Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-06-29

AUTHORS

Elena E Perez, Jianbin Wang, Jeffrey C Miller, Yann Jouvenot, Kenneth A Kim, Olga Liu, Nathaniel Wang, Gary Lee, Victor V Bartsevich, Ya-Li Lee, Dmitry Y Guschin, Igor Rupniewski, Adam J Waite, Carmine Carpenito, Richard G Carroll, Jordan S Orange, Fyodor D Urnov, Edward J Rebar, Dale Ando, Philip D Gregory, James L Riley, Michael C Holmes, Carl H June

ABSTRACT

Homozygosity for the naturally occurring Δ32 deletion in the HIV co-receptor CCR5 confers resistance to HIV-1 infection. We generated an HIV-resistant genotype de novo using engineered zinc-finger nucleases (ZFNs) to disrupt endogenous CCR5. Transient expression of CCR5 ZFNs permanently and specifically disrupted ∼50% of CCR5 alleles in a pool of primary human CD4+ T cells. Genetic disruption of CCR5 provided robust, stable and heritable protection against HIV-1 infection in vitro and in vivo in a NOG model of HIV infection. HIV-1-infected mice engrafted with ZFN-modified CD4+ T cells had lower viral loads and higher CD4+ T-cell counts than mice engrafted with wild-type CD4+ T cells, consistent with the potential to reconstitute immune function in individuals with HIV/AIDS by maintenance of an HIV-resistant CD4+ T-cell population. Thus adoptive transfer of ex vivo expanded CCR5 ZFN–modified autologous CD4+ T cells in HIV patients is an attractive approach for the treatment of HIV-1 infection. More... »

PAGES

808-816

References to SciGraph publications

  • 2003-08-28. Regulation and mechanisms of mammalian double-strand break repair in ONCOGENE
  • 2005-11-20. Host-reactive CD8+ memory stem cells in graft-versus-host disease in NATURE MEDICINE
  • 1999-10. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions in NATURE
  • 2001-07. A rapid, generally applicable method to engineer zinc fingers illustrated by targeting the HIV-1 promoter in NATURE BIOTECHNOLOGY
  • 2005-04-03. Highly efficient endogenous human gene correction using designed zinc-finger nucleases in NATURE
  • 2007-10-28. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery in NATURE BIOTECHNOLOGY
  • 2005-11. Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae in NATURE
  • 2002-01. Adoptive transfer of costimulated CD4+ T cells induces expansion of peripheral T cells and decreased CCR5 expression in HIV infection in NATURE MEDICINE
  • 2005-07-31. Genome sequencing in microfabricated high-density picolitre reactors in NATURE
  • 1996-11. The role of a mutant CCR5 allele in HIV–1 transmission and disease progression in NATURE MEDICINE
  • 1996-06. Identification of a major co-receptor for primary isolates of HIV-1 in NATURE
  • 2005-10-05. Efficacy of short-term monotherapy with maraviroc, a new CCR5 antagonist, in patients infected with HIV-1 in NATURE MEDICINE
  • 1997-10. CCR2 chemokine receptor and AIDS progression in NATURE MEDICINE
  • 2007-07-01. An improved zinc-finger nuclease architecture for highly specific genome editing in NATURE BIOTECHNOLOGY
  • 2003-05. Drug discovery with engineered zinc-finger proteins in NATURE REVIEWS DRUG DISCOVERY
  • 2007-12-07. Genetic therapies against HIV in NATURE BIOTECHNOLOGY
  • 1996-08. Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene in NATURE
  • Journal

