A New Generation of Animal Cell Expression Vectors Based on the Semliki Forest Virus Replicon View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1991-12

AUTHORS

P Liljeström, H Garoff

ABSTRACT

We have developed a novel DNA expression system, based on the Semliki Forest virus (SFV) replicon, which combines a wide choice of animal cell hosts, high efficiency and ease of use. DNA of interest is cloned into SFV plasmid vectors that serve as templates for in vitro synthesis of recombinant RNA. The RNA is transfected with virtually 100% efficiency into animal tissue culture cells by means of electroporation. Within the cell, the recombinant RNA drives its own replication and capping and leads to massive production of the heterologous protein while competing out the host protein synthesis. The expression system also includes an in vivo packaging procedure whereby recombinant RNA is packaged into infectious virus particles using cotransfection with packaging-deficient helper RNA molecules. The resulting high titer recombinant virus stock can be used to infect a wide range of animal cells with subsequent high expression of the heterologous gene product, but without expression of any structural proteins of the helper. The infected cells produce protein for up to 75 hours post infection after which the heterologous product can constitute as much as 25% of the total cell protein. The general utility of the system is demonstrated through the expression of human transferrin receptor, mouse dihydrofolate reductase, chick lysozyme and Escherichia coli beta-galactosidase. More... »

PAGES

1356

References to SciGraph publications

Journal

TITLE

Bio/Technology

ISSUE

12

VOLUME

9

Author Affiliations

Related Patents

  • Adenovirus/Alphavirus Hybrid Vector For The Effective Administration And Expression Of Therapeutic Genes In Tumour Cells
  • Viral Vectors And Methods Used In The Preparation Of Gdnf
  • Prrs Viruses, Infectious Clones, Mutants Thereof, And Method Of Use
  • Multi-Antigenic Alphavirus Replicon Particles And Methods
  • Method Of Rapidly Producing Improved Vaccines For Animals
  • Viral Adjuvants
  • Alphavirus Structural Protein Expression Cassettes
  • Recombinant Alphavirus Particles
  • Peptide-Enhanced Transfections
  • Recombinant Alphavirus-Based Vectors With Reduced Inhibition Of Cellular Macromolecular Synthesis
  • Infectious Papillomavirus Pseudoviral Particles
  • System For The In Vivo Delivery And Expression Of Heterologous Genes In The Bone Marrow
  • Composition And Methods For Transfecting Eukaryotic Cells
  • Eukaryotic Layered Vector Initiation Systems
  • Alphavirus Expression Vector
  • Inducible Alphaviral Gene Expression System
  • Alpha Virus-Based Cytomegalovirus Vaccines
  • Angiotensin Peptide-Carrier Conjugates And Uses Thereof
  • Antibody Treatment Of Alzheimer's And Related Diseases
  • Bacterial Artificial Chromosome Construct Encoding Recombinant Coronavirus
  • Prrs Virus Inducing Type I Interferon In Susceptible Cells
  • Transfection Reagents
  • Eukaryotic Layered Vector Initiation Systems
  • Promoterless Cassettes For Expression Of Alphavirus Structural Proteins
  • A Method And Composition For Creating Conditional Lethality For Virus Mutants And For Eliminating The Viability Of An Eukaryotic Cell
  • Antigen Arrays For Treatment Of Bone Disease
  • Peptide-Enhanced Transfections
  • Transfection Reagents
  • Compositions And Methods For Generating An Immune Response Utilizing Alphavirus-Based Vector Systems
  • Porcine Reproductive And Respiratory Syndrome Isolates And Methods Of Use
  • Identifying Virally Infected And Vaccinated Organisms
  • Transfection Reagents
  • Method Of Rapidly Producing Improved Vaccines For Animals
  • Tc-83-Derived Alphavirus Vectors, Particles And Methods
  • Commercial Scale Process For Production Of Prrsv
  • Eukaryotic Layered Vector Initiation Systems
  • Porcine Reproductive And Respiratory Syndrome Vaccine Based On Isolate Ja-142
