Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-07

AUTHORS

Danwei Huangfu, René Maehr, Wenjun Guo, Astrid Eijkelenboom, Melinda Snitow, Alice E Chen, Douglas A Melton

ABSTRACT

Reprogramming of mouse and human somatic cells can be achieved by ectopic expression of transcription factors, but with low efficiencies. We report that DNA methyltransferase and histone deacetylase (HDAC) inhibitors improve reprogramming efficiency. In particular, valproic acid (VPA), an HDAC inhibitor, improves reprogramming efficiency by more than 100-fold, using Oct4-GFP as a reporter. VPA also enables efficient induction of pluripotent stem cells without introduction of the oncogene c-Myc. More... »

PAGES

795-797

Journal

TITLE

Nature Biotechnology

ISSUE

7

VOLUME

26

Related Patents

  • A Non-Viral System For The Generation Of Induced Pluripotent Stem (Ips) Cells
  • Induced Pluripotent Stem Cells Produced With Oct3/4, Klf4 And Sox2
  • Induced Pluripotent Stem Cells With Synthetic Modified Rnas
  • Kit For Making Induced Pluripotent Stem Cells Using Modified Rnas
  • Induction Of Pluripotent Cells
  • Modified Polynucleotides For The Production Of Secreted Proteins
  • Nuclear Reprogramming Factor Comprising Mirna And A Protein Factor
  • Engineered Nucleic Acids Encoding A Modified Erythropoietin And Their Expression
  • Method Ank Kit For Reprogramming Somatic Cells
  • Reprogramming Cells
  • Generation And Maintenance Of Stem Cells
  • Methods Of Deriving Differentiated Cells From Stem Cells
  • Modified Polynucleotides For The Production Of Biologics And Proteins Associated With Human Disease
  • Modified Polynucleotides Encoding Granulysin
  • Modified Polynucleotides For Treating Galactosylceramidase Protein Deficiency
  • Method Of Reprogramming A Cell
  • Method For Preparing Induced Pluripotent Stem Cells Using A Dedifferentiation Enhancer
  • Use Of Cellular Extracts For Obtaining Pluripotent Stem Cells
  • Enriched Population Of Human Pluripotent Cells With Oct-4 And Sox2 Integrated Into Their Genome
  • Methods Of Deriving Differentiated Cells From Stem Cells
  • New Hepatic Cell Lines And Methods Of Making And Using The Same
  • Isolated Populations Of Renal Stem Cells And Methods Of Isolating And Using Same
  • Methods Of Reprogramming Renal Cells
  • Reprogramming A Cell By Inducing A Pluripotent Gene Through Rna Interference
  • Modified Polynucleotides Encoding Apoptosis Inducing Factor 1
  • Isolated Populations Of Renal Stem Cells And Methods Of Isolating And Using Same
  • Modified Polynucleotides For The Production Of Nuclear Proteins
  • Modified Polynucleotides Encoding Cited4
  • Efficient Method For Nuclear Reprogramming
  • Modified Polynucleotides Encoding Septin-4
  • Engineered Nucleic Acids And Methods Of Use Thereof
  • Vitronectin-Derived Cell Culture Substrate And Uses Thereof
  • Somatic Cell Reprogramming By Retroviral Vectors Encoding Oct3/4. Klf4, C-Myc And Sox2
  • Generation And Maintenance Of Stem Cells
  • Methods Of Reprogramming Renal Cells
  • Reprogramming A Cell By Inducing A Pluripotent Gene Through Use Of An Hdac Modulator
  • Use Of Fetal Cells For The Treatment Of Genetic Diseases
  • Modified Nucleosides, Nucleotides, And Nucleic Acids, And Uses Thereof
  • Use Of Cellular Extracts For Obtaining Pluripotent Stem Cells
  • Compositions, Kits, And Methods For Making Induced Pluripotent Stem Cells Using Synthetic Modified Rnas