    TITLE

    Nature Biotechnology

    ISSUE

    7

    VOLUME

    26

    Related Patents

  • Using Rna-Guided Foki Nucleases (Rfns) To Increase Specificity For Rna-Guided Genome Editing
  • Compositions And Methods Of Use Of Crispr-Cas Systems In Nucleotide Repeat Disorders
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Nuclease Profiling System
  • Aptamer-Mrna Conjugates For Targeted Protein Or Peptide Expression And Methods For Their Use
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Compositions And Methods For Treating Cep290-Associated Disease
  • Methods And Compositions For Treating Huntington's Disease
  • Supercharged Proteins For Cell Penetration
  • Engineering And Optimization Of Improved Systems, Methods And Enzyme Compositions For Sequence Manipulation
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Compositions And Methods For Detecting Nucleic Acid Regions
  • Targeted Genomic Modification With Partially Single-Stranded Donor Molecules
  • Rna-Guided Gene Editing And Gene Regulation
  • Methods And Compositions For Gene Inactivation
  • In Vivo Determination Of The Lokalization Of Dna Double-Stand Breaks And Application Thereof
  • Methods For Correcting Presenilin Point Mutations
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Use Of Cationic Lipids To Deliver Cas9
  • Methods And Compositions For Delivery Of Biologics
  • Methods And Compositions For Treatment Of A Beta Thalessemia
  • Method For The Treatment Of Lysosomal Storage Diseases
  • Methods, Models, Systems, And Apparatus For Identifying Target Sequences For Cas Enzymes Or Crispr-Cas Systems For Target Sequences And Conveying Results Thereof
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Methods And Compositions For Regulation Of Transgene Expression
  • Editing Of Ccr5 Receptor Gene To Protect Against Hiv Infection
  • Aav Delivery Of Nucleobase Editors
  • Methods And Compositions For Gene Inactivation
  • Method For The Generation Of Compact Tale-Nucleases And Uses Thereof
  • Compositions And Methods For Epigenome Editing
  • Compositions And Methods For Treating Cep290-Associated Disease
  • Methods And Compositions For Regulation Of Transgene Expression
  • Dna-Binding Proteins And Uses Thereof
  • Targeted Modification Of Rat Genome
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Methods And Compositions For Genome Engineering
  • Modification Of Cxcr4 Using Engineered Zinc Finger Proteins
  • Methods And Compositions For Treating Hemophilia B
  • Crispr/Cas-Related Methods And Compositions For Treating Usher Syndrome And Retinitis Pigmentosa
  • Full Interrogation Of Nuclease Dsbs And Sequencing (Find-Seq)
  • Rna-Guided Targeting Of Genetic And Epigenomic Regulatory Proteins To Specific Genomic Loci
  • Methods And Compositions For The Targeted Modification Of A Mouse Genome
  • Methods And Compositions For Increasing Transgene Activity
  • Genetic Correction Of Mutated Genes
  • Cas9 Proteins Including Ligand-Dependent Inteins
  • Cas9 Proteins Including Ligand-Dependent Inteins
  • Engineered Cleavage Half-Domains
  • Cas Variants For Gene Editing
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Delivery, Engineering And Optimization Of Systems, Methods And Compositions For Sequence Manipulation And Therapeutic Applications
  • Modification Of Cxcr4 Using Engineered Zinc Finger Proteins
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Delivery Of Cargo Proteins Via Arrdc1-Mediated Microvesicles (Armms)
  • New Sequence Specific Reagents Targeting Ccr5 In Primary Hematopoietic Cells
  • Methods And Compositions For Treating Huntington's Disease
  • Nuclease-Mediated Regulation Of Gene Expression
  • Targeted Disruption Of T Cell Receptor Genes Using Talens
  • Adenosine Nucleobase Editors And Uses Thereof
  • Cas9 Variants And Uses Thereof
  • Engineered Crispr-Cas9 Nucleases
  • Compositions And Methods Of Improving Specificity In Genomic Engineering Using Rna-Guided Endonucleases
  • Engineered Crispr-Cas9 Nucleases
  • Crispr-Related Methods And Compositions With Governing Grnas
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Method Of Inactivating The Ipk1 Gene In Corn
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Methods And Compositions For Increasing Nuclease Activity
  • Methods And Compositions For Treating Huntington's Disease
  • Determination Of In Vivo Dna Double-Strand Break Localization And Application Thereof
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Methods And Compositions For Treating Huntington's Disease
  • Methods And Compositions For Gene Correction
  • Nuclease-Mediated Targeting With Large Targeting Vectors
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Methods And Compositions For Regulation Of Transgene Expression
  • T-Cell Specific Genome Editing
  • Method For The Generation Of Compact Tale-Nucleases And Uses Thereof
  • Nucleotide-Specific Recognition Sequences For Designer Tal Effectors
  • Using Truncated Guide Rnas (Tru-Grnas) To Increase Specificity For Rna-Guided Genome Editing
  • Methods And Compostions For Targeted Genomic Deletion
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Adenosine Nucleobase Editors And Uses Thereof
  • Nucleotide-Specific Recognition Sequences For Designer Tal Effectors
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Modulation Of Liver Genes
  • Rapid Screening Of Biologically Active Nucleases And Isolation Of Nuclease-Modified Cells
  • Genome Engineering
  • Methods And Compositions For Treating Hemophilia B
  • Organisms Homozygous For Targeted Modification
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Nucleotide-Specific Recognition Sequences For Designer Tal Effectors
  • Methods And Compositions For Treatment Of A Genetic Condition
  • Rna-Guided Gene Editing And Gene Regulation
  • Genome Editing Methods
  • Using Truncated Guide Rnas (Tru-Grnas) To Increase Specificity For Rna-Guided Genome Editing
  • Methods And Compositions For Generating Or Maintaining Pluripotent Cells
  • Methods For Nucleic Acid Editing
  • Dna-Binding Proteins And Uses Thereof
  • Switchable Cas9 Nucleases And Uses Thereof
  • Engineered Transcription Activator-Like Effector (Tale) Domains And Uses Thereof
  • Rapid Screening Of Biologically Active Nucleases And Isolation Of Nuclease-Modified Cells
  • Genetically Modified Animals And Methods For Making The Same
  • Genome Editing Using Targeting Endonucleases And Single-Stranded Nucleic Acids
  • Methods And Compositions For Inactivating Glutamine Synthetase Gene Expression
  • Cas9 Proteins Including Ligand-Dependent Inteins
  • Method For The Generation Of Compact Tale-Nucleases And Uses Thereof
  • Methods For Identifying A Target Site Of A Cas9 Nuclease
  • Determination Of In Vivo Dna Double-Strand Break Localization And Application Thereof
  • Methods And Compositions For Inactivating Glutamine Synthetase Gene Expression
  • Methods And Compositions For Gene Inactivation
  • Methods And Compositions For Treating Hemophilia
  • Compositions And Methods For Detecting Nucleic Acid Regions
  • Evaluation And Improvement Of Nuclease Cleavage Specificity
  • Protein Surface Remodeling
  • Targeted Genomic Modification With Partially Single-Stranded Donor Molecules
  • Engineered Crispr-Cas9 Nucleases
  • Evaluation And Improvement Of Nuclease Cleavage Specificity
  • Crispr-Related Methods And Compositions With Governing Grnas
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Genome Editing Using Cas9 Nickases
  • Engineered Transcription Activator-Like Effector (Tale) Domains And Uses Thereof
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Engineered Cleavage Half-Domains For Generating Nuclease-Mediated Genomic Modifications In A Cell
  • Gene Correction Of Scid-Related Genes In Hematopoietic Stem And Progenitor Cells
  • Genetically Modified Animals And Methods For Making The Same
  • Methods, Systems, And Apparatus For Identifying Target Sequences For Cas Enzymes Or Crispr-Cas Systems For Target Sequences And Conveying Results Thereof
  • Crispr/Cas-Related Methods And Compositions For Treating Leber's Congenital Amaurosis 10 (Lca10)
  • Methods, Models, Systems, And Apparatus For Identifying Target Sequences For Cas Enzymes Or Crispr-Cas Systems For Target Sequences And Conveying Results Thereof
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Gene Correction Of Scid-Related Genes In Hematopoietic Stem And Progenitor Cells
  • Dna-Binding Proteins And Uses Thereof
  • Artificial Nucleases Comprising Engineered Cleavage Half-Domains
  • Delivery, Use And Therapeutic Applications Of The Crispr-Cas Systems And Compositions For Hbv And Viral Diseases And Disorders
  • Organisms Homozygous For Targeted Modification
  • Methods And Compositions For Treating Huntington's Disease
  • Methods And Compositions For Targeted Genomic Deletion
  • Methods And Compositions For Treatment Of A Genetic Condition
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Multiplex Guide Rnas
  • Engineered Cleavage Half-Domains
  • Dna-Binding Proteins And Uses Thereof
  • Artifical Nucleases Comprising Engineered Cleavage Half-Domains
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Delivery, Use And Therapeutic Applications Of The Crispr-Cas Systems And Compositions For Hbv And Viral Diseases And Disorders
  • Arrdc1-Mediated Microvesicles (Armms) And Uses Thereof
  • Nuclease-Mediated Targeting With Large Targeting Vectors
  • Nucleobase Editors Comprising Nucleic Acid Programmable Dna Binding Proteins