  • Compositions Of Coronaviruses With A Recombination-Resistant Genome
  • Polynucleotides Encoding Porcine Transmissible Gastroenteritis Virus
  • Defective Sindbis Virus Vectors That Express Toxoplasma Gondii P30 Antigens
  • Recombinant Alphavirus-Based Vectors With Reduced Inhibition Of Cellular Macromolecular Synthesis
  • Peptide-Enhanced Cationic Lipid Transfections
  • Method For Stimulating An Immune Response Utilizing Recombinant Alphavirus Particles
  • Expression Cloning Processes For The Discovery Characterization, And Isolation Of Genes Encoding Polypeptides With A Predetermined Property
  • Ordered Molecular Presentation Of Antigens, Method Of Preparation And Use
  • System For The In Vivo Delivery And Expression Of Heterologous Genes In The Bone Marrow
  • Recombinant Alphavirus-Based Vectors With Reduced Inhibition Of Cellular Macromolecular Synthesis
  • Alphavirus Rna As Carrier For Vaccines
  • Infectious Cdna Clone Of European Prrs Virus And Uses Thereof
  • Molecular Antigen Array Presenting Amyloid Beta
  • Hapten-Carrier Conjugates And Uses Thereof
  • Live Virus Vaccines
  • Tc-83-Derived Alphavirus Vectors, Particles And Methods
  • Vectors Derived From South African Arbovirus No. 86
  • Method Of Rapidly Producing Improved Vaccines For Animals
  • Alphaviral Vectors And Cell Lines For Producing Recombinant Proteins
  • Viral Adjuvants
  • System For The In Vivo Delivery And Expression Of Heterologous Genes In The Bone Marrow
  • Alphavirus Replicon Vector Systems
  • Alphavirus Rna Replicon Systems
  • Highly Infectious Rubella Virus Dna Constructs And Methods Of Production
  • Optimized Recognition Site Of The Alphavirus Non-Structural Protease For Tag Removal And Specific Processing Of Recombinant Proteins
  • Infectious Clones Of Rna Viruses And Vaccines And Diagnostic Assays Derived Thereof
  • Recombinant Alphavirus-Based Vectors With Reduced Inhibition Of Cellular Macromolecular Synthesis
  • Method Of Rapidly Producing Improved Vaccines For Animals
  • Chimeric Alphavirus Replicon Particles
  • Viral Vector And Uses Thereof
  • European Prrsv Strain
  • Expression Cloning Processes For The Discovery, Characterization And Isolation Of Genes Encoding Polypeptides With A Predetermined Property
  • Recombinant Alphavirus-Based Vectors With Reduced Inhibition Of Cellular Macromolecular Synthesis
  • Regulated Expression Of Recombinant Proteins Using Rna Viruses
  • Alphavirus Rna Replicon Systems
  • Transfection Reagents
  • Alphavirus Rna Replicon Systems
  • Alphavirus Rna Replicon Systems
  • Prrsv Vaccines
  • Alphavirus Rna Replicon Systems
  • Transgenomic Viruses
  • Alphavirus Rna Replicon Systems
  • Alphavirus Vector Constructs
  • Recombinant Packaging Defective Sindbis Virus Vaccines
  • Methods For Producing Recombinant Coronavirus
  • Promoterless Cassettes For Expression Of Alpha Virus Structural Proteins
  • Peptide-Mediated Gene Transfer
  • Transfection Reagents
  • Angiotensin Peptide-Carrier Conjugates And Uses Thereof
  • Eukaryotic Layered Vector Initiation Systems
  • Method Of Rapidly Producing Improved Vaccines For Animals
  • Gene Expression System
  • Porcine Reproductive And Respiratory Syndrome Vaccine Based On Isolate Ja-142
  • Replicon Based Activation Of Endogenous Genes
  • Recombinant Alphavirus-Based Vectors With Reduced Inhibition Of Cellular Macromolecular Synthesis
  • Method For The Quantitation Of Alphavirus Replicon Particles
  • Eukaryotic Layered Vector Initiation Systems For Production Of Recombinant Proteins
  • Alphavirus Rna Replicon Systems
  • Alphavirus Structural Protein Expression Cassettes
  • Peptide-Enhanced Cationic Lipid Transfections
  • Methods And Compositions For Raising An Immune Response To Hiv
  • Alphavirus Particles And Methods For Preparation
  • Angiotensin Peptide-Carrier Conjugates And Uses Thereof
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nbt1291-1356

