas A Melton

ABSTRACT

Reprogramming of mouse and human somatic cells can be achieved by ectopic expression of transcription factors, but with low efficiencies. We report that DNA methyltransferase and histone deacetylase (HDAC) inhibitors improve reprogramming efficiency. In particular, valproic acid (VPA), an HDAC inhibitor, improves reprogramming efficiency by more than 100-fold, using Oct4-GFP as a reporter. VPA also enables efficient induction of pluripotent stem cells without introduction of the oncogene c-Myc. More... »

PAGES

795-797

Journal

TITLE

Nature Biotechnology

ISSUE

7

VOLUME

26

Related Patents

  • A Non-Viral System For The Generation Of Induced Pluripotent Stem (Ips) Cells
  • Induced Pluripotent Stem Cells Produced With Oct3/4, Klf4 And Sox2
  • Induced Pluripotent Stem Cells With Synthetic Modified Rnas
  • Kit For Making Induced Pluripotent Stem Cells Using Modified Rnas
  • Induction Of Pluripotent Cells
  • Modified Polynucleotides For The Production Of Secreted Proteins
  • Nuclear Reprogramming Factor Comprising Mirna And A Protein Factor
  • Engineered Nucleic Acids Encoding A Modified Erythropoietin And Their Expression
  • Method Ank Kit For Reprogramming Somatic Cells
  • Reprogramming Cells
  • Generation And Maintenance Of Stem Cells
  • Methods Of Deriving Differentiated Cells From Stem Cells
  • Modified Polynucleotides For The Production Of Biologics And Proteins Associated With Human Disease
  • Modified Polynucleotides Encoding Granulysin
  • Modified Polynucleotides For Treating Galactosylceramidase Protein Deficiency
  • Method Of Reprogramming A Cell
  • Method For Preparing Induced Pluripotent Stem Cells Using A Dedifferentiation Enhancer
  • Use Of Cellular Extracts For Obtaining Pluripotent Stem Cells
  • Enriched Population Of Human Pluripotent Cells With Oct-4 And Sox2 Integrated Into Their Genome
  • Methods Of Deriving Differentiated Cells From Stem Cells
  • New Hepatic Cell Lines And Methods Of Making And Using The Same
  • Isolated Populations Of Renal Stem Cells And Methods Of Isolating And Using Same
  • Methods Of Reprogramming Renal Cells
  • Reprogramming A Cell By Inducing A Pluripotent Gene Through Rna Interference
  • Modified Polynucleotides Encoding Apoptosis Inducing Factor 1
  • Isolated Populations Of Renal Stem Cells And Methods Of Isolating And Using Same
  • Modified Polynucleotides For The Production Of Nuclear Proteins
  • Modified Polynucleotides Encoding Cited4
  • Efficient Method For Nuclear Reprogramming
  • Modified Polynucleotides Encoding Septin-4
  • Engineered Nucleic Acids And Methods Of Use Thereof
  • Vitronectin-Derived Cell Culture Substrate And Uses Thereof
  • Somatic Cell Reprogramming By Retroviral Vectors Encoding Oct3/4. Klf4, C-Myc And Sox2
  • Generation And Maintenance Of Stem Cells
  • Methods Of Reprogramming Renal Cells
  • Reprogramming A Cell By Inducing A Pluripotent Gene Through Use Of An Hdac Modulator
  • Use Of Fetal Cells For The Treatment Of Genetic Diseases
  • Modified Nucleosides, Nucleotides, And Nucleic Acids, And Uses Thereof
  • Use Of Cellular Extracts For Obtaining Pluripotent Stem Cells
  • Compositions, Kits, And Methods For Making Induced Pluripotent Stem Cells Using Synthetic Modified Rnas
  • Kits Comprising Linear Dnas For Sustained Polypeptide Expression Using Synthetic, Modified Rnas
  • Methods Of Controlling Cell Fate And Consequences For Disease