  • Polynucleotides Encoding A Human Trim-Cyp Fusion Polypeptide, Compositions Thereof, And Methods Of Using Same
  • Engineered Crispr-Cas9 Nucleases
  • Organisms Homozygous For Targeted Modification
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Delivery Of Cas9 Via Arrdc1-Mediated Microvesicles (Armms)
  • Nuclease-Mediated Regulation Of Gene Expression
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Methods And Compositions For Treating Trinucleotide Repeat Disorders
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Protein Surface Remodeling
  • Using Truncated Guide Rnas (Tru-Grnas) To Increase Specificity For Rna-Guided Genome Editing
  • Methods And Compositions For The Targeted Modification Of A Mouse Embryonic Stem Cell Genome
  • Methods And Compositions For Nuclease Design
  • Excision Of Transgenes In Genetically Modified Organisms
  • Gene Correction For Scid-X1 In Long-Term Hematopoietic Stem Cells
  • Methods For Cleaving A Target Dna Using A Guide Rna Specific For The Target Dna And Cas Protein-Encoding Nucleic Acid Or Cas Protein
  • Method, Vectors, Cells, Seeds And Kits For Stacking Genes Into A Single Genomic Site
  • Engineered Cleavage Half-Domains
  • Methods And Compositions For Modification Of The Hprt Locus
  • Using Truncated Guide Rnas (Tru-Grnas) To Increase Specificity For Rna-Guided Genome Editing
  • Gene Knockout Method
  • Nuclease Fusions For Enhancing Genome Editing By Homology-Directed Transgene Integration
  • Method Of Treating Lysosomal Storage Diseases Using Nucleases And A Transgene
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Engineering And Optimization Of Improved Systems, Methods And Enzyme Compositions For Sequence Manipulation
  • Method For Enhancing Rare-Cutting Endonuclease Efficiency And Uses Thereof
  • Switchable Cas9 Nucleases And Uses Thereof
  • Delivery Of Negatively Charged Proteins Using Cationic Lipids
  • Compositions And Methods Of Use Of Crispr-Cas Systems In Nucleotide Repeat Disorders
  • Methods And Compositions For Increasing Nuclease Activity
  • Methods And Compositions For The Treatment Of Lysosomal Storage Diseases
  • Improved Adenovirus Vector And Application Thereof In Medicine For Preventing And Treating Aids (Acquired Immure Deficiency Syndrome)
  • Method Of Treating Mucopolysaccharidosis Type I Or Ii
  • Method, Vectors, Cells, Seeds And Kits For Stacking Genes Into A Single Genomic Site
  • Genetically Modified Human Cell With A Corrected Mutant Sickle Cell Mutation
  • Targeted Disruption Of T Cell Receptor Genes Using Engineered Zinc Finger Protein Nucleases
  • Escorted And Functionalized Guides For Crispr-Cas Systems
  • Gene Correction Of Scid-Related Genes In Hematopoietic Stem And Progenitor Cells
  • Method Of Treating Lysosomal Storage Diseases
  • Evaluation And Improvement Of Nuclease Cleavage Specificity
  • Evaluation And Improvement Of Nuclease Cleavage Specificity
  • Engineering And Optimization Of Improved Systems, Methods And Enzyme Compositions For Sequence Manipulation
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Lipids For Lipid Nanoparticle Delivery Of Active Agents
  • Using Rna-Guided Foki Nucleases (Rfns) To Increase Specificity For Rna-Guided Genome Editing
  • Engineered Crispr-Cas9 Nucleases
  • Artificial Nucleases Including Engineered Foki Cleavage Half-Domains
  • Nuclease Profiling System
  • Increasing Specificity For Rna-Guided Genome Editing
  • Methods And Compositions For Genome Engineering
  • Engineered Crispr-Cas9 Nucleases With Altered Pam Specificity
  • Methods And Compositions For Treating Trinucleotide Repeat Disorders
  • Fusions Of Cas9 Domains And Nucleic Acid-Editing Domains
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Delivery Of Cargo Proteins Via Arrdc1-Mediated Microvesicles (Armms)
  • Protein Surface Remodeling
  • Data Analysis Of Dna Sequences
  • Increasing Specificity For Rna-Guided Genome Editing
  • Compositions And Methods For The Induction And Tuning Of Gene Expression
  • Using Rna-Guided Foki Nucleases (Rfns) To Increase Specificity For Rna-Guided Genome Editing
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Delivery, Engineering And Optimization Of Tandem Guide Systems, Methods And Compositions For Sequence Manipulation
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Cas Variants For Gene Editing
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Using Rna-Guided Foki Nucleases (Rfns) To Increase Specificity For Rna-Guided Genome Editing
  • Compositions And Methods Of Use Of Crispr-Cas Systems In Nucleotide Repeat Disorders
  • Aptamer-Mrna Conjugates For Targeted Protein Or Peptide Expression And Methods For Their Use
  • Nucleobase Editors And Uses Thereof
  • Crispr-Related Methods And Compositions With Governing Grnas
  • Methods And Compositions For Gene Correction
  • Switchable Cas9 Nucleases And Uses Thereof
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Crispr-Related Methods And Compositions With Governing Grnas
  • Dna-Binding Proteins And Uses Thereof
  • Using Truncated Guide Rnas (Tru-Grnas) To Increase Specificity For Rna-Guided Genome Editing
  • Modification Of Cxcr4 Using Engineered Zinc Finger Proteins
  • Compositions, Systems And Methods For Cell Therapy
  • Nucleic Acid Molecule, Fusion Protein And Method To Modify The Genetic Material Of A Cell (Machine-Translation By Google Translate, Not Legally Binding)
  • Genetic Correction Of Mutated Genes
  • Engineered Cleavage Half-Domains
  • Methods And Compositions For Nuclease-Mediated Targeted Integration Of Transgenes
  • Methods And Compositions For Regulating Hiv Infection
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Targeted Genomic Modification With Partially Single-Stranded Donor Molecules
  • Method For The Monitoring Of Modified Nucleases Induced-Gene Editing Events By Molecular Combing
  • Methods And Compositions For Regulation Of Transgene Expression
  • Modification Of Cxcr4 Using Engineered Zinc Finger Proteins
  • Rna-Guided Targeting Of Genetic And Epigenomic Regulatory Proteins To Specific Genomic Loci
  • Methods And Compositions For The Targeted Modification Of A Mouse Es Cell Genome
  • Delivery System For Functional Nucleases
  • Functional Genomics Using Crispr-Cas Systems, Compositions, Methods, Knock Out Libraries And Applications Thereof
  • Engineered Target Specific Nucleases
  • Non-Meiotic Allele Introgression
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Methods For Identifying A Target Site Of A Cas9 Nuclease
  • Methods And Compositions For Treating Hemophilia
  • Arrdc1-Mediated Microvesicles (Armms) And Uses Thereof
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Methods And Compositions For The Targeted Modification Of A Genome
  • Non-Meiotic Allele Introgression
  • Organisms Homozygous For Targeted Modification
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Evaluation Of Cas9 Molecule/Guide Rna Molecule Complexes
  • Using Truncated Guide Rnas (Tru-Grnas) To Increase Specificity For Rna-Guided Genome Editing
  • Nucleobase Editors And Uses Thereof
  • Using Rna-Guided Foki Nucleases (Rfns) To Increase Specificity For Rna-Guided Genome Editing
  • Methods And Compositions For Modification Of The Hprt Locus
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Nuclease Profiling System
  • Genome Engineering
  • Crispr/Cas-Related Methods And Compositions For Treating Leber's Congenital Amaurosis 10 (Lca10)
  • Use Of Endogenous Promoters To Express Heterologous Proteins
  • Modified Dna-Binding Proteins And Uses Thereof
  • Compositions And Methods Of Use Of Crispr-Cas Systems In Nucleotide Repeat Disorders
  • Engineered Transcription Activator-Like Effector (Tale) Domains And Uses Thereof
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Rna-Guided Targeting Of Genetic And Epigenomic Regulatory Proteins To Specific Genomic Loci
  • Crispr/Cas-Related Methods And Compositions For Treating Leber's Congenital Amaurosis 10 (Lca10)
  • Methods And Compositions For Prevention Or Treatment Of A Disease
  • Engineered Crispr-Cas9 Nucleases
  • Methods And Compositions For Treating Huntington's Disease
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Engineered Zinc Finger Proteins For Treating Trinucleotide Repeat Disorders
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Delivery Of Negatively Charged Proteins Using Cationic Lipids
  • Using Rna-Guided Foki Nucleases (Rfns) To Increase Specificity For Rna-Guided Genome Editing
  • Targeted Modification Of Rat Genome
  • Delivery System For Functional Nucleases
  • Targeted Integration Into Stem Cells
  • Dna-Binding Proteins And Uses Thereof
  • Methods And Compositions For Engineering Immunity
  • Crispr/Cas-Related Methods And Compositions For Treating Sickle Cell Disease
  • Aptamer-Mrna Conjugates For Targeted Protein Or Peptide Expression And Methods For Their Use
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Compositions And Methods For Modulating The Activity Of Complement Regulatory Proteins On Target Cells
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Methods For Improving Functionality In Nk Cell By Gene Inactivation Using Specific Endonuclease
  • Methods And Compositions Or Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Nuclease Profiling System
  • Increasing Specificity For Rna-Guided Genome Editing
  • Using Rna-Guided Foki Nucleases (Rfns) To Increase Specificity For Rna-Guided Genome Editing
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nbt1410