  • Kits Comprising Linear Dnas For Sustained Polypeptide Expression Using Synthetic, Modified Rnas
  • Methods Of Controlling Cell Fate And Consequences For Disease
  • Combined Chemical And Genetic Approaches For Generation Of Induced Pluripotent Stem Cells
  • Modified Polynucleotides For Treating Protein Deficiency
  • Method For Preparing Induced Pluripotent Stem Cells Using A Dedifferentiation Enhancer
  • Induction Of Pluripotent Cells
  • Reprogramming A Cell By Inducing A Pluripotent Gene Through Rna Interference
  • Methods And Compositions For Modulating Nuclease-Mediated Genome Engineering In Hematopoietic Stem Cells
  • Induction Of Pluripotent Cells
  • Methods And Platforms For Drug Discovery Using Induced Pluripotent Stem Cells
  • Direct Reprogramming Of Somatic Cells Into Neural Stem Cells
  • Delivery And Formulation Of Engineered Nucleic Acids
  • Method Of Efficiently Establishing Induced Pluripotent Stem Cells
  • Method For Production Of Pluripotent Stem Cell
  • Methods Of Deriving Differentiated Cells From Stem Cells
  • Delivery And Formulation Of Engineered Nucleic Acids
  • Enhancers Of Induced Pluripotent Stem Cell Reprogramming
  • Endothelial And Endothelial Like Cells Produced From Fibroblasts And Uses Related Thereto
  • Engineered Nucleic Acids And Methods Of Use Thereof
  • Novel Low-Molecule Compound For Promoting Pluripotent Stem Cell Generation, Maintenance, And Proliferation, And Composition And Culturing Method Containing Same
  • Method For Production Of Pluripotent Stem Cell
  • Induced Pluripotent Stem Cells Produced Using Reprogramming Factors And A Rho Kinase Inhibitor Or A Histone Deacetylase Inhibitor
  • Adult Animals Generated From Induced Pluripotent Cells
  • Method For Increasing The Efficiency Of Inducing Pluripotent Stem Cells
  • Methods For The Production Of Ips Cells Using Epstein-Barr (Ebv)-Based Reprogramming Vectors
  • Reprogramming Of Cells To A New Fate
  • Modified Polynucleotides For The Production Of Proteins Associated With Human Disease
  • Formulation And Delivery Of Plga Microspheres
  • Vitronectin-Derived Cell Culture Substrate And Uses Thereof
  • Compositions And Methods Of Altering Cholesterol Levels
  • Compounds And Compositions Used To Epigenetically Transform Cells And Methods Related Thereto
  • Methods And Compositions For Modulating Nuclease-Mediated Genome Engineering In Hematopoietic Stem Cells
  • Methods And Materials For Obtaining Induced Pluripotent Stem Cells
  • Methods And Compositions For The Rapid Production Of Retinal Pigmented Epithelial Cells From Pluripotent Cells
  • Method For Increasing The Efficiency Of Inducing Pluripotent Stem Cells
  • Modified Polynucleotides Encoding Copper Metabolism (Murr1) Domain Containing 1
  • Modified Polynucleotides Encoding Basic Helix-Loop-Helix Family Member E41
  • Methods And Compositions Of P27kip1 Transcriptional Modulators
  • Engineered Nucleic Acids And Methods Of Use Thereof
  • Modified Polynucleotides For The Production Of Proteins
  • Induction Of Pluripotent Cells
  • Engineered Nucleic Acids And Methods Of Use Thereof
  • Methods For Nuclear Reprogramming Of Cells
  • Engineered Nucleic Acids And Methods Of Use Thereof
  • Modified Polynucleotides For The Production Of Oncology-Related Proteins And Peptides
  • Methods For Maturing Cardiomyocytes And Uses Thereof
  • Myc Variants Improve Induced Pluripotent Stem Cell Generation Efficiency