  • Combined Chemical And Genetic Approaches For Generation Of Induced Pluripotent Stem Cells
  • Modified Polynucleotides For Treating Protein Deficiency
  • Method For Preparing Induced Pluripotent Stem Cells Using A Dedifferentiation Enhancer
  • Induction Of Pluripotent Cells
  • Reprogramming A Cell By Inducing A Pluripotent Gene Through Rna Interference
  • Methods And Compositions For Modulating Nuclease-Mediated Genome Engineering In Hematopoietic Stem Cells
  • Induction Of Pluripotent Cells
  • Methods And Platforms For Drug Discovery Using Induced Pluripotent Stem Cells
  • Direct Reprogramming Of Somatic Cells Into Neural Stem Cells
  • Delivery And Formulation Of Engineered Nucleic Acids
  • Method Of Efficiently Establishing Induced Pluripotent Stem Cells
  • Method For Production Of Pluripotent Stem Cell
  • Methods Of Deriving Differentiated Cells From Stem Cells
  • Delivery And Formulation Of Engineered Nucleic Acids
  • Enhancers Of Induced Pluripotent Stem Cell Reprogramming
  • Endothelial And Endothelial Like Cells Produced From Fibroblasts And Uses Related Thereto
  • Engineered Nucleic Acids And Methods Of Use Thereof
  • Novel Low-Molecule Compound For Promoting Pluripotent Stem Cell Generation, Maintenance, And Proliferation, And Composition And Culturing Method Containing Same
  • Method For Production Of Pluripotent Stem Cell
  • Induced Pluripotent Stem Cells Produced Using Reprogramming Factors And A Rho Kinase Inhibitor Or A Histone Deacetylase Inhibitor
  • Adult Animals Generated From Induced Pluripotent Cells
  • Method For Increasing The Efficiency Of Inducing Pluripotent Stem Cells
  • Methods For The Production Of Ips Cells Using Epstein-Barr (Ebv)-Based Reprogramming Vectors
  • Reprogramming Of Cells To A New Fate
  • Modified Polynucleotides For The Production Of Proteins Associated With Human Disease
  • Formulation And Delivery Of Plga Microspheres
  • Vitronectin-Derived Cell Culture Substrate And Uses Thereof
  • Compositions And Methods Of Altering Cholesterol Levels
  • Compounds And Compositions Used To Epigenetically Transform Cells And Methods Related Thereto
  • Methods And Compositions For Modulating Nuclease-Mediated Genome Engineering In Hematopoietic Stem Cells
  • Methods And Materials For Obtaining Induced Pluripotent Stem Cells
  • Methods And Compositions For The Rapid Production Of Retinal Pigmented Epithelial Cells From Pluripotent Cells
  • Method For Increasing The Efficiency Of Inducing Pluripotent Stem Cells
  • Modified Polynucleotides Encoding Copper Metabolism (Murr1) Domain Containing 1
  • Modified Polynucleotides Encoding Basic Helix-Loop-Helix Family Member E41
  • Methods And Compositions Of P27kip1 Transcriptional Modulators
  • Engineered Nucleic Acids And Methods Of Use Thereof
  • Modified Polynucleotides For The Production Of Proteins
  • Induction Of Pluripotent Cells
  • Engineered Nucleic Acids And Methods Of Use Thereof
  • Methods For Nuclear Reprogramming Of Cells
  • Myc Variants Improve Induced Pluripotent Stem Cell Generation Efficiency
  • Engineered Nucleic Acids And Methods Of Use Thereof
  • Providing Ipscs To A Customer
  • Modified Polynucleotides For The Production Of Oncology-Related Proteins And Peptides
  • Methods For Maturing Cardiomyocytes And Uses Thereof
  • Modified Polynucleotides For The Production Of G-Csf
  • Methods For The Production Of Ips Cells Using Non-Viral Approach
