Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-01

AUTHORS

Masato Nakagawa, Michiyo Koyanagi, Koji Tanabe, Kazutoshi Takahashi, Tomoko Ichisaka, Takashi Aoi, Keisuke Okita, Yuji Mochiduki, Nanako Takizawa, Shinya Yamanaka

ABSTRACT

Direct reprogramming of somatic cells provides an opportunity to generate patient- or disease-specific pluripotent stem cells. Such induced pluripotent stem (iPS) cells were generated from mouse fibroblasts by retroviral transduction of four transcription factors: Oct3/4, Sox2, Klf4 and c-Myc. Mouse iPS cells are indistinguishable from embryonic stem (ES) cells in many respects and produce germline-competent chimeras. Reactivation of the c-Myc retrovirus, however, increases tumorigenicity in the chimeras and progeny mice, hindering clinical applications. Here we describe a modified protocol for the generation of iPS cells that does not require the Myc retrovirus. With this protocol, we obtained significantly fewer non-iPS background cells, and the iPS cells generated were consistently of high quality. Mice derived from Myc(-) iPS cells did not develop tumors during the study period. The protocol also enabled efficient isolation of iPS cells without drug selection. Furthermore, we generated human iPS cells from adult dermal fibroblasts without MYC. More... »

PAGES

101-106

Journal

TITLE

Nature Biotechnology

ISSUE

1

VOLUME

26

Author Affiliations

Related Patents

  • New Serum-Free Medium For Inducing Pluripotent Stem Cells Quickly With High Efficiency And Method Using Thereof
  • Method For Generating Induced Pluripotent Stem Cells From Keratinocytes Derived From Plucked Hair Follicles
  • Induced Pluripotent Stem Cells Produced With Oct3/4, Klf4 And Sox2
  • Method For Producing Pluripotential Cells
  • Human Pluripotent Stem Cells And Their Medical Use
  • Modified Polynucleotides For The Production Of Secreted Proteins
  • Reprogramming Of Somatic Cells
  • Pluripotent Cell Lines And Methods Of Use Thereof
  • Compositions And Methods For Generation Of Human Epithelial Stem Cells
  • Differentiating Induced Pluripotent Stem Cells Into Glucose-Responsive, Insulin-Secreting Progeny
  • Nuclear Reprogramming Factor Comprising Mirna And A Protein Factor
  • Engineered Nucleic Acids Encoding A Modified Erythropoietin And Their Expression
  • Reprogramming Cells
  • Isolated Populations Of Renal Stem Cells And Methods Of Isolating And Using Same
  • Methods For Isolating Early Neurons And Neuroblasts
  • Combined Chemical And Genetic Approaches For Generation Of Induced Pluripotent Stem Cells
  • Protein-Induced Pluripotent Cell Technology And Uses Thereof
  • Method For Production Of Reprogrammed Cell Using Chromosomally Unintegrated Virus Vector
  • Method For Generating Primate Cardiovascular Progenitor Cells For Clinical Use From Primate Embryonic Stem Cells Or Embryonic-Like State Cells, And Their Applications
  • Modified Polynucleotides For The Production Of Biologics And Proteins Associated With Human Disease
  • Modified Polynucleotides For Treating Galactosylceramidase Protein Deficiency
  • Culture Method Related To Differentiation Of Pluripotent Stem Cells Into Blood Cells
  • Modified Polynucleotides Encoding Granulysin
  • Method For Production Of Reprogrammed Cell Using Chromosomally Unintegrated Virus Vector
  • Novel Methods And Culture Media For Culturing Pluripotent Stem Cells