  • Engineered Nucleic Acids And Methods Of Use Thereof
  • Modified Polynucleotides For The Production Of G-Csf
  • Providing Ipscs To A Customer
  • Methods For The Production Of Ips Cells Using Non-Viral Approach
  • Modified Nucleosides, Nucleotides, And Nucleic Acids, And Uses Thereof
  • Engineered Nucleic Acids And Methods Of Use Thereof
  • Terminally Modified Rna
  • Inhibition Of Histone Methyltransferase For Cardiac Reprogramming
  • Episomal Reprogramming With Chemicals
  • Reprogramming A Cell By Activation Of The Endogenous Transcription Factor Network
  • Nuclear Reprogramming Factor
  • Reprogramming A Cell By Activation Of The Endogenous Transcription Factor Network
  • Modified Polynucleotides For The Production Of Cosmetic Proteins And Peptides
  • Dlin-Kc2-Dma Lipid Nanoparticle Delivery Of Modified Polynucleotides
  • Methods For The Production Of Ips Cells
  • Inhibition Of Histone Methyltransferase For Cardiac Reprogramming
  • Episomal Reprogramming With Chemicals
  • Modified Polynucleotides For The Production Of Secreted Proteins
  • Method For Generating Pancreatic Hormone-Producing Cells
  • Low-Molecular-Compound For Improving Production, Maintenance And Proliferation Of Pluripotent Stem Cells, Composition Comprising The Same, And Culture Method
  • Modified Polynucleotides Encoding Hepatitis A Virus Cellular Receptor 2
  • Reprogramming Cells By Three-Dimensional Cultivation
  • In Vivo Production Of Proteins
  • Reprogramming Cells
  • Method For Obtaining Mab-Like Cells And Uses Thereof
  • Oct3/4, Klf4, C-Myc And Sox2 Produce Induced Pluripotent Stem Cells
  • Modified Polynucleotides For The Production Of Proteins
  • Method For Producing A Protein Of Interest In A Primate
  • Modified Nucleosides, Nucleotides, And Nucleic Acids, And Uses Thereof
  • Combined Chemical And Genetic Approaches For Generation Of Induced Pluripotent Stem Cells
  • Cell Culture Platform For Single Cell Sorting And Enhanced Reprogramming Of Ipscs
  • Modified Polynucleotides For The Production Of Cytoplasmic And Cytoskeletal Proteins
  • Human Pluripotent Stem Cells Induced From Undifferentiated Stem Cells Derived From A Human Postnatal Tissue
  • Modified Polynucleotides For The Production Of Cytoplasmic And Cytoskeletal Proteins
  • Induction Of Pluripotent Cells
  • Modified Polynucleotides Encoding Aquaporin-5
  • Modified Polynucleotides For The Production Of Proteins Associated With Blood And Lymphatic Disorders
  • Adult Animals Generated From Induced Pluripotent Cells
  • Adult Animals Generated From Induced Pluripotent Cells
  • Modified Polynucleotides Encoding Aryl Hydrocarbon Receptor Nuclear Translocator
  • Enhancers Of Induced Pluripotent Stem Cell Reprogramming
  • Modified Polynucleotides For The Production Of Proteins Associated With Blood And Lymphatic Disorders
  • Modified Nucleosides, Nucleotides, And Nucleic Acids, And Uses Thereof
  • The Ins Cells And The Method For Reprogramming Somatic Cells To Ins Cells Using Sox2 Or Sox2 And C-Myc
  • Reprogramming A Cell By Inducing A Pluripotent Gene Through Use Of An Hdac Modulator
  • Split Dose Administration
  • Reprogramming Of Cells To A New Fate
  • Modified Polynucleotides For The Production Of Biologics And Proteins Associated With Human Disease
  • Formulation And Delivery Of Plga Microspheres
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nbt1418