  • Reprogramming A Cell By Activation Of The Endogenous Transcription Factor Network
  • Nuclear Reprogramming Factor
  • Engineered Nucleic Acids And Methods Of Use Thereof
  • Terminally Modified Rna
  • Modified Nucleosides, Nucleotides, And Nucleic Acids, And Uses Thereof
  • Reprogramming A Cell By Activation Of The Endogenous Transcription Factor Network
  • Engineered Nucleic Acids And Methods Of Use Thereof
  • Modified Polynucleotides For The Production Of Cosmetic Proteins And Peptides
  • Modified Polynucleotides Encoding Siah E3 Ubiquitin Protein Ligase 1
  • Nuclear Reprogrammed Cells Generated By Introduction Of A Histone H2aa Or Th2a Gene, A Histone H2ba Or Th2b Gene, Or A Phosphorylation-Mimic Of Histone Chaperon Npm2 Gene, An Oct Family Gene And A Klf Family Gene Into A Mammalian Somatic Cell
  • Dlin-Kc2-Dma Lipid Nanoparticle Delivery Of Modified Polynucleotides
  • Methods For The Production Of Ips Cells
  • Inhibition Of Histone Methyltransferase For Cardiac Reprogramming
  • Episomal Reprogramming With Chemicals
  • Modified Polynucleotides For The Production Of Secreted Proteins
  • Method For Generating Pancreatic Hormone-Producing Cells
  • Low-Molecular-Compound For Improving Production, Maintenance And Proliferation Of Pluripotent Stem Cells, Composition Comprising The Same, And Culture Method
  • Modified Polynucleotides Encoding Hepatitis A Virus Cellular Receptor 2
  • Reprogramming Cells By Three-Dimensional Cultivation
  • In Vivo Production Of Proteins
  • Reprogramming Cells
  • Method For Obtaining Mab-Like Cells And Uses Thereof
  • Oct3/4, Klf4, C-Myc And Sox2 Produce Induced Pluripotent Stem Cells
  • Modified Polynucleotides For The Production Of Proteins
  • Method For Producing A Protein Of Interest In A Primate
  • Modified Nucleosides, Nucleotides, And Nucleic Acids, And Uses Thereof
  • Combined Chemical And Genetic Approaches For Generation Of Induced Pluripotent Stem Cells
  • Cell Culture Platform For Single Cell Sorting And Enhanced Reprogramming Of Ipscs
  • Modified Polynucleotides For The Production Of Cytoplasmic And Cytoskeletal Proteins
  • Human Pluripotent Stem Cells Induced From Undifferentiated Stem Cells Derived From A Human Postnatal Tissue
  • Modified Polynucleotides For The Production Of Cytoplasmic And Cytoskeletal Proteins
  • Induction Of Pluripotent Cells
  • Modified Polynucleotides Encoding Aquaporin-5
  • Modified Polynucleotides For The Production Of Proteins Associated With Blood And Lymphatic Disorders
  • Adult Animals Generated From Induced Pluripotent Cells
  • Adult Animals Generated From Induced Pluripotent Cells
  • Modified Polynucleotides Encoding Aryl Hydrocarbon Receptor Nuclear Translocator
  • Enhancers Of Induced Pluripotent Stem Cell Reprogramming
  • Modified Polynucleotides For The Production Of Proteins Associated With Blood And Lymphatic Disorders
  • Modified Nucleosides, Nucleotides, And Nucleic Acids, And Uses Thereof
  • The Ins Cells And The Method For Reprogramming Somatic Cells To Ins Cells Using Sox2 Or Sox2 And C-Myc
  • Reprogramming A Cell By Inducing A Pluripotent Gene Through Use Of An Hdac Modulator
  • Split Dose Administration
  • Reprogramming Of Cells To A New Fate
  • Modified Polynucleotides For The Production Of Biologics And Proteins Associated With Human Disease
  • Formulation And Delivery Of Plga Microspheres
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nbt1418