    DOI

    http://dx.doi.org/10.1038/nbt1410

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1048577624

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/18587387


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1107", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Immunology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1108", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adoptive Transfer", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "CD4-Positive T-Lymphocytes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cells, Cultured", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromosome Mapping", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Deoxyribonucleases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "HIV Infections", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Immunity, Innate", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Treatment Outcome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Zinc Fingers", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Division of Allergy and Immunology, Children's Hospital of Philadelphia, Joseph Stokes, Jr. Research Institute, 3615 Civic Center Blvd., Philadelphia, Pennsylvania 19104-4318, USA.", 
              "id": "http://www.grid.ac/institutes/grid.239552.a", 
              "name": [
                "Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, 421 Curie Blvd., Room 554, BRB II/III, Philadelphia, Pennsylvania 19104-6160, USA.", 
                "Division of Allergy and Immunology, Children's Hospital of Philadelphia, Joseph Stokes, Jr. Research Institute, 3615 Civic Center Blvd., Philadelphia, Pennsylvania 19104-4318, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Perez", 
            "givenName": "Elena E", 
            "id": "sg:person.0607221441.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607221441.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sangamo BioSciences, Inc., Point Richmond Tech Center II, 501 Canal Blvd., Suite A100, Richmond, California 94804, USA.", 
              "id": "http://www.grid.ac/institutes/grid.421831.d", 
              "name": [
                "Sangamo BioSciences, Inc., Point Richmond Tech Center II, 501 Canal Blvd., Suite A100, Richmond, California 94804, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Jianbin", 
            "id": "sg:person.011354434034.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011354434034.56"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sangamo BioSciences, Inc., Point Richmond Tech Center II, 501 Canal Blvd., Suite A100, Richmond, California 94804, USA.", 
              "id": "http://www.grid.ac/institutes/grid.421831.d", 
              "name": [
                "Sangamo BioSciences, Inc., Point Richmond Tech Center II, 501 Canal Blvd., Suite A100, Richmond, California 94804, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Miller", 
            "givenName": "Jeffrey C", 
            "id": "sg:person.01174076271.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174076271.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Present address: Process Science Department, Bayer Hematology/Cardiology, 800 Dwight Way, Berkeley, California 94701, USA.", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Sangamo BioSciences, Inc., Point Richmond Tech Center II, 501 Canal Blvd., Suite A100, Richmond, California 94804, USA.", 
                "Present address: Process Science Department, Bayer Hematology/Cardiology, 800 Dwight Way, Berkeley, California 94701, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jouvenot", 
            "givenName": "Yann", 
            "id": "sg:person.0771563241.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771563241.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sangamo BioSciences, Inc., Point Richmond Tech Center II, 501 Canal Blvd., Suite A100, Richmond, California 94804, USA.", 
              "id": "http://www.grid.ac/institutes/grid.421831.d", 
              "name": [
                "Sangamo BioSciences, Inc., Point Richmond Tech Center II, 501 Canal Blvd., Suite A100, Richmond, California 94804, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "Kenneth A", 
            "id": "sg:person.01203760001.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203760001.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, 421 Curie Blvd., Room 554, BRB II/III, Philadelphia, Pennsylvania 19104-6160, USA.", 
              "id": "http://www.grid.ac/institutes/grid.25879.31", 
              "name": [
                "Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, 421 Curie Blvd., Room 554, BRB II/III, Philadelphia, Pennsylvania 19104-6160, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Olga", 
            "id": "sg:person.01106011641.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106011641.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sangamo BioSciences, Inc., Point Richmond Tech Center II, 501 Canal Blvd., Suite A100, Richmond, California 94804, USA.", 
              "id": "http://www.grid.ac/institutes/grid.421831.d", 
              "name": [
                "Sangamo BioSciences, Inc., Point Richmond Tech Center II, 501 Canal Blvd., Suite A100, Richmond, California 94804, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Nathaniel", 
            "id": "sg:person.0753123553.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753123553.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sangamo BioSciences, Inc., Point Richmond Tech Center II, 501 Canal Blvd., Suite A100, Richmond, California 94804, USA.", 
              "id": "http://www.grid.ac/institutes/grid.421831.d", 
              "name": [
                "Sangamo BioSciences, Inc., Point Richmond Tech Center II, 501 Canal Blvd., Suite A100, Richmond, California 94804, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Gary", 
            "id": "sg:person.01010776354.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010776354.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sangamo BioSciences, Inc., Point Richmond Tech Center II, 501 Canal Blvd., Suite A100, Richmond, California 94804, USA.", 
              "id": "http://www.grid.ac/institutes/grid.421831.d", 
              "name": [
                "Sangamo BioSciences, Inc., Point Richmond Tech Center II, 501 Canal Blvd., Suite A100, Richmond, California 94804, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bartsevich", 
            "givenName": "Victor V", 
            "id": "sg:person.01270353441.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270353441.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sangamo BioSciences, Inc., Point Richmond Tech Center II, 501 Canal Blvd., Suite A100, Richmond, California 94804, USA.", 
              "id": "http://www.grid.ac/institutes/grid.421831.d", 
              "name": [
                "Sangamo BioSciences, Inc., Point Richmond Tech Center II, 501 Canal Blvd., Suite A100, Richmond, California 94804, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Ya-Li", 
            "id": "sg:person.01336466641.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336466641.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sangamo BioSciences, Inc., Point Richmond Tech Center II, 501 Canal Blvd., Suite A100, Richmond, California 94804, USA.", 
              "id": "http://www.grid.ac/institutes/grid.421831.d", 
              "name": [
                "Sangamo BioSciences, Inc., Point Richmond Tech Center II, 501 Canal Blvd., Suite A100, Richmond, California 94804, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Guschin", 
            "givenName": "Dmitry Y", 
            "id": "sg:person.01057647671.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057647671.77"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sangamo BioSciences, Inc., Point Richmond Tech Center II, 501 Canal Blvd., Suite A100, Richmond, California 94804, USA.", 
              "id": "http://www.grid.ac/institutes/grid.421831.d", 
              "name": [
                "Sangamo BioSciences, Inc., Point Richmond Tech Center II, 501 Canal Blvd., Suite A100, Richmond, California 94804, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rupniewski", 
            "givenName": "Igor", 
            "id": "sg:person.0661175741.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661175741.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sangamo BioSciences, Inc., Point Richmond Tech Center II, 501 Canal Blvd., Suite A100, Richmond, California 94804, USA.", 
              "id": "http://www.grid.ac/institutes/grid.421831.d", 
              "name": [
                "Sangamo BioSciences, Inc., Point Richmond Tech Center II, 501 Canal Blvd., Suite A100, Richmond, California 94804, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Waite", 
            "givenName": "Adam J", 
            "id": "sg:person.0725177232.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725177232.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, 421 Curie Blvd., Room 554, BRB II/III, Philadelphia, Pennsylvania 19104-6160, USA.", 
              "id": "http://www.grid.ac/institutes/grid.25879.31", 
              "name": [
                "Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, 421 Curie Blvd., Room 554, BRB II/III, Philadelphia, Pennsylvania 19104-6160, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Carpenito", 
            "givenName": "Carmine", 
            "id": "sg:person.0732060266.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732060266.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, 421 Curie Blvd., Room 554, BRB II/III, Philadelphia, Pennsylvania 19104-6160, USA.", 
              "id": "http://www.grid.ac/institutes/grid.25879.31", 
              "name": [
                "Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, 421 Curie Blvd., Room 554, BRB II/III, Philadelphia, Pennsylvania 19104-6160, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Carroll", 
            "givenName": "Richard G", 
            "id": "sg:person.010256663157.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010256663157.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Allergy and Immunology, Children's Hospital of Philadelphia, Joseph Stokes, Jr. Research Institute, 3615 Civic Center Blvd., Philadelphia, Pennsylvania 19104-4318, USA.", 
              "id": "http://www.grid.ac/institutes/grid.239552.a", 
              "name": [
                "Division of Allergy and Immunology, Children's Hospital of Philadelphia, Joseph Stokes, Jr. Research Institute, 3615 Civic Center Blvd., Philadelphia, Pennsylvania 19104-4318, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "S Orange", 
            "givenName": "Jordan", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sangamo BioSciences, Inc., Point Richmond Tech Center II, 501 Canal Blvd., Suite A100, Richmond, California 94804, USA.", 
              "id": "http://www.grid.ac/institutes/grid.421831.d", 