  • Efficient Method For Establishing Induced Pluripotent Stem Cells
  • Method For Production Of Pluripotent Stem Cell
  • Modified Nucleosides, Nucleotides, And Nucleic Acids, And Uses Thereof
  • Rna Preparations Comprising Purified Modified Rna For Reprogramming Cells
  • Method For Screening Induced Pluripotent Stem Cells
  • Modified Polynucleotides Encoding Cited4
  • Modified Polynucleotides For The Production Of Nuclear Proteins
  • Modified Polynucleotides Encoding Septin-4
  • Efficient Method For Nuclear Reprogramming
  • Generation Of Patient-Specific Differentiated Cell Types By Epigenetic Induction
  • Method For Preparing Pluripotent Stem Cells
  • Method For Selecting Clone Of Induced Pluripotent Stem Cells
  • Conversion Of Unipotent Germline Stem Cells Into Pluripotent Stem Cells Without Exogenous Factors
  • Compositions And Methods For Reprogramming Eukaryotic Cells
  • Modified Polynucleotides For Treating Protein Deficiency
  • Somatic Cell Reprogramming By Retroviral Vectors Encoding Oct3/4. Klf4, C-Myc And Sox2
  • Method For Producing Pluripotential Cells
  • Embryonic Stem Cell Specific Micrornas Promote Induced Pluripotency
  • Engineered Nucleic Acids And Methods Of Use Thereof
  • Modified Polynucleotides Encoding Apoptosis Inducing Factor 1
  • Delivery And Formulation Of Engineered Nucleic Acids
  • Methods And Compositions For Maintaining Genomic Stability In Cultured Stem Cells
  • Nuclear Receptor And Mutant Thereof And The Use Of The Same In The Reprogramming Of Cells
  • Methods And Platforms For Drug Discovery Using Induced Pluripotent Stem Cells
  • Rna Preparations Comprising Purified Modified Rna For Reprogramming Cells
  • Maintenance Of Genomic Stability In Cultured Stem Cells
  • Transcriptome Transfer Produces Cellular Phenotype Conversion
  • Modified Polynucleotides For The Production Of Proteins Associated With Human Disease
  • Methods For The Production Of Ips Cells Using Epstein-Barr (Ebv)-Based Reprogramming Vectors
  • Delivery And Formulation Of Engineered Nucleic Acids
  • Production Of Reprogrammed Pluripotent Cells
  • Polycistronic Vector For Human Induced Pluripotent Stem Cell Production
  • Epigenetic Induction Of Human Patient-Specific Self-Propagating Dopaminergic Neuron Cell
  • Generation Of Patient-Specific Differentiated Cell Types By Epigenetic Induction
  • Rna Preparations Comprising Purified Modified Rna For Reprogramming Cells
  • Combined Chemical And Genetic Approaches For Generation Of Induced Pluripotent Stem Cells
  • Generation Of Induced Pluripotent Stem (Ips) Cells
  • Wnt Pathway Stimulation In Reprogramming Somatic Cells
  • Engineered Nucleic Acids And Methods Of Use Thereof
  • Modified Polynucleotides Encoding Copper Metabolism (Murr1) Domain Containing 1
  • Differentiated Cells Originating In Artificial Pluripotent Stem Cells
  • Method For Screening Induced Pluripotent Stem Cells
  • Culture Method Of Embryoid Bodies And/Or Neural Stem Cells Derived From Human Differentiated Cell-Derived Pluripotent Stem Cells
  • Culture Method Of Embryoid Bodies And/Or Neural Stem Cells Derived From Human Differentiated Cell-Derived Pluripotent Stem Cells
  • Method For Preparing Induced Pluripotent Stem Cells And Culture Medium Used For Preparing Induced Pluripotent Stem Cells
  • Human Blood-Brain Endothelial Cells Derived From Pluripotent Stem Cells And Blood-Brain Barrier Model Thereof