    DOI

    http://dx.doi.org/10.1038/nbt1291-1356

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1034399064

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/1370252


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Base Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Recombinant", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Vectors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Sequence Data", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Plasmids", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Recombinant Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Replicon", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Semliki forest virus", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Karolinska Institute", 
              "id": "https://www.grid.ac/institutes/grid.4714.6", 
              "name": [
                "Department of Molecular Biology, Karolinska Institute, Huddinge, Sweden."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liljestr\u00f6m", 
            "givenName": "P", 
            "id": "sg:person.01062515416.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062515416.75"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Garoff", 
            "givenName": "H", 
            "id": "sg:person.01254467327.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254467327.01"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-68528-6_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001796841", 
              "https://doi.org/10.1007/978-3-642-68528-6_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0042-6822(91)90556-q", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007807078"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0092-8674(86)90492-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008412359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-0785-4_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008630668", 
              "https://doi.org/10.1007/978-1-4757-0785-4_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-0785-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010919523", 
              "https://doi.org/10.1007/978-1-4757-0785-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-0785-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010919523", 
              "https://doi.org/10.1007/978-1-4757-0785-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.bi.59.070190.003305", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012689194"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1083/jcb.111.3.867", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013666373"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0076-6879(83)00063-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021306087"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-0-12-625380-1.50020-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024586128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-2836(84)90030-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031988279"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/348091a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037197500", 
              "https://doi.org/10.1038/348091a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1083/jcb.108.2.229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042238721"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-0785-4_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045760101", 
              "https://doi.org/10.1007/978-1-4757-0785-4_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0092-8674(85)90035-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048112765"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0958-1669(90)90011-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048369927"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1099/0022-1317-35-2-335", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060352501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1099/0022-1317-69-9-2165", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060356859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1099/0022-1317-70-3-743", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060357098"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.2922607", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062574292"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077974795", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078203832", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078203834", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078654744", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078654749", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078654753", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078755888", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078778048", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078905894", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079068962", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079223530", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/j.1460-2075.1986.tb04395.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1079509142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079692268", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1080295426", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1081619084", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1991-12", 
        "datePublishedReg": "1991-12-01", 
        "description": "We have developed a novel DNA expression system, based on the Semliki Forest virus (SFV) replicon, which combines a wide choice of animal cell hosts, high efficiency and ease of use. DNA of interest is cloned into SFV plasmid vectors that serve as templates for in vitro synthesis of recombinant RNA. The RNA is transfected with virtually 100% efficiency into animal tissue culture cells by means of electroporation. Within the cell, the recombinant RNA drives its own replication and capping and leads to massive production of the heterologous protein while competing out the host protein synthesis. The expression system also includes an in vivo packaging procedure whereby recombinant RNA is packaged into infectious virus particles using cotransfection with packaging-deficient helper RNA molecules. The resulting high titer recombinant virus stock can be used to infect a wide range of animal cells with subsequent high expression of the heterologous gene product, but without expression of any structural proteins of the helper. The infected cells produce protein for up to 75 hours post infection after which the heterologous product can constitute as much as 25% of the total cell protein. The general utility of the system is demonstrated through the expression of human transferrin receptor, mouse dihydrofolate reductase, chick lysozyme and Escherichia coli beta-galactosidase.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nbt1291-1356", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1094195", 
            "issn": [
              "0733-222X"
            ], 
            "name": "Bio/Technology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "name": "A New Generation of Animal Cell Expression Vectors Based on the Semliki Forest Virus Replicon", 
        "pagination": "1356", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a3dd3b74dcab6308317fd68dcc0f910b4bd49218dd244a44f3e25d7e5adedfc0"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "1370252"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "8309273"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nbt1291-1356"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1034399064"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nbt1291-1356", 
          "https://app.dimensions.ai/details/publication/pub.1034399064"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000442.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nbt1291-1356"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nbt1291-1356'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nbt1291-1356'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nbt1291-1356'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nbt1291-1356'


     

    This table displays all metadata directly associated to this object as RDF triples.