              "name": [
                "Sangamo BioSciences, Inc., Point Richmond Tech Center II, 501 Canal Blvd., Suite A100, Richmond, California 94804, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Urnov", 
            "givenName": "Fyodor D", 
            "id": "sg:person.01065115346.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065115346.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sangamo BioSciences, Inc., Point Richmond Tech Center II, 501 Canal Blvd., Suite A100, Richmond, California 94804, USA.", 
              "id": "http://www.grid.ac/institutes/grid.421831.d", 
              "name": [
                "Sangamo BioSciences, Inc., Point Richmond Tech Center II, 501 Canal Blvd., Suite A100, Richmond, California 94804, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rebar", 
            "givenName": "Edward J", 
            "id": "sg:person.01025207376.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025207376.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sangamo BioSciences, Inc., Point Richmond Tech Center II, 501 Canal Blvd., Suite A100, Richmond, California 94804, USA.", 
              "id": "http://www.grid.ac/institutes/grid.421831.d", 
              "name": [
                "Sangamo BioSciences, Inc., Point Richmond Tech Center II, 501 Canal Blvd., Suite A100, Richmond, California 94804, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ando", 
            "givenName": "Dale", 
            "id": "sg:person.0645571071.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645571071.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sangamo BioSciences, Inc., Point Richmond Tech Center II, 501 Canal Blvd., Suite A100, Richmond, California 94804, USA.", 
              "id": "http://www.grid.ac/institutes/grid.421831.d", 
              "name": [
                "Sangamo BioSciences, Inc., Point Richmond Tech Center II, 501 Canal Blvd., Suite A100, Richmond, California 94804, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gregory", 
            "givenName": "Philip D", 
            "id": "sg:person.015620210017.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015620210017.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, 421 Curie Blvd., Room 554, BRB II/III, Philadelphia, Pennsylvania 19104-6160, USA.", 
              "id": "http://www.grid.ac/institutes/grid.25879.31", 
              "name": [
                "Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, 421 Curie Blvd., Room 554, BRB II/III, Philadelphia, Pennsylvania 19104-6160, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Riley", 
            "givenName": "James L", 
            "id": "sg:person.0770005773.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770005773.92"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sangamo BioSciences, Inc., Point Richmond Tech Center II, 501 Canal Blvd., Suite A100, Richmond, California 94804, USA.", 
              "id": "http://www.grid.ac/institutes/grid.421831.d", 
              "name": [
                "Sangamo BioSciences, Inc., Point Richmond Tech Center II, 501 Canal Blvd., Suite A100, Richmond, California 94804, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Holmes", 
            "givenName": "Michael C", 
            "id": "sg:person.01011534471.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011534471.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, 421 Curie Blvd., Room 554, BRB II/III, Philadelphia, Pennsylvania 19104-6160, USA.", 
              "id": "http://www.grid.ac/institutes/grid.25879.31", 
              "name": [
                "Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, 421 Curie Blvd., Room 554, BRB II/III, Philadelphia, Pennsylvania 19104-6160, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "June", 
            "givenName": "Carl H", 
            "id": "sg:person.014235534277.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014235534277.63"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/44385", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016546162", 
              "https://doi.org/10.1038/44385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/90264", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032644172", 
              "https://doi.org/10.1038/90264"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm1097-1052c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051084444", 
              "https://doi.org/10.1038/nm1097-1052c"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm1196-1240", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026944069", 
              "https://doi.org/10.1038/nm1196-1240"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03556", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040117781", 
              "https://doi.org/10.1038/nature03556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044521333", 
              "https://doi.org/10.1038/nature04148"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03959", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021574562", 
              "https://doi.org/10.1038/nature03959"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1353", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026122095", 
              "https://doi.org/10.1038/nbt1353"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/381661a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053562821", 
              "https://doi.org/10.1038/381661a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm1326", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024397965", 
              "https://doi.org/10.1038/nm1326"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm1319", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041122840", 
              "https://doi.org/10.1038/nm1319"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/382722a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050488632", 
              "https://doi.org/10.1038/382722a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrd1087", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040287926", 
              "https://doi.org/10.1038/nrd1087"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1367", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008151467", 
              "https://doi.org/10.1038/nbt1367"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1319", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002154526", 
              "https://doi.org/10.1038/nbt1319"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1206679", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024607188", 
              "https://doi.org/10.1038/sj.onc.1206679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm0102-47", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018873794", 
              "https://doi.org/10.1038/nm0102-47"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008-06-29", 
        "datePublishedReg": "2008-06-29", 
        "description": "Homozygosity for the naturally occurring \u039432 deletion in the HIV co-receptor CCR5 confers resistance to HIV-1 infection. We generated an HIV-resistant genotype de novo using engineered zinc-finger nucleases (ZFNs) to disrupt endogenous CCR5. Transient expression of CCR5 ZFNs permanently and specifically disrupted \u223c50% of CCR5 alleles in a pool of primary human CD4+ T cells. Genetic disruption of CCR5 provided robust, stable and heritable protection against HIV-1 infection in vitro and in vivo in a NOG model of HIV infection. HIV-1-infected mice engrafted with ZFN-modified CD4+ T cells had lower viral loads and higher CD4+ T-cell counts than mice engrafted with wild-type CD4+ T cells, consistent with the potential to reconstitute immune function in individuals with HIV/AIDS by maintenance of an HIV-resistant CD4+ T-cell population. Thus adoptive transfer of ex vivo expanded CCR5 ZFN\u2013modified autologous CD4+ T cells in HIV patients is an attractive approach for the treatment of HIV-1 infection.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nbt1410", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2684826", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2695835", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2410087", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1115214", 
            "issn": [
              "1087-0156", 
              "1546-1696"
            ], 
            "name": "Nature Biotechnology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "26"
          }
        ], 
        "keywords": [
          "HIV-1 infection", 
          "T cells", 
          "HIV-1-infected mice", 
          "HIV co-receptor CCR5", 
          "T-cell counts", 
          "T cell populations", 
          "low viral load", 
          "HIV-1 resistance", 
          "co-receptor CCR5", 
          "primary human CD4", 
          "HIV/AIDS", 
          "wild-type CD4", 
          "HIV-resistant CD4", 
          "\u039432 deletion", 
          "autologous CD4", 
          "higher CD4", 
          "adoptive transfer", 
          "HIV patients", 
          "HIV infection", 
          "viral load", 
          "CCR5 allele", 
          "human CD4", 
          "CD4", 
          "immune function", 
          "ex vivo", 
          "CCR5", 
          "infection", 
          "genetic disruption", 
          "mice", 
          "cells", 
          "vivo", 
          "de novo", 
          "patients", 
          "zinc finger nucleases", 
          "AIDS", 
          "treatment", 
          "vitro", 
          "transient expression", 
          "attractive approach", 
          "count", 
          "homozygosity", 
          "resistance", 
          "expression", 
          "population", 
          "individuals", 
          "disruption", 
          "alleles", 
          "novo", 
          "deletion", 
          "maintenance", 
          "protection", 
          "function", 
          "pool", 
          "potential", 
          "nuclease", 
          "establishment", 
          "model", 
          "approach", 
          "editing", 
          "load", 
          "transfer"
        ], 
        "name": "Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases", 
        "pagination": "808-816", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1048577624"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nbt1410"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "18587387"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nbt1410", 
          "https://app.dimensions.ai/details/publication/pub.1048577624"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:54", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_464.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nbt1410"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nbt1410'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nbt1410'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nbt1410'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nbt1410'