  • Bacterial Mediated Delivery Of Nuclear Protein Into Pluripotent And Differentiated Cells
  • Making And Using In Vitro-Synthesized Ssrna For Introducing Into Mammalian Cells To Induce A Biological Or Biochemical Effect
  • Engineered Nucleic Acids And Methods Of Use Thereof
  • Human Pluripotent Stem Cells Produced By The Introduction Of Oct3/4, Sox2, And Klf4 Genes, Along With A C-Myc Gene Or Histone Deacetylase Inhibitor, Into Post
  • Generation Of Induced Pluripotent Stem (Ips) Cells
  • Dedifferentiation And Reprogramming Of Cells
  • Formulation And Delivery Of Plga Microspheres
  • Differentiation Of Pluripotent Cells
  • Compositions And Methods For Reprogramming Eukaryotic Cells
  • Embryonic Stem Cell Specific Micrornas Promote Induced Pluripotency
  • Combined Chemical And Genetic Approaches For Generation Of Induced Pluripotent Stem Cells
  • Modified Polynucleotides Encoding Basic Helix-Loop-Helix Family Member E41
  • Use Of Basic Fibroblast Growth Factor In The De-Differentiation Of Animal Connective Tissue Cells
  • Optimized Methods For Generation Of Cardiac Stem Cells From Cardiac Tissue And Their Use In Cardiac Therapy
  • Modified Polynucleotides For The Production Of Proteins
  • Engineered Nucleic Acids And Methods Of Use Thereof
  • Engineered Nucleic Acids And Methods Of Use Thereof
  • Modified Polynucleotides For The Production Of Oncology-Related Proteins And Peptides
  • Method For Production Of Mast Cells From Stem Cells
  • Myc Variants Improve Induced Pluripotent Stem Cell Generation Efficiency
  • Engineered Nucleic Acids And Methods Of Use Thereof
  • Mutant Sox Proteins And Methods Of Inducing Pluripotency
  • Modified Polynucleotides For The Production Of G-Csf
  • Providing Ipscs To A Customer
  • Methods For The Production Of Ips Cells Using Non-Viral Approach
  • Transformed Plants Or Algae With Highly Expressed Chloroplast Protein Bpg2
  • Modified Nucleosides, Nucleotides, And Nucleic Acids, And Uses Thereof
  • Engineered Nucleic Acids And Methods Of Use Thereof
  • Terminally Modified Rna
  • Terminally Modified Rna
  • Modified Nucleosides, Nucleotides, And Nucleic Acids, And Uses Thereof
  • Novel Nuclear Reprogramming Substance
  • Engineered Nucleic Acids And Methods Of Use Thereof
  • Modified Polynucleotides For The Production Of Cosmetic Proteins And Peptides
  • Nuclear Receptor And Mutant Thereof And The Use Of The Same In The Reprogramming Of Cells
  • Generation Of Induced Pluripotent Stem (Ips) Cells
  • Heterocyclic Hydroxamic Acids As Protein Deacetylase Inhibitors And Dual Protein Deacetylase-Protein Kinase Inhibitors And Methods Of Use Thereof
  • Method For Efficient Production Of Induced Pluripotent Stem Cells Utilizing Cells Derived From Oral Mucosa
  • Therapeutic Agent For Nerve Injury And Method For Treating Nerve Injury
  • Modified Polynucleotides Encoding Siah E3 Ubiquitin Protein Ligase 1
  • Making And Using In Vitro-Synthesized Ssrna For Introducing Into Mammalian Cells To Induce A Biological Or Biochemical Effect
  • Methods And Compositions For The Differentiation Of Stem Cells
  • Nuclear Reprogrammed Cells Generated By Introduction Of A Histone H2aa Or Th2a Gene, A Histone H2ba Or Th2b Gene, Or A Phosphorylation-Mimic Of Histone Chaperon Npm2 Gene, An Oct Family Gene And A Klf Family Gene Into A Mammalian Somatic Cell
  • Dlin-Kc2-Dma Lipid Nanoparticle Delivery Of Modified Polynucleotides
  • Methods For The Production Of Ips Cells