    DOI

    http://dx.doi.org/10.1038/nbt1418

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1014318073

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/18568017


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Differentiation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Line", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA (Cytosine-5-)-Methyltransferases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Histone Deacetylase Inhibitors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Stem Cells", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Valproic Acid", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Stem Cell and Regenerative Biology, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huangfu", 
            "givenName": "Danwei", 
            "id": "sg:person.01014266246.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014266246.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Stem Cell and Regenerative Biology, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Maehr", 
            "givenName": "Ren\u00e9", 
            "id": "sg:person.0744246221.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744246221.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Massachusetts Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Guo", 
            "givenName": "Wenjun", 
            "id": "sg:person.014605715475.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014605715475.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Utrecht University", 
              "id": "https://www.grid.ac/institutes/grid.5477.1", 
              "name": [
                "Department of Stem Cell and Regenerative Biology, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA.", 
                "Biomedical Sciences, Utrecht University, The Netherlands."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eijkelenboom", 
            "givenName": "Astrid", 
            "id": "sg:person.01054122426.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054122426.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Stem Cell and Regenerative Biology, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Snitow", 
            "givenName": "Melinda", 
            "id": "sg:person.01126610021.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126610021.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Stem Cell and Regenerative Biology, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Alice E", 
            "id": "sg:person.0747230540.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747230540.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Stem Cell and Regenerative Biology, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Melton", 
            "givenName": "Douglas A", 
            "id": "sg:person.01164235020.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164235020.37"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature05934", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002347899", 
              "https://doi.org/10.1038/nature05934"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1374", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002744128", 
              "https://doi.org/10.1038/nbt1374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bbrc.2005.11.164", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008137251"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2007.11.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010904856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1095/biolreprod.105.047456", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011900843"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06534", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011992920", 
              "https://doi.org/10.1038/nature06534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.stem.2007.12.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012875023"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0925-4773(02)00087-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014348330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2006.07.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014573758"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05944", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019109862", 
              "https://doi.org/10.1038/nature05944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1634/stemcells.2006-0050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019411955"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0711983105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024490582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.stem.2007.05.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029649252"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1151526", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048905674"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008-07", 
        "datePublishedReg": "2008-07-01", 
        "description": "Reprogramming of mouse and human somatic cells can be achieved by ectopic expression of transcription factors, but with low efficiencies. We report that DNA methyltransferase and histone deacetylase (HDAC) inhibitors improve reprogramming efficiency. In particular, valproic acid (VPA), an HDAC inhibitor, improves reprogramming efficiency by more than 100-fold, using Oct4-GFP as a reporter. VPA also enables efficient induction of pluripotent stem cells without introduction of the oncogene c-Myc.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nbt1418", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1115214", 
            "issn": [
              "1087-0156", 
              "1546-1696"
            ], 
            "name": "Nature Biotechnology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "26"
          }
        ], 
        "name": "Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds", 
        "pagination": "795-797", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "4436026c64c6befac064ec52c4ff7c7a66d8b33ac51cf409edd7bb23b2e01bb9"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "18568017"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9604648"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nbt1418"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1014318073"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nbt1418", 
          "https://app.dimensions.ai/details/publication/pub.1014318073"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:28", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000422.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/nbt1418"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nbt1418'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nbt1418'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nbt1418'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nbt1418'


     

    This table displays all metadata directly associated to this object as RDF triples.