     

    This table displays all metadata directly associated to this object as RDF triples.

    416 TRIPLES      21 PREDICATES      117 URIs      91 LITERALS      20 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nbt1410 schema:about N0198d2301a9f41a686d3f4ed279f26bd
    2 N1c02b8bd23ca4bfeb2d057e1a1bb1602
    3 N2be005a25b9e4edd801444eedc90f471
    4 N46b655f36b9b48d9915810e57d5dc589
    5 N48b71f0a3be94bff9a9ebd25ae77a692
    6 N63a313d5fb704dac82d9c9c6416dd265
    7 N6e617f8ea07141b0929ee0ae92db56ae
    8 N70372c8085e641eaa7bb22f4f6b6ad0b
    9 N8794e225d62e4a9f9ba7be74b29ef520
    10 Na211f7f9df9f405283d5a5725a341a32
    11 Na85165b67b114c6d8db8e345955c2a4d
    12 Nb8dcff27d3874af886482dfce6908cd3
    13 Nc6b212b4a2f8446da6ce8ee8383d377e
    14 anzsrc-for:11
    15 anzsrc-for:1107
    16 anzsrc-for:1108
    17 schema:author N562e909b5f9c4cbfbf0287cdfcab7b3c
    18 schema:citation sg:pub.10.1038/381661a0
    19 sg:pub.10.1038/382722a0
    20 sg:pub.10.1038/44385
    21 sg:pub.10.1038/90264
    22 sg:pub.10.1038/nature03556
    23 sg:pub.10.1038/nature03959
    24 sg:pub.10.1038/nature04148
    25 sg:pub.10.1038/nbt1319
    26 sg:pub.10.1038/nbt1353
    27 sg:pub.10.1038/nbt1367
    28 sg:pub.10.1038/nm0102-47
    29 sg:pub.10.1038/nm1097-1052c
    30 sg:pub.10.1038/nm1196-1240
    31 sg:pub.10.1038/nm1319
    32 sg:pub.10.1038/nm1326
    33 sg:pub.10.1038/nrd1087
    34 sg:pub.10.1038/sj.onc.1206679
    35 schema:datePublished 2008-06-29
    36 schema:datePublishedReg 2008-06-29
    37 schema:description Homozygosity for the naturally occurring Δ32 deletion in the HIV co-receptor CCR5 confers resistance to HIV-1 infection. We generated an HIV-resistant genotype de novo using engineered zinc-finger nucleases (ZFNs) to disrupt endogenous CCR5. Transient expression of CCR5 ZFNs permanently and specifically disrupted ∼50% of CCR5 alleles in a pool of primary human CD4+ T cells. Genetic disruption of CCR5 provided robust, stable and heritable protection against HIV-1 infection in vitro and in vivo in a NOG model of HIV infection. HIV-1-infected mice engrafted with ZFN-modified CD4+ T cells had lower viral loads and higher CD4+ T-cell counts than mice engrafted with wild-type CD4+ T cells, consistent with the potential to reconstitute immune function in individuals with HIV/AIDS by maintenance of an HIV-resistant CD4+ T-cell population. Thus adoptive transfer of ex vivo expanded CCR5 ZFN–modified autologous CD4+ T cells in HIV patients is an attractive approach for the treatment of HIV-1 infection.
    38 schema:genre article
    39 schema:isAccessibleForFree true
    40 schema:isPartOf N5afaea2a1f5c4909adedfaa559386baa
    41 Na6b5ead0b35d4ce29798f3b1624fdbcf
    42 sg:journal.1115214
    43 schema:keywords AIDS
    44 CCR5
    45 CCR5 allele
    46 CD4
    47 HIV co-receptor CCR5
    48 HIV infection
    49 HIV patients
    50 HIV-1 infection
    51 HIV-1 resistance
    52 HIV-1-infected mice
    53 HIV-resistant CD4
    54 HIV/AIDS
    55 T cell populations
    56 T cells
    57 T-cell counts
    58 adoptive transfer
    59 alleles
    60 approach
    61 attractive approach
    62 autologous CD4
    63 cells
    64 co-receptor CCR5
    65 count
    66 de novo
    67 deletion
    68 disruption
    69 editing
    70 establishment
    71 ex vivo
    72 expression
    73 function
    74 genetic disruption
    75 higher CD4
    76 homozygosity
    77 human CD4
    78 immune function
    79 individuals
    80 infection
    81 load
    82 low viral load
    83 maintenance
    84 mice
    85 model
    86 novo
    87 nuclease
    88 patients
    89 pool
    90 population
    91 potential
    92 primary human CD4
    93 protection
    94 resistance
    95 transfer
    96 transient expression
    97 treatment
    98 viral load
    99 vitro
    100 vivo
    101 wild-type CD4
    102 zinc finger nucleases
    103 Δ32 deletion
    104 schema:name Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases
    105 schema:pagination 808-816
    106 schema:productId N24f39b2f0ace46f883596aee70494cef
    107 N7d471a52eae14f1095c6849daec209be
    108 N9c9328c87ff54b49adbbedbd5a9e6924
    109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048577624
    110 https://doi.org/10.1038/nbt1410
    111 schema:sdDatePublished 2022-11-24T20:54
    112 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    113 schema:sdPublisher N4c61e7d09e8c458d8b8923b09cec30f9
    114 schema:url https://doi.org/10.1038/nbt1410
    115 sgo:license sg:explorer/license/
    116 sgo:sdDataset articles
    117 rdf:type schema:ScholarlyArticle
    118 N0198d2301a9f41a686d3f4ed279f26bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name HIV Infections
    120 rdf:type schema:DefinedTerm
    121 N064712a33d084708b28ba8e59d7a6a3c rdf:first Na5429c3594c54511bc3e590057075639
    122 rdf:rest N2d0b112ed984416a8b44403bfad4fb8b
    123 N1c02b8bd23ca4bfeb2d057e1a1bb1602 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Chromosome Mapping
    125 rdf:type schema:DefinedTerm
    126 N24f39b2f0ace46f883596aee70494cef schema:name pubmed_id
    127 schema:value 18587387
    128 rdf:type schema:PropertyValue
    129 N295fdd956be244a5b72dbd0a0384421c rdf:first sg:person.01025207376.70
    130 rdf:rest N4b535f8ffdb04286947071d95389d6ca
    131 N2be005a25b9e4edd801444eedc90f471 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name CD4-Positive T-Lymphocytes
    133 rdf:type schema:DefinedTerm
    134 N2d0b112ed984416a8b44403bfad4fb8b rdf:first sg:person.01065115346.16
    135 rdf:rest N295fdd956be244a5b72dbd0a0384421c
    136 N3a9c226113074718b8731d83ed329671 rdf:first sg:person.01010776354.96
    137 rdf:rest Nbdacba04a72b4ac8ac73ccb86b3c847a
    138 N46b655f36b9b48d9915810e57d5dc589 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Mice
    140 rdf:type schema:DefinedTerm
    141 N48b71f0a3be94bff9a9ebd25ae77a692 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Genetic Engineering
    143 rdf:type schema:DefinedTerm
    144 N4b535f8ffdb04286947071d95389d6ca rdf:first sg:person.0645571071.11
    145 rdf:rest N89364cd3eac44c1caa87c0dd5258ff9e
    146 N4c61e7d09e8c458d8b8923b09cec30f9 schema:name Springer Nature - SN SciGraph project
    147 rdf:type schema:Organization
    148 N5262dd3a9c4f435eaef9c03a6afdc776 rdf:first sg:person.0771563241.19
    149 rdf:rest N793077a1447743a1b80442b711cfafdc
    150 N562e909b5f9c4cbfbf0287cdfcab7b3c rdf:first sg:person.0607221441.18
    151 rdf:rest Nee515c1497f2461abf3d3e3211b8b542
    152 N5785ef0d587947e091d733955efd2d33 rdf:first sg:person.0732060266.84
    153 rdf:rest N7575216c89fe4f5880d74e7cc2db7971
    154 N5afaea2a1f5c4909adedfaa559386baa schema:issueNumber 7
    155 rdf:type schema:PublicationIssue
    156 N5f716bf643e24d20a2790c8fcb793f7a rdf:first sg:person.01106011641.25
    157 rdf:rest Nd396fb25937c42bd83e067151cdb4ad3
    158 N63a313d5fb704dac82d9c9c6416dd265 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Treatment Outcome
    160 rdf:type schema:DefinedTerm
    161 N6cc3d3813db244358987014b0447f848 rdf:first sg:person.01174076271.35
    162 rdf:rest N5262dd3a9c4f435eaef9c03a6afdc776
    163 N6e617f8ea07141b0929ee0ae92db56ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Humans
    165 rdf:type schema:DefinedTerm