    219 TRIPLES      21 PREDICATES      76 URIs      34 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nbt1291-1356 schema:about N3147ca80d3e04afaa53e48e4e58555e2
    2 N32fcc80a9e204667a98ace330b9d5fbb
    3 N4468ea435c814f1e8884b3fd12a522e2
    4 N57bdf6a9f48b48668b4d8edcb863e4a8
    5 N5d6b23b6d61747ea99e1e95e0e691eef
    6 N8b95326ed243476a9a83b67ea9800c00
    7 N98eba737b224448495a5d6d328170ce0
    8 Na9751594c79f4bdca41dcd92a0c20268
    9 Nbc4311c30fa64cf9ae9eb94c938a912f
    10 Nc8165f5accbd49969565cce94b74d24a
    11 Nd332f2d2bea84cbc8360d42b352b875a
    12 Neb218298f25d4ca3913899aef43aad1a
    13 Nfa7c759bd6a84b0a9110c860faff0346
    14 anzsrc-for:06
    15 anzsrc-for:0601
    16 schema:author Nd0e4d64be74a4194a789c9bdea34fa05
    17 schema:citation sg:pub.10.1007/978-1-4757-0785-4
    18 sg:pub.10.1007/978-1-4757-0785-4_3
    19 sg:pub.10.1007/978-1-4757-0785-4_8
    20 sg:pub.10.1007/978-3-642-68528-6_1
    21 sg:pub.10.1038/348091a0
    22 https://app.dimensions.ai/details/publication/pub.1077974795
    23 https://app.dimensions.ai/details/publication/pub.1078203832
    24 https://app.dimensions.ai/details/publication/pub.1078203834
    25 https://app.dimensions.ai/details/publication/pub.1078654744
    26 https://app.dimensions.ai/details/publication/pub.1078654749
    27 https://app.dimensions.ai/details/publication/pub.1078654753
    28 https://app.dimensions.ai/details/publication/pub.1078755888
    29 https://app.dimensions.ai/details/publication/pub.1078778048
    30 https://app.dimensions.ai/details/publication/pub.1078905894
    31 https://app.dimensions.ai/details/publication/pub.1079068962
    32 https://app.dimensions.ai/details/publication/pub.1079223530
    33 https://app.dimensions.ai/details/publication/pub.1079692268
    34 https://app.dimensions.ai/details/publication/pub.1080295426
    35 https://app.dimensions.ai/details/publication/pub.1081619084
    36 https://doi.org/10.1002/j.1460-2075.1986.tb04395.x
    37 https://doi.org/10.1016/0022-2836(84)90030-5
    38 https://doi.org/10.1016/0042-6822(91)90556-q
    39 https://doi.org/10.1016/0076-6879(83)00063-4
    40 https://doi.org/10.1016/0092-8674(85)90035-2
    41 https://doi.org/10.1016/0092-8674(86)90492-7
    42 https://doi.org/10.1016/0958-1669(90)90011-9
    43 https://doi.org/10.1016/b978-0-12-625380-1.50020-5
    44 https://doi.org/10.1083/jcb.108.2.229
    45 https://doi.org/10.1083/jcb.111.3.867
    46 https://doi.org/10.1099/0022-1317-35-2-335
    47 https://doi.org/10.1099/0022-1317-69-9-2165
    48 https://doi.org/10.1099/0022-1317-70-3-743
    49 https://doi.org/10.1126/science.2922607
    50 https://doi.org/10.1146/annurev.bi.59.070190.003305
    51 schema:datePublished 1991-12
    52 schema:datePublishedReg 1991-12-01
    53 schema:description We have developed a novel DNA expression system, based on the Semliki Forest virus (SFV) replicon, which combines a wide choice of animal cell hosts, high efficiency and ease of use. DNA of interest is cloned into SFV plasmid vectors that serve as templates for in vitro synthesis of recombinant RNA. The RNA is transfected with virtually 100% efficiency into animal tissue culture cells by means of electroporation. Within the cell, the recombinant RNA drives its own replication and capping and leads to massive production of the heterologous protein while competing out the host protein synthesis. The expression system also includes an in vivo packaging procedure whereby recombinant RNA is packaged into infectious virus particles using cotransfection with packaging-deficient