  • Programming And Reprogramming Of Cells
  • Modified Polynucleotides For The Production Of Secreted Proteins
  • Method For Efficient Production Of Induced Pluripotent Stem Cells Utilizing Cells Derived From Oral Mucosa
  • Reprogramming Somatic Cells Using Retroviral Vectors Comprising Oct-4 And Sox2 Genes
  • Method For Generating Pancreatic Hormone-Producing Cells
  • Es Cell Cytoplasm Or Ooplasm Transfer To Rejuventate Recipient Cells
  • Modified Polynucleotides Encoding Hepatitis A Virus Cellular Receptor 2
  • Materials And Methods For Generating Pluripotent Stem Cells
  • In Vivo Production Of Proteins
  • Lymph Nodes As A Site For Regeneration
  • Wnt Pathway Stimulation In Reprogramming Somatic Cells With Nuclear Reprogramming Factors
  • Wnt Pathway Stimulation In Reprogramming Somatic Cells
  • Conversion Of Unipotent Germline Stem Cells Into Pluripotent Stem Cells Without Exogenous Factors
  • Somatic Cell-Derived Pluripotent Cells And Methods Of Use Therefor
  • Method For Diagnosing A Protein Misfolding Disease Using Nerve Cells Derived From Ips Cells
  • Oct3/4, Klf4, C-Myc And Sox2 Produce Induced Pluripotent Stem Cells
  • Cell Culture Platform For Single Cell Sorting And Enhanced Reprogramming Of Ipscs
  • Modified Polynucleotides For The Production Of Proteins
  • Methods Of Treating A Retinal Disease By Retinal Pigment Epithelial Stem Cells
  • Modified Nucleosides, Nucleotides, And Nucleic Acids, And Uses Thereof
  • Method For Producing A Protein Of Interest In A Primate
  • Method For Producing Neurospheres
  • Modified Polynucleotides Encoding Aquaporin-5
  • Modified Polynucleotides For The Production Of Proteins Associated With Blood And Lymphatic Disorders
  • Modified Polynucleotides For The Production Of Cytoplasmic And Cytoskeletal Proteins
  • Modified Polynucleotides For The Production Of Cytoplasmic And Cytoskeletal Proteins
  • Method For Diagnosing A Protein Misfolding Disease Using Nerve Cells Derived From Ips Cells
  • Human Pluripotent Stem Cells Induced From Undifferentiated Stem Cells Derived From A Human Postnatal Tissue
  • Rna Preparations Comprising Purified Modified Rna For Reprogramming Cells
  • Rna Preparations Comprising Purified Modified Rna For Reprogramming Cells
  • Transcriptome Transfer Produces Cellular Phenotype Conversion
  • Split Dose Administration
  • Method For Producing Induced Pluripotent Stem Cells And Method For Culturing The Same
  • Targeted Integration Into Stem Cells
  • Pluripotent Cell Lines And Methods Of Use Thereof
  • Method For Inducing Pluripotency In Human Somatic Cells With Prdm14 Or Nfrkb
  • Modified Polynucleotides Encoding Aryl Hydrocarbon Receptor Nuclear Translocator
  • Rna Preparations Comprising Purified Modified Rna For Reprogramming Cells
  • The Ins Cells And The Method For Reprogramming Somatic Cells To Ins Cells Using Sox2 Or Sox2 And C-Myc
  • Modified Nucleosides, Nucleotides, And Nucleic Acids, And Uses Thereof
  • Modified Polynucleotides For The Production Of Proteins Associated With Blood And Lymphatic Disorders
  • Programming And Reprogramming Of Cells
  • Modified Polynucleotides For The Production Of Biologics And Proteins Associated With Human Disease
  • Production Of Pluripotent Cells Through Inhibition Of Bright/Arid3a Function
  • Formulation And Delivery Of Plga Microspheres
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nbt1374