    DOI

    http://dx.doi.org/10.1038/nbt1418

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1014318073

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/18568017


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Differentiation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Line", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA (Cytosine-5-)-Methyltransferases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Histone Deacetylase Inhibitors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Stem Cells", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Valproic Acid", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Stem Cell and Regenerative Biology, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huangfu", 
            "givenName": "Danwei", 
            "id": "sg:person.01014266246.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014266246.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Stem Cell and Regenerative Biology, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Maehr", 
            "givenName": "Ren\u00e9", 
            "id": "sg:person.0744246221.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744246221.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Massachusetts Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Guo", 
            "givenName": "Wenjun", 
            "id": "sg:person.014605715475.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014605715475.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Utrecht University", 
              "id": "https://www.grid.ac/institutes/grid.5477.1", 
              "name": [
                "Department of Stem Cell and Regenerative Biology, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA.", 
                "Biomedical Sciences, Utrecht University, The Netherlands."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eijkelenboom", 
            "givenName": "Astrid", 
            "id": "sg:person.01054122426.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054122426.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Stem Cell and Regenerative Biology, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Snitow", 
            "givenName": "Melinda", 
            "id": "sg:person.01126610021.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126610021.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Stem Cell and Regenerative Biology, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Alice E", 
            "id": "sg:person.0747230540.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747230540.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Stem Cell and Regenerative Biology, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Melton", 
            "givenName": "Douglas A", 
            "id": "sg:person.01164235020.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164235020.37"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature05934", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002347899", 
              "https://doi.org/10.1038/nature05934"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1374", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002744128", 
              "https://doi.org/10.1038/nbt1374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bbrc.2005.11.164", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008137251"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2007.11.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010904856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1095/biolreprod.105.047456", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011900843"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06534", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011992920", 
              "https://doi.org/10.1038/nature06534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.stem.2007.12.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012875023"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0925-4773(02)00087-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014348330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2006.07.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014573758"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05944", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019109862", 
              "https://doi.org/10.1038/nature05944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1634/stemcells.2006-0050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019411955"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0711983105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024490582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.stem.2007.05.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029649252"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1151526", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048905674"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008-07", 
        "datePublishedReg": "2008-07-01", 
        "description": "Reprogramming of mouse and human somatic cells can be achieved by ectopic expression of transcription factors, but with low efficiencies. We report that DNA methyltransferase and histone deacetylase (HDAC) inhibitors improve reprogramming efficiency. In particular, valproic acid (VPA), an HDAC inhibitor, improves reprogramming efficiency by more than 100-fold, using Oct4-GFP as a reporter. VPA also enables efficient induction of pluripotent stem cells without introduction of the oncogene c-Myc.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nbt1418", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1115214", 
            "issn": [
              "1087-0156", 
              "1546-1696"
            ], 
            "name": "Nature Biotechnology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "26"
          }
        ], 
        "name": "Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds", 
        "pagination": "795-797", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "4436026c64c6befac064ec52c4ff7c7a66d8b33ac51cf409edd7bb23b2e01bb9"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "18568017"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9604648"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nbt1418"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1014318073"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nbt1418", 
          "https://app.dimensions.ai/details/publication/pub.1014318073"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:28", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000422.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/nbt1418"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nbt1418'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nbt1418'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nbt1418'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nbt1418'


     

    This table displays all metadata directly associated to this object as RDF triples.