    166 N70372c8085e641eaa7bb22f4f6b6ad0b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    167 schema:name Animals
    168 rdf:type schema:DefinedTerm
    169 N740e785ec9f3490cb41a40ea1efb1b3a rdf:first sg:person.01336466641.02
    170 rdf:rest N9f63d07f2d2c4a11a0cf49e17ec4fa90
    171 N7575216c89fe4f5880d74e7cc2db7971 rdf:first sg:person.010256663157.73
    172 rdf:rest N064712a33d084708b28ba8e59d7a6a3c
    173 N793077a1447743a1b80442b711cfafdc rdf:first sg:person.01203760001.73
    174 rdf:rest N5f716bf643e24d20a2790c8fcb793f7a
    175 N7d471a52eae14f1095c6849daec209be schema:name doi
    176 schema:value 10.1038/nbt1410
    177 rdf:type schema:PropertyValue
    178 N85e918a3b3f3484283d2c457005f3a00 rdf:first sg:person.0770005773.92
    179 rdf:rest Nee6bcde20c9a498ea2cbca2767a5c362
    180 N8794e225d62e4a9f9ba7be74b29ef520 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    181 schema:name Zinc Fingers
    182 rdf:type schema:DefinedTerm
    183 N88366de2bd6d4ca48a4c4215bdc622d8 rdf:first sg:person.0725177232.35
    184 rdf:rest N5785ef0d587947e091d733955efd2d33
    185 N89364cd3eac44c1caa87c0dd5258ff9e rdf:first sg:person.015620210017.02
    186 rdf:rest N85e918a3b3f3484283d2c457005f3a00
    187 N9c9328c87ff54b49adbbedbd5a9e6924 schema:name dimensions_id
    188 schema:value pub.1048577624
    189 rdf:type schema:PropertyValue
    190 N9f63d07f2d2c4a11a0cf49e17ec4fa90 rdf:first sg:person.01057647671.77
    191 rdf:rest Nee87b329aad34bf2b9046e4b71fd12fb
    192 Na211f7f9df9f405283d5a5725a341a32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    193 schema:name Deoxyribonucleases
    194 rdf:type schema:DefinedTerm
    195 Na5429c3594c54511bc3e590057075639 schema:affiliation grid-institutes:grid.239552.a
    196 schema:familyName S Orange
    197 schema:givenName Jordan
    198 rdf:type schema:Person
    199 Na6b5ead0b35d4ce29798f3b1624fdbcf schema:volumeNumber 26
    200 rdf:type schema:PublicationVolume
    201 Na85165b67b114c6d8db8e345955c2a4d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    202 schema:name Cells, Cultured
    203 rdf:type schema:DefinedTerm
    204 Nb8dcff27d3874af886482dfce6908cd3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    205 schema:name Immunity, Innate
    206 rdf:type schema:DefinedTerm
    207 Nbdacba04a72b4ac8ac73ccb86b3c847a rdf:first sg:person.01270353441.36
    208 rdf:rest N740e785ec9f3490cb41a40ea1efb1b3a
    209 Nc6b212b4a2f8446da6ce8ee8383d377e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    210 schema:name Adoptive Transfer
    211 rdf:type schema:DefinedTerm
    212 Ncd4c76ef37164cb9af2045ef33c56956 rdf:first sg:person.014235534277.63
    213 rdf:rest rdf:nil
    214 Nd396fb25937c42bd83e067151cdb4ad3 rdf:first sg:person.0753123553.37
    215 rdf:rest N3a9c226113074718b8731d83ed329671
    216 Nee515c1497f2461abf3d3e3211b8b542 rdf:first sg:person.011354434034.56
    217 rdf:rest N6cc3d3813db244358987014b0447f848
    218 Nee6bcde20c9a498ea2cbca2767a5c362 rdf:first sg:person.01011534471.09
    219 rdf:rest Ncd4c76ef37164cb9af2045ef33c56956
    220 Nee87b329aad34bf2b9046e4b71fd12fb rdf:first sg:person.0661175741.04
    221 rdf:rest N88366de2bd6d4ca48a4c4215bdc622d8
    222 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    223 schema:name Medical and Health Sciences
    224 rdf:type schema:DefinedTerm
    225 anzsrc-for:1107 schema:inDefinedTermSet anzsrc-for:
    226 schema:name Immunology
    227 rdf:type schema:DefinedTerm
    228 anzsrc-for:1108 schema:inDefinedTermSet anzsrc-for:
    229 schema:name Medical Microbiology
    230 rdf:type schema:DefinedTerm
    231 sg:grant.2410087 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt1410
    232 rdf:type schema:MonetaryGrant
    233 sg:grant.2684826 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt1410
    234 rdf:type schema:MonetaryGrant
    235 sg:grant.2695835 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt1410
    236 rdf:type schema:MonetaryGrant
    237 sg:journal.1115214 schema:issn 1087-0156
    238 1546-1696
    239 schema:name Nature Biotechnology
    240 schema:publisher Springer Nature
    241 rdf:type schema:Periodical
    242 sg:person.01010776354.96 schema:affiliation grid-institutes:grid.421831.d
    243 schema:familyName Lee
    244 schema:givenName Gary
    245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010776354.96
    246 rdf:type schema:Person
    247 sg:person.01011534471.09 schema:affiliation grid-institutes:grid.421831.d
    248 schema:familyName Holmes
    249 schema:givenName Michael C
    250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011534471.09
    251 rdf:type schema:Person
    252 sg:person.01025207376.70 schema:affiliation grid-institutes:grid.421831.d
    253 schema:familyName Rebar
    254 schema:givenName Edward J
    255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025207376.70
    256 rdf:type schema:Person
    257 sg:person.010256663157.73 schema:affiliation grid-institutes:grid.25879.31
    258 schema:familyName Carroll
    259 schema:givenName Richard G
    260 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010256663157.73
    261 rdf:type schema:Person
    262 sg:person.01057647671.77 schema:affiliation grid-institutes:grid.421831.d
    263 schema:familyName Guschin
    264 schema:givenName Dmitry Y
    265 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057647671.77
    266 rdf:type schema:Person
    267 sg:person.01065115346.16 schema:affiliation grid-institutes:grid.421831.d
    268 schema:familyName Urnov
    269 schema:givenName Fyodor D
    270 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065115346.16
    271 rdf:type schema:Person
    272 sg:person.01106011641.25 schema:affiliation grid-institutes:grid.25879.31
    273 schema:familyName Liu
    274 schema:givenName Olga
    275 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106011641.25
    276 rdf:type schema:Person
    277 sg:person.011354434034.56 schema:affiliation grid-institutes:grid.421831.d
    278 schema:familyName Wang
    279 schema:givenName Jianbin
    280 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011354434034.56
    281 rdf:type schema:Person
    282 sg:person.01174076271.35 schema:affiliation grid-institutes:grid.421831.d
    283 schema:familyName Miller
    284 schema:givenName Jeffrey C
    285 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174076271.35
    286 rdf:type schema:Person
    287 sg:person.01203760001.73 schema:affiliation grid-institutes:grid.421831.d
    288 schema:familyName Kim
    289 schema:givenName Kenneth A
    290 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203760001.73
    291 rdf:type schema:Person
    292 sg:person.01270353441.36 schema:affiliation grid-institutes:grid.421831.d
    293 schema:familyName Bartsevich
    294 schema:givenName Victor V
    295 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270353441.36
    296 rdf:type schema:Person
    297 sg:person.01336466641.02 schema:affiliation grid-institutes:grid.421831.d
    298 schema:familyName Lee
    299 schema:givenName Ya-Li
    300 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336466641.02
    301 rdf:type schema:Person
    302 sg:person.014235534277.63 schema:affiliation grid-institutes:grid.25879.31