    DOI

    http://dx.doi.org/10.1038/nbt1374

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1002744128

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/18059259


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1004", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical Biotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Technology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Culture Techniques", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Differentiation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fibroblasts", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pluripotent Stem Cells", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Proto-Oncogene Proteins c-myc", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tissue Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Kyoto University", 
              "id": "https://www.grid.ac/institutes/grid.258799.8", 
              "name": [
                "Department of Stem Cell Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nakagawa", 
            "givenName": "Masato", 
            "id": "sg:person.016432374402.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016432374402.57"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Koyanagi", 
            "givenName": "Michiyo", 
            "id": "sg:person.011127274101.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011127274101.71"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Tanabe", 
            "givenName": "Koji", 
            "id": "sg:person.0651310066.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651310066.23"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Takahashi", 
            "givenName": "Kazutoshi", 
            "id": "sg:person.0737032060.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737032060.87"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Ichisaka", 
            "givenName": "Tomoko", 
            "id": "sg:person.01240176243.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240176243.37"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Aoi", 
            "givenName": "Takashi", 
            "id": "sg:person.07543317311.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07543317311.34"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Okita", 
            "givenName": "Keisuke", 
            "id": "sg:person.01306311443.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306311443.44"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Mochiduki", 
            "givenName": "Yuji", 
            "id": "sg:person.01100516765.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100516765.05"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Takizawa", 
            "givenName": "Nanako", 
            "id": "sg:person.01100211711.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100211711.22"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Yamanaka", 
            "givenName": "Shinya", 
            "id": "sg:person.01123442700.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123442700.40"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature05934", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002347899", 
              "https://doi.org/10.1038/nature05934"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0092-8674(03)00392-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004929245"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0092-8674(90)90385-r", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005958333"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.93.24.14041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008892866"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2007.11.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010904856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2006.07.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014573758"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1357-2725(00)00059-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018947398"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05944", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019109862", 
              "https://doi.org/10.1038/nature05944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1534-5807(02)00223-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023784134"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.stem.2007.05.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029649252"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.gt.3301206", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032864882", 
              "https://doi.org/10.1038/sj.gt.3301206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.gt.3301206", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032864882", 
              "https://doi.org/10.1038/sj.gt.3301206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0092-8674(03)00393-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033478972"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm1703", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036482185", 
              "https://doi.org/10.1038/nrm1703"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm1703", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036482185", 
              "https://doi.org/10.1038/nrm1703"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm1703", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036482185", 
              "https://doi.org/10.1038/nrm1703"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gad.11.10.1207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039372559"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/mcb.23.8.2699-2708.2003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047832784"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1151526", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048905674"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/gene.20095", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049555114"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gad.415007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051984210"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008-01", 
        "datePublishedReg": "2008-01-01", 
        "description": "Direct reprogramming of somatic cells provides an opportunity to generate patient- or disease-specific pluripotent stem cells. Such induced pluripotent stem (iPS) cells were generated from mouse fibroblasts by retroviral transduction of four transcription factors: Oct3/4, Sox2, Klf4 and c-Myc. Mouse iPS cells are indistinguishable from embryonic stem (ES) cells in many respects and produce germline-competent chimeras. Reactivation of the c-Myc retrovirus, however, increases tumorigenicity in the chimeras and progeny mice, hindering clinical applications. Here we describe a modified protocol for the generation of iPS cells that does not require the Myc retrovirus. With this protocol, we obtained significantly fewer non-iPS background cells, and the iPS cells generated were consistently of high quality. Mice derived from Myc(-) iPS cells did not develop tumors during the study period. The protocol also enabled efficient isolation of iPS cells without drug selection. Furthermore, we generated human iPS cells from adult dermal fibroblasts without MYC.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nbt1374", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1115214", 
            "issn": [
              "1087-0156", 
              "1546-1696"
            ], 
            "name": "Nature Biotechnology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "26"
          }
        ], 
        "name": "Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts", 
        "pagination": "101-106", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "0d10fc63dc0e8bcb36c751d816dfd05cd94b32ea8debd5eb5d35ba4c0ebfea03"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "18059259"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9604648"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nbt1374"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1002744128"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nbt1374", 
          "https://app.dimensions.ai/details/publication/pub.1002744128"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T01:46", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000421.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/nbt/journal/v26/n1/full/nbt1374.html"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nbt1374'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nbt1374'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nbt1374'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nbt1374'


     

    This table displays all metadata directly associated to this object as RDF triples.