    196 TRIPLES      21 PREDICATES      51 URIs      29 LITERALS      17 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nbt1418 schema:about N200294d5d3de4cbb9e9dda2cbdb93976
    2 N3dceff96e9414b66b60619fa6e47a541
    3 N5af4d4b11e5c4593a18b3cb996e24ea8
    4 N6b9f97b58d1d4e419b47a67487f2409f
    5 N84e5bea6937e4a21b02ebcca9e171f1e
    6 N9a0dc15bdc4946a9ac00abb58786df08
    7 Na8a8627e00054919989d2ffb51d97704
    8 Nc1144a8449fc427194e9e8d1e8d99722
    9 anzsrc-for:06
    10 anzsrc-for:0604
    11 schema:author Ncddb8827aa4447a486dca67ba0e5084f
    12 schema:citation sg:pub.10.1038/nature05934
    13 sg:pub.10.1038/nature05944
    14 sg:pub.10.1038/nature06534
    15 sg:pub.10.1038/nbt1374
    16 https://doi.org/10.1016/j.bbrc.2005.11.164
    17 https://doi.org/10.1016/j.cell.2006.07.024
    18 https://doi.org/10.1016/j.cell.2007.11.019
    19 https://doi.org/10.1016/j.stem.2007.05.014
    20 https://doi.org/10.1016/j.stem.2007.12.001
    21 https://doi.org/10.1016/s0925-4773(02)00087-4
    22 https://doi.org/10.1073/pnas.0711983105
    23 https://doi.org/10.1095/biolreprod.105.047456
    24 https://doi.org/10.1126/science.1151526
    25 https://doi.org/10.1634/stemcells.2006-0050
    26 schema:datePublished 2008-07
    27 schema:datePublishedReg 2008-07-01
    28 schema:description Reprogramming of mouse and human somatic cells can be achieved by ectopic expression of transcription factors, but with low efficiencies. We report that DNA methyltransferase and histone deacetylase (HDAC) inhibitors improve reprogramming efficiency. In particular, valproic acid (VPA), an HDAC inhibitor, improves reprogramming efficiency by more than 100-fold, using Oct4-GFP as a reporter. VPA also enables efficient induction of pluripotent stem cells without introduction of the oncogene c-Myc.
    29 schema:genre research_article
    30 schema:inLanguage en
    31 schema:isAccessibleForFree false
    32 schema:isPartOf Na192f0e129c54bc5af4f9a5752e80601
    33 Nd068e43779304c8eae7dc8f5a04796b5
    34 sg:journal.1115214
    35 schema:name Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds
    36 schema:pagination 795-797
    37 schema:productId N0af57a10fff04d638b4bc056255ac641
    38 N13d4826d7fe34258a00afa3fb19b8f4a
    39 N5bfd5d4aca124e919286c5a5bef28adc
    40 Nb73814206595486e931ae22d16ebec53
    41 Ne59ef5aed3274d5bbe48f10eed9dc664
    42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014318073
    43 https://doi.org/10.1038/nbt1418
    44 schema:sdDatePublished 2019-04-10T16:28
    45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    46 schema:sdPublisher N2b05cc15716249758965e518bfdd7908
    47 schema:url http://www.nature.com/articles/nbt1418
    48 sgo:license sg:explorer/license/
    49 sgo:sdDataset articles
    50 rdf:type schema:ScholarlyArticle
    51 N0af57a10fff04d638b4bc056255ac641 schema:name nlm_unique_id
    52 schema:value 9604648
    53 rdf:type schema:PropertyValue
    54 N11b7accab5c54e5e96047dfabcedbfc5 rdf:first sg:person.01164235020.37
    55 rdf:rest rdf:nil
    56 N13d4826d7fe34258a00afa3fb19b8f4a schema:name pubmed_id
    57 schema:value 18568017
    58 rdf:type schema:PropertyValue
    59 N200294d5d3de4cbb9e9dda2cbdb93976 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    60 schema:name Animals
    61 rdf:type schema:DefinedTerm
    62 N26aa918283e1408983d56451b5c92bfa rdf:first sg:person.0747230540.50
    63 rdf:rest N11b7accab5c54e5e96047dfabcedbfc5
    64 N2b05cc15716249758965e518bfdd7908 schema:name Springer Nature - SN SciGraph project
    65 rdf:type schema:Organization
    66 N3856e65ec7684fcf834142911e32b8f7 rdf:first sg:person.014605715475.58
    67 rdf:rest Neb3cb2737e0a4585ae5a7c4a3c659428
    68 N3dceff96e9414b66b60619fa6e47a541 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    69 schema:name Cell Line
    70 rdf:type schema:DefinedTerm
    71 N56c916d649ae4789bc799a391da0f05d rdf:first sg:person.0744246221.84
    72 rdf:rest N3856e65ec7684fcf834142911e32b8f7
    73 N5af4d4b11e5c4593a18b3cb996e24ea8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    74 schema:name Stem Cells
    75 rdf:type schema:DefinedTerm
    76 N5bfd5d4aca124e919286c5a5bef28adc schema:name doi
    77 schema:value 10.1038/nbt1418
    78 rdf:type schema:PropertyValue
    79 N6b9f97b58d1d4e419b47a67487f2409f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    80 schema:name Mice
    81 rdf:type schema:DefinedTerm
    82 N84e5bea6937e4a21b02ebcca9e171f1e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    83 schema:name Cell Differentiation
    84 rdf:type schema:DefinedTerm
    85 N9a0dc15bdc4946a9ac00abb58786df08 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    86 schema:name DNA (Cytosine-5-)-Methyltransferases
    87 rdf:type schema:DefinedTerm
    88 Na192f0e129c54bc5af4f9a5752e80601 schema:volumeNumber 26
    89 rdf:type schema:PublicationVolume
    90 Na8a8627e00054919989d2ffb51d97704 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    91 schema:name Histone Deacetylase Inhibitors
    92 rdf:type schema:DefinedTerm
    93 Nae545fd06ed84cb98381760e82fe68c3 rdf:first sg:person.01126610021.06
    94 rdf:rest N26aa918283e1408983d56451b5c92bfa
    95 Nb73814206595486e931ae22d16ebec53 schema:name readcube_id
    96 schema:value 4436026c64c6befac064ec52c4ff7c7a66d8b33ac51cf409edd7bb23b2e01bb9
    97 rdf:type schema:PropertyValue
    98 Nc1144a8449fc427194e9e8d1e8d99722 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    99 schema:name Valproic Acid