    303 schema:familyName June
    304 schema:givenName Carl H
    305 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014235534277.63
    306 rdf:type schema:Person
    307 sg:person.015620210017.02 schema:affiliation grid-institutes:grid.421831.d
    308 schema:familyName Gregory
    309 schema:givenName Philip D
    310 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015620210017.02
    311 rdf:type schema:Person
    312 sg:person.0607221441.18 schema:affiliation grid-institutes:grid.239552.a
    313 schema:familyName Perez
    314 schema:givenName Elena E
    315 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607221441.18
    316 rdf:type schema:Person
    317 sg:person.0645571071.11 schema:affiliation grid-institutes:grid.421831.d
    318 schema:familyName Ando
    319 schema:givenName Dale
    320 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645571071.11
    321 rdf:type schema:Person
    322 sg:person.0661175741.04 schema:affiliation grid-institutes:grid.421831.d
    323 schema:familyName Rupniewski
    324 schema:givenName Igor
    325 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661175741.04
    326 rdf:type schema:Person
    327 sg:person.0725177232.35 schema:affiliation grid-institutes:grid.421831.d
    328 schema:familyName Waite
    329 schema:givenName Adam J
    330 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725177232.35
    331 rdf:type schema:Person
    332 sg:person.0732060266.84 schema:affiliation grid-institutes:grid.25879.31
    333 schema:familyName Carpenito
    334 schema:givenName Carmine
    335 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732060266.84
    336 rdf:type schema:Person
    337 sg:person.0753123553.37 schema:affiliation grid-institutes:grid.421831.d
    338 schema:familyName Wang
    339 schema:givenName Nathaniel
    340 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753123553.37
    341 rdf:type schema:Person
    342 sg:person.0770005773.92 schema:affiliation grid-institutes:grid.25879.31
    343 schema:familyName Riley
    344 schema:givenName James L
    345 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770005773.92
    346 rdf:type schema:Person
    347 sg:person.0771563241.19 schema:affiliation grid-institutes:None
    348 schema:familyName Jouvenot
    349 schema:givenName Yann
    350 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771563241.19
    351 rdf:type schema:Person
    352 sg:pub.10.1038/381661a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053562821
    353 https://doi.org/10.1038/381661a0
    354 rdf:type schema:CreativeWork
    355 sg:pub.10.1038/382722a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050488632
    356 https://doi.org/10.1038/382722a0
    357 rdf:type schema:CreativeWork
    358 sg:pub.10.1038/44385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016546162
    359 https://doi.org/10.1038/44385
    360 rdf:type schema:CreativeWork
    361 sg:pub.10.1038/90264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032644172
    362 https://doi.org/10.1038/90264
    363 rdf:type schema:CreativeWork
    364 sg:pub.10.1038/nature03556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040117781
    365 https://doi.org/10.1038/nature03556
    366 rdf:type schema:CreativeWork
    367 sg:pub.10.1038/nature03959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021574562
    368 https://doi.org/10.1038/nature03959
    369 rdf:type schema:CreativeWork
    370 sg:pub.10.1038/nature04148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044521333
    371 https://doi.org/10.1038/nature04148
    372 rdf:type schema:CreativeWork
    373 sg:pub.10.1038/nbt1319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002154526
    374 https://doi.org/10.1038/nbt1319
    375 rdf:type schema:CreativeWork
    376 sg:pub.10.1038/nbt1353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026122095
    377 https://doi.org/10.1038/nbt1353
    378 rdf:type schema:CreativeWork
    379 sg:pub.10.1038/nbt1367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008151467
    380 https://doi.org/10.1038/nbt1367
    381 rdf:type schema:CreativeWork
    382 sg:pub.10.1038/nm0102-47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018873794
    383 https://doi.org/10.1038/nm0102-47
    384 rdf:type schema:CreativeWork
    385 sg:pub.10.1038/nm1097-1052c schema:sameAs https://app.dimensions.ai/details/publication/pub.1051084444
    386 https://doi.org/10.1038/nm1097-1052c
    387 rdf:type schema:CreativeWork
    388 sg:pub.10.1038/nm1196-1240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026944069
    389 https://doi.org/10.1038/nm1196-1240
    390 rdf:type schema:CreativeWork
    391 sg:pub.10.1038/nm1319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041122840
    392 https://doi.org/10.1038/nm1319
    393 rdf:type schema:CreativeWork
    394 sg:pub.10.1038/nm1326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024397965
    395 https://doi.org/10.1038/nm1326
    396 rdf:type schema:CreativeWork
    397 sg:pub.10.1038/nrd1087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040287926
    398 https://doi.org/10.1038/nrd1087
    399 rdf:type schema:CreativeWork
    400 sg:pub.10.1038/sj.onc.1206679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024607188
    401 https://doi.org/10.1038/sj.onc.1206679
    402 rdf:type schema:CreativeWork
    403 grid-institutes:None schema:alternateName Present address: Process Science Department, Bayer Hematology/Cardiology, 800 Dwight Way, Berkeley, California 94701, USA.
    404 schema:name Present address: Process Science Department, Bayer Hematology/Cardiology, 800 Dwight Way, Berkeley, California 94701, USA.
    405 Sangamo BioSciences, Inc., Point Richmond Tech Center II, 501 Canal Blvd., Suite A100, Richmond, California 94804, USA.
    406 rdf:type schema:Organization
    407 grid-institutes:grid.239552.a schema:alternateName Division of Allergy and Immunology, Children's Hospital of Philadelphia, Joseph Stokes, Jr. Research Institute, 3615 Civic Center Blvd., Philadelphia, Pennsylvania 19104-4318, USA.
    408 schema:name Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, 421 Curie Blvd., Room 554, BRB II/III, Philadelphia, Pennsylvania 19104-6160, USA.
    409 Division of Allergy and Immunology, Children's Hospital of Philadelphia, Joseph Stokes, Jr. Research Institute, 3615 Civic Center Blvd., Philadelphia, Pennsylvania 19104-4318, USA.
    410 rdf:type schema:Organization
    411 grid-institutes:grid.25879.31 schema:alternateName Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, 421 Curie Blvd., Room 554, BRB II/III, Philadelphia, Pennsylvania 19104-6160, USA.
    412 schema:name Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, 421 Curie Blvd., Room 554, BRB II/III, Philadelphia, Pennsylvania 19104-6160, USA.
    413 rdf:type schema:Organization
    414 grid-institutes:grid.421831.d schema:alternateName Sangamo BioSciences, Inc., Point Richmond Tech Center II, 501 Canal Blvd., Suite A100, Richmond, California 94804, USA.
    415 schema:name Sangamo BioSciences, Inc., Point Richmond Tech Center II, 501 Canal Blvd., Suite A100, Richmond, California 94804, USA.
    416 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...