    217 TRIPLES      21 PREDICATES      56 URIs      30 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nbt1374 schema:about N156d7a9316bf4168b24d70ded2033ecb
    2 N3873a7ceb45444a4bc62a6093d72ce19
    3 N4c81c24014864176b67e503953a22c6f
    4 N5992d92626894021b74242208d1c135e
    5 N5f2aef00c6284050b242819f40c28ecf
    6 Na13c72d82e4b4229981e8fb7b8a2c94e
    7 Nb53b8b4b88f540e1b4588807cfaa8739
    8 Nc1ceb4c41ebc4a8f837fb625cfb6cbf1
    9 Ne4070081853349d6838a1125704fb376
    10 anzsrc-for:10
    11 anzsrc-for:1004
    12 schema:author N574966c65cc846758907f73a6c5e8386
    13 schema:citation sg:pub.10.1038/nature05934
    14 sg:pub.10.1038/nature05944
    15 sg:pub.10.1038/nrm1703
    16 sg:pub.10.1038/sj.gt.3301206
    17 https://doi.org/10.1002/gene.20095
    18 https://doi.org/10.1016/0092-8674(90)90385-r
    19 https://doi.org/10.1016/j.cell.2006.07.024
    20 https://doi.org/10.1016/j.cell.2007.11.019
    21 https://doi.org/10.1016/j.stem.2007.05.014
    22 https://doi.org/10.1016/s0092-8674(03)00392-1
    23 https://doi.org/10.1016/s0092-8674(03)00393-3
    24 https://doi.org/10.1016/s1357-2725(00)00059-5
    25 https://doi.org/10.1016/s1534-5807(02)00223-x
    26 https://doi.org/10.1073/pnas.93.24.14041
    27 https://doi.org/10.1101/gad.11.10.1207
    28 https://doi.org/10.1101/gad.415007
    29 https://doi.org/10.1126/science.1151526
    30 https://doi.org/10.1128/mcb.23.8.2699-2708.2003
    31 schema:datePublished 2008-01
    32 schema:datePublishedReg 2008-01-01
    33 schema:description Direct reprogramming of somatic cells provides an opportunity to generate patient- or disease-specific pluripotent stem cells. Such induced pluripotent stem (iPS) cells were generated from mouse fibroblasts by retroviral transduction of four transcription factors: Oct3/4, Sox2, Klf4 and c-Myc. Mouse iPS cells are indistinguishable from embryonic stem (ES) cells in many respects and produce germline-competent chimeras. Reactivation of the c-Myc retrovirus, however, increases tumorigenicity in the chimeras and progeny mice, hindering clinical applications. Here we describe a modified protocol for the generation of iPS cells that does not require the Myc retrovirus. With this protocol, we obtained significantly fewer non-iPS background cells, and the iPS cells generated were consistently of high quality. Mice derived from Myc(-) iPS cells did not develop tumors during the study period. The protocol also enabled efficient isolation of iPS cells without drug selection. Furthermore, we generated human iPS cells from adult dermal fibroblasts without MYC.
    34 schema:genre research_article
    35 schema:inLanguage en
    36 schema:isAccessibleForFree false
    37 schema:isPartOf N3b28b55b8be844efaf893f783ef7977d
    38 Nf2f48cc70cb941ba8e9846113916b40c
    39 sg:journal.1115214
    40 schema:name Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts
    41 schema:pagination 101-106
    42 schema:productId N42b16fd83af34fbb88d364974e6f7ddd
    43 N4d5e2ba1812a4d259e84eaae7878cb79
    44 N6982385c76e34ae5b856035703a1bed1
    45 N6e9af9e3922d40dfb971d77418efac24
    46 Nb71ba48d3b3749508ab2934fec41058d
    47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002744128
    48 https://doi.org/10.1038/nbt1374
    49 schema:sdDatePublished 2019-04-11T01:46
    50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    51 schema:sdPublisher Nc9aa94d27d984cbfa8f7b765e9442fa1
    52 schema:url http://www.nature.com/nbt/journal/v26/n1/full/nbt1374.html
    53 sgo:license sg:explorer/license/
    54 sgo:sdDataset articles
    55 rdf:type schema:ScholarlyArticle
    56 N07a9062408834bccbea517a48d6ea412 rdf:first sg:person.01240176243.37
    57 rdf:rest Nf50c5c8e61c04d03ab96f4cb8cdd626f
    58 N156d7a9316bf4168b24d70ded2033ecb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    59 schema:name Animals
    60 rdf:type schema:DefinedTerm
    61 N3873a7ceb45444a4bc62a6093d72ce19 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    62 schema:name Tissue Engineering
    63 rdf:type schema:DefinedTerm
    64 N3b28b55b8be844efaf893f783ef7977d schema:issueNumber 1
    65 rdf:type schema:PublicationIssue
    66 N42b16fd83af34fbb88d364974e6f7ddd schema:name readcube_id