    196 TRIPLES      21 PREDICATES      51 URIs      29 LITERALS      17 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nbt1418 schema:about N2605e5679c20439fb3be23947cddc0b0
    2 N4ed018a9a6a5457f93a675197963bceb
    3 N613f377b3aa3422e833e9bf438b84663
    4 N6e5f65c7454e4ad5b897054555d04339
    5 N7e7f30705ef446a3b9c75a22816d0d11
    6 N833e3967c4e3425bac1ab81a1fc6e865
    7 Nc66ae41a0215472c8f6d1a08fe488c9a
    8 Nfd0570afef2c46c3869967de6a298bc8
    9 anzsrc-for:06
    10 anzsrc-for:0604
    11 schema:author Nca3471dffd35427a9201fc9b1d3f536d
    12 schema:citation sg:pub.10.1038/nature05934
    13 sg:pub.10.1038/nature05944
    14 sg:pub.10.1038/nature06534
    15 sg:pub.10.1038/nbt1374
    16 https://doi.org/10.1016/j.bbrc.2005.11.164
    17 https://doi.org/10.1016/j.cell.2006.07.024
    18 https://doi.org/10.1016/j.cell.2007.11.019
    19 https://doi.org/10.1016/j.stem.2007.05.014
    20 https://doi.org/10.1016/j.stem.2007.12.001
    21 https://doi.org/10.1016/s0925-4773(02)00087-4
    22 https://doi.org/10.1073/pnas.0711983105
    23 https://doi.org/10.1095/biolreprod.105.047456
    24 https://doi.org/10.1126/science.1151526
    25 https://doi.org/10.1634/stemcells.2006-0050
    26 schema:datePublished 2008-07
    27 schema:datePublishedReg 2008-07-01
    28 schema:description Reprogramming of mouse and human somatic cells can be achieved by ectopic expression of transcription factors, but with low efficiencies. We report that DNA methyltransferase and histone deacetylase (HDAC) inhibitors improve reprogramming efficiency. In particular, valproic acid (VPA), an HDAC inhibitor, improves reprogramming efficiency by more than 100-fold, using Oct4-GFP as a reporter. VPA also enables efficient induction of pluripotent stem cells without introduction of the oncogene c-Myc.
    29 schema:genre research_article
    30 schema:inLanguage en
    31 schema:isAccessibleForFree false
    32 schema:isPartOf N69e93a985baa46f0a9396992b5833382
    33 Nfe8810efda8b4a0dae6b8fb8534b5a2e
    34 sg:journal.1115214
    35 schema:name Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds
    36 schema:pagination 795-797
    37 schema:productId N0c0a86aa31de4089b94115121b20ce09
    38 N2e3bd38c23bc47bfba295c7214c92c40
    39 N367de876514b477ebb65308ad5f6243b
    40 N3ec6fe20cf954712a84544b48ae650e8
    41 N9e09e31bb9404409b8e51a053fdb1b1b
    42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014318073
    43 https://doi.org/10.1038/nbt1418
    44 schema:sdDatePublished 2019-04-10T16:28
    45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    46 schema:sdPublisher Nf69cb7bea9814cada1c2a5fdb8850bbb
    47 schema:url http://www.nature.com/articles/nbt1418
    48 sgo:license sg:explorer/license/
    49 sgo:sdDataset articles
    50 rdf:type schema:ScholarlyArticle
    51 N04522aaf956249bba22c8cb06783baff rdf:first sg:person.01164235020.37
    52 rdf:rest rdf:nil
    53 N0c0a86aa31de4089b94115121b20ce09 schema:name readcube_id
    54 schema:value 4436026c64c6befac064ec52c4ff7c7a66d8b33ac51cf409edd7bb23b2e01bb9
    55 rdf:type schema:PropertyValue
    56 N1b14228e56a740e4a8b3727382effced rdf:first sg:person.01054122426.39
    57 rdf:rest N91989b7ae55848d188a780bae40d0054
    58 N2605e5679c20439fb3be23947cddc0b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    59 schema:name Cell Line
    60 rdf:type schema:DefinedTerm
    61 N2e3bd38c23bc47bfba295c7214c92c40 schema:name doi
    62 schema:value 10.1038/nbt1418
    63 rdf:type schema:PropertyValue
    64 N367de876514b477ebb65308ad5f6243b schema:name dimensions_id
    65 schema:value pub.1014318073
    66 rdf:type schema:PropertyValue
    67 N3ec6fe20cf954712a84544b48ae650e8 schema:name pubmed_id
    68 schema:value 18568017
    69 rdf:type schema:PropertyValue
    70 N4ed018a9a6a5457f93a675197963bceb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    71 schema:name DNA (Cytosine-5-)-Methyltransferases
    72 rdf:type schema:DefinedTerm
    73 N613f377b3aa3422e833e9bf438b84663 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    74 schema:name Stem Cells
    75 rdf:type schema:DefinedTerm
    76 N69e93a985baa46f0a9396992b5833382 schema:volumeNumber 26
    77 rdf:type schema:PublicationVolume
    78 N6e5f65c7454e4ad5b897054555d04339 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    79 schema:name Cell Differentiation
    80 rdf:type schema:DefinedTerm
    81 N70d0e3b3c68c44f58ca618da0d02288d rdf:first sg:person.0747230540.50
    82 rdf:rest N04522aaf956249bba22c8cb06783baff
    83 N7e7f30705ef446a3b9c75a22816d0d11 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    84 schema:name Valproic Acid
    85 rdf:type schema:DefinedTerm
    86 N833e3967c4e3425bac1ab81a1fc6e865 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    87 schema:name Mice
    88 rdf:type schema:DefinedTerm
    89 N880eafdde2e64db28b7674257f5bb067 rdf:first sg:person.014605715475.58
    90 rdf:rest N1b14228e56a740e4a8b3727382effced
    91 N8be4f44503bb4271ba804bb0fe84ad90 rdf:first sg:person.0744246221.84
    92 rdf:rest N880eafdde2e64db28b7674257f5bb067
    93 N91989b7ae55848d188a780bae40d0054 rdf:first sg:person.01126610021.06
    94 rdf:rest N70d0e3b3c68c44f58ca618da0d02288d
    95 N9e09e31bb9404409b8e51a053fdb1b1b schema:name nlm_unique_id
    96 schema:value 9604648
    97 rdf:type schema:PropertyValue
    98 Nc66ae41a0215472c8f6d1a08fe488c9a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    99 schema:name Histone Deacetylase Inhibitors