    100 rdf:type schema:DefinedTerm
    101 Ncddb8827aa4447a486dca67ba0e5084f rdf:first sg:person.01014266246.80
    102 rdf:rest N56c916d649ae4789bc799a391da0f05d
    103 Nd068e43779304c8eae7dc8f5a04796b5 schema:issueNumber 7
    104 rdf:type schema:PublicationIssue
    105 Ne59ef5aed3274d5bbe48f10eed9dc664 schema:name dimensions_id
    106 schema:value pub.1014318073
    107 rdf:type schema:PropertyValue
    108 Neb3cb2737e0a4585ae5a7c4a3c659428 rdf:first sg:person.01054122426.39
    109 rdf:rest Nae545fd06ed84cb98381760e82fe68c3
    110 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Biological Sciences
    112 rdf:type schema:DefinedTerm
    113 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    114 schema:name Genetics
    115 rdf:type schema:DefinedTerm
    116 sg:journal.1115214 schema:issn 1087-0156
    117 1546-1696
    118 schema:name Nature Biotechnology
    119 rdf:type schema:Periodical
    120 sg:person.01014266246.80 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    121 schema:familyName Huangfu
    122 schema:givenName Danwei
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014266246.80
    124 rdf:type schema:Person
    125 sg:person.01054122426.39 schema:affiliation https://www.grid.ac/institutes/grid.5477.1
    126 schema:familyName Eijkelenboom
    127 schema:givenName Astrid
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054122426.39
    129 rdf:type schema:Person
    130 sg:person.01126610021.06 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    131 schema:familyName Snitow
    132 schema:givenName Melinda
    133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126610021.06
    134 rdf:type schema:Person
    135 sg:person.01164235020.37 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    136 schema:familyName Melton
    137 schema:givenName Douglas A
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164235020.37
    139 rdf:type schema:Person
    140 sg:person.014605715475.58 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
    141 schema:familyName Guo
    142 schema:givenName Wenjun
    143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014605715475.58
    144 rdf:type schema:Person
    145 sg:person.0744246221.84 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    146 schema:familyName Maehr
    147 schema:givenName René
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744246221.84
    149 rdf:type schema:Person
    150 sg:person.0747230540.50 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    151 schema:familyName Chen
    152 schema:givenName Alice E
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747230540.50
    154 rdf:type schema:Person
    155 sg:pub.10.1038/nature05934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002347899
    156 https://doi.org/10.1038/nature05934
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1038/nature05944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019109862
    159 https://doi.org/10.1038/nature05944
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1038/nature06534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011992920
    162 https://doi.org/10.1038/nature06534
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1038/nbt1374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002744128
    165 https://doi.org/10.1038/nbt1374
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1016/j.bbrc.2005.11.164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008137251
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1016/j.cell.2006.07.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014573758
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1016/j.cell.2007.11.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010904856
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1016/j.stem.2007.05.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029649252
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1016/j.stem.2007.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012875023
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1016/s0925-4773(02)00087-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014348330
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1073/pnas.0711983105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024490582
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1095/biolreprod.105.047456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011900843
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1126/science.1151526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048905674
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1634/stemcells.2006-0050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019411955
    186 rdf:type schema:CreativeWork
    187 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
    188 schema:name Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA.
    189 rdf:type schema:Organization
    190 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
    191 schema:name Department of Stem Cell and Regenerative Biology, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA.
    192 rdf:type schema:Organization
    193 https://www.grid.ac/institutes/grid.5477.1 schema:alternateName Utrecht University
    194 schema:name Biomedical Sciences, Utrecht University, The Netherlands.
    195 Department of Stem Cell and Regenerative Biology, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA.
    196 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...