    67 schema:value 0d10fc63dc0e8bcb36c751d816dfd05cd94b32ea8debd5eb5d35ba4c0ebfea03
    68 rdf:type schema:PropertyValue
    69 N4bb70223a6ad40d8af10631d7d9ab3de rdf:first sg:person.0737032060.87
    70 rdf:rest N07a9062408834bccbea517a48d6ea412
    71 N4c81c24014864176b67e503953a22c6f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    72 schema:name Genetic Engineering
    73 rdf:type schema:DefinedTerm
    74 N4d5e2ba1812a4d259e84eaae7878cb79 schema:name pubmed_id
    75 schema:value 18059259
    76 rdf:type schema:PropertyValue
    77 N574966c65cc846758907f73a6c5e8386 rdf:first sg:person.016432374402.57
    78 rdf:rest Ndb491d1b4c96452f9971d9450bbb70bc
    79 N57ed5201e6774ce3a28eee8a1975c33e rdf:first sg:person.01306311443.44
    80 rdf:rest Nfebf10624c354a9ba0baa3c8fa8b8585
    81 N5992d92626894021b74242208d1c135e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    82 schema:name Mice
    83 rdf:type schema:DefinedTerm
    84 N5f2aef00c6284050b242819f40c28ecf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    85 schema:name Cell Differentiation
    86 rdf:type schema:DefinedTerm
    87 N6982385c76e34ae5b856035703a1bed1 schema:name dimensions_id
    88 schema:value pub.1002744128
    89 rdf:type schema:PropertyValue
    90 N6e9af9e3922d40dfb971d77418efac24 schema:name nlm_unique_id
    91 schema:value 9604648
    92 rdf:type schema:PropertyValue
    93 N9021314718fd44daaf5c70669b8d154a rdf:first sg:person.01100211711.22
    94 rdf:rest Na5c2690c0b7e45de89f74c9281773725
    95 N9ff32cfdea32492ba86a9bef2fd85f0f rdf:first sg:person.0651310066.23
    96 rdf:rest N4bb70223a6ad40d8af10631d7d9ab3de
    97 Na13c72d82e4b4229981e8fb7b8a2c94e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    98 schema:name Cell Culture Techniques
    99 rdf:type schema:DefinedTerm
    100 Na5c2690c0b7e45de89f74c9281773725 rdf:first sg:person.01123442700.40
    101 rdf:rest rdf:nil
    102 Nb53b8b4b88f540e1b4588807cfaa8739 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Pluripotent Stem Cells
    104 rdf:type schema:DefinedTerm
    105 Nb71ba48d3b3749508ab2934fec41058d schema:name doi
    106 schema:value 10.1038/nbt1374
    107 rdf:type schema:PropertyValue
    108 Nc1ceb4c41ebc4a8f837fb625cfb6cbf1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name Proto-Oncogene Proteins c-myc
    110 rdf:type schema:DefinedTerm
    111 Nc9aa94d27d984cbfa8f7b765e9442fa1 schema:name Springer Nature - SN SciGraph project
    112 rdf:type schema:Organization
    113 Ndb491d1b4c96452f9971d9450bbb70bc rdf:first sg:person.011127274101.71
    114 rdf:rest N9ff32cfdea32492ba86a9bef2fd85f0f
    115 Ne4070081853349d6838a1125704fb376 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Fibroblasts
    117 rdf:type schema:DefinedTerm
    118 Nf2f48cc70cb941ba8e9846113916b40c schema:volumeNumber 26
    119 rdf:type schema:PublicationVolume
    120 Nf50c5c8e61c04d03ab96f4cb8cdd626f rdf:first sg:person.07543317311.34
    121 rdf:rest N57ed5201e6774ce3a28eee8a1975c33e
    122 Nfebf10624c354a9ba0baa3c8fa8b8585 rdf:first sg:person.01100516765.05
    123 rdf:rest N9021314718fd44daaf5c70669b8d154a
    124 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
    125 schema:name Technology
    126 rdf:type schema:DefinedTerm
    127 anzsrc-for:1004 schema:inDefinedTermSet anzsrc-for:
    128 schema:name Medical Biotechnology
    129 rdf:type schema:DefinedTerm
    130 sg:journal.1115214 schema:issn 1087-0156
    131 1546-1696
    132 schema:name Nature Biotechnology
    133 rdf:type schema:Periodical
    134 sg:person.01100211711.22 schema:familyName Takizawa
    135 schema:givenName Nanako
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100211711.22
    137 rdf:type schema:Person
    138 sg:person.01100516765.05 schema:familyName Mochiduki
    139 schema:givenName Yuji
    140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100516765.05
    141 rdf:type schema:Person
    142 sg:person.011127274101.71 schema:familyName Koyanagi
    143 schema:givenName Michiyo
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011127274101.71
    145 rdf:type schema:Person
    146 sg:person.01123442700.40 schema:familyName Yamanaka