helper RNA molecules. The resulting high titer recombinant virus stock can be used to infect a wide range of animal cells with subsequent high expression of the heterologous gene product, but without expression of any structural proteins of the helper. The infected cells produce protein for up to 75 hours post infection after which the heterologous product can constitute as much as 25% of the total cell protein. The general utility of the system is demonstrated through the expression of human transferrin receptor, mouse dihydrofolate reductase, chick lysozyme and Escherichia coli beta-galactosidase.
    54 schema:genre research_article
    55 schema:inLanguage en
    56 schema:isAccessibleForFree false
    57 schema:isPartOf N0cc445e35d724de8adbc34a9db12e6c6
    58 Nc33494001c664c1f98899a82f918151b
    59 sg:journal.1094195
    60 schema:name A New Generation of Animal Cell Expression Vectors Based on the Semliki Forest Virus Replicon
    61 schema:pagination 1356
    62 schema:productId N3234a66f1a694262974be03c31fe32c7
    63 N8197e105ddf44fc4a6aff41bde973f4c
    64 Nc76130289834470c9294e28c989dd1b4
    65 Nd86daaae1d8a4a74847ce5e8c4c90518
    66 Nfcacd7747a344076b90a7b69020e572b
    67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034399064
    68 https://doi.org/10.1038/nbt1291-1356
    69 schema:sdDatePublished 2019-04-10T16:30
    70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    71 schema:sdPublisher N1d77146f23304ea293b088fde21d0c5f
    72 schema:url https://www.nature.com/articles/nbt1291-1356
    73 sgo:license sg:explorer/license/
    74 sgo:sdDataset articles
    75 rdf:type schema:ScholarlyArticle
    76 N0cc445e35d724de8adbc34a9db12e6c6 schema:issueNumber 12
    77 rdf:type schema:PublicationIssue
    78 N1d77146f23304ea293b088fde21d0c5f schema:name Springer Nature - SN SciGraph project
    79 rdf:type schema:Organization
    80 N2a3f63218a78420bbeba4303a7c7932c rdf:first sg:person.01254467327.01
    81 rdf:rest rdf:nil
    82 N3147ca80d3e04afaa53e48e4e58555e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    83 schema:name Replicon
    84 rdf:type schema:DefinedTerm
    85 N3234a66f1a694262974be03c31fe32c7 schema:name nlm_unique_id
    86 schema:value 8309273
    87 rdf:type schema:PropertyValue
    88 N32fcc80a9e204667a98ace330b9d5fbb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    89 schema:name Biotechnology
    90 rdf:type schema:DefinedTerm
    91 N4468ea435c814f1e8884b3fd12a522e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    92 schema:name Genetic Vectors
    93 rdf:type schema:DefinedTerm
    94 N57bdf6a9f48b48668b4d8edcb863e4a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    95 schema:name Base Sequence
    96 rdf:type schema:DefinedTerm
    97 N5d6b23b6d61747ea99e1e95e0e691eef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    98 schema:name DNA, Recombinant
    99 rdf:type schema:DefinedTerm
    100 N8197e105ddf44fc4a6aff41bde973f4c schema:name readcube_id
    101 schema:value a3dd3b74dcab6308317fd68dcc0f910b4bd49218dd244a44f3e25d7e5adedfc0
    102 rdf:type schema:PropertyValue
    103 N8b95326ed243476a9a83b67ea9800c00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    104 schema:name Gene Expression
    105 rdf:type schema:DefinedTerm
    106 N98eba737b224448495a5d6d328170ce0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Recombinant Proteins
    108 rdf:type schema:DefinedTerm
    109 Na9751594c79f4bdca41dcd92a0c20268 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name RNA
    111 rdf:type schema:DefinedTerm