    100 rdf:type schema:DefinedTerm
    101 Nca3471dffd35427a9201fc9b1d3f536d rdf:first sg:person.01014266246.80
    102 rdf:rest N8be4f44503bb4271ba804bb0fe84ad90
    103 Nf69cb7bea9814cada1c2a5fdb8850bbb schema:name Springer Nature - SN SciGraph project
    104 rdf:type schema:Organization
    105 Nfd0570afef2c46c3869967de6a298bc8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    106 schema:name Animals
    107 rdf:type schema:DefinedTerm
    108 Nfe8810efda8b4a0dae6b8fb8534b5a2e schema:issueNumber 7
    109 rdf:type schema:PublicationIssue
    110 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Biological Sciences
    112 rdf:type schema:DefinedTerm
    113 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    114 schema:name Genetics
    115 rdf:type schema:DefinedTerm
    116 sg:journal.1115214 schema:issn 1087-0156
    117 1546-1696
    118 schema:name Nature Biotechnology
    119 rdf:type schema:Periodical
    120 sg:person.01014266246.80 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    121 schema:familyName Huangfu
    122 schema:givenName Danwei
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014266246.80
    124 rdf:type schema:Person
    125 sg:person.01054122426.39 schema:affiliation https://www.grid.ac/institutes/grid.5477.1
    126 schema:familyName Eijkelenboom
    127 schema:givenName Astrid
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054122426.39
    129 rdf:type schema:Person
    130 sg:person.01126610021.06 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    131 schema:familyName Snitow
    132 schema:givenName Melinda
    133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126610021.06
    134 rdf:type schema:Person
    135 sg:person.01164235020.37 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    136 schema:familyName Melton
    137 schema:givenName Douglas A
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164235020.37
    139 rdf:type schema:Person
    140 sg:person.014605715475.58 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
    141 schema:familyName Guo
    142 schema:givenName Wenjun
    143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014605715475.58
    144 rdf:type schema:Person
    145 sg:person.0744246221.84 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    146 schema:familyName Maehr
    147 schema:givenName René
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744246221.84
    149 rdf:type schema:Person
    150 sg:person.0747230540.50 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    151 schema:familyName Chen
    152 schema:givenName Alice E
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747230540.50
    154 rdf:type schema:Person
    155 sg:pub.10.1038/nature05934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002347899
    156 https://doi.org/10.1038/nature05934
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1038/nature05944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019109862
    159 https://doi.org/10.1038/nature05944
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1038/nature06534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011992920
    162 https://doi.org/10.1038/nature06534
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1038/nbt1374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002744128
    165 https://doi.org/10.1038/nbt1374
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1016/j.bbrc.2005.11.164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008137251
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1016/j.cell.2006.07.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014573758
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1016/j.cell.2007.11.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010904856
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1016/j.stem.2007.05.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029649252
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1016/j.stem.2007.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012875023
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1016/s0925-4773(02)00087-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014348330
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1073/pnas.0711983105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024490582
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1095/biolreprod.105.047456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011900843
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1126/science.1151526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048905674
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1634/stemcells.2006-0050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019411955
    186 rdf:type schema:CreativeWork
    187 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
    188 schema:name Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA.
    189 rdf:type schema:Organization
    190 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
    191 schema:name Department of Stem Cell and Regenerative Biology, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA.
    192 rdf:type schema:Organization
    193 https://www.grid.ac/institutes/grid.5477.1 schema:alternateName Utrecht University
    194 schema:name Biomedical Sciences, Utrecht University, The Netherlands.
    195 Department of Stem Cell and Regenerative Biology, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA.
    196 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...