    147 schema:givenName Shinya
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123442700.40
    149 rdf:type schema:Person
    150 sg:person.01240176243.37 schema:familyName Ichisaka
    151 schema:givenName Tomoko
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240176243.37
    153 rdf:type schema:Person
    154 sg:person.01306311443.44 schema:familyName Okita
    155 schema:givenName Keisuke
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306311443.44
    157 rdf:type schema:Person
    158 sg:person.016432374402.57 schema:affiliation https://www.grid.ac/institutes/grid.258799.8
    159 schema:familyName Nakagawa
    160 schema:givenName Masato
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016432374402.57
    162 rdf:type schema:Person
    163 sg:person.0651310066.23 schema:familyName Tanabe
    164 schema:givenName Koji
    165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651310066.23
    166 rdf:type schema:Person
    167 sg:person.0737032060.87 schema:familyName Takahashi
    168 schema:givenName Kazutoshi
    169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737032060.87
    170 rdf:type schema:Person
    171 sg:person.07543317311.34 schema:familyName Aoi
    172 schema:givenName Takashi
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07543317311.34
    174 rdf:type schema:Person
    175 sg:pub.10.1038/nature05934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002347899
    176 https://doi.org/10.1038/nature05934
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1038/nature05944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019109862
    179 https://doi.org/10.1038/nature05944
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1038/nrm1703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036482185
    182 https://doi.org/10.1038/nrm1703
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1038/sj.gt.3301206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032864882
    185 https://doi.org/10.1038/sj.gt.3301206
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1002/gene.20095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049555114
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1016/0092-8674(90)90385-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1005958333
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1016/j.cell.2006.07.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014573758
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1016/j.cell.2007.11.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010904856
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1016/j.stem.2007.05.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029649252
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1016/s0092-8674(03)00392-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004929245
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1016/s0092-8674(03)00393-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033478972
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1016/s1357-2725(00)00059-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018947398
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1016/s1534-5807(02)00223-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023784134
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1073/pnas.93.24.14041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008892866
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1101/gad.11.10.1207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039372559
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1101/gad.415007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051984210
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1126/science.1151526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048905674
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1128/mcb.23.8.2699-2708.2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047832784
    214 rdf:type schema:CreativeWork
    215 https://www.grid.ac/institutes/grid.258799.8 schema:alternateName Kyoto University
    216 schema:name Department of Stem Cell Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.
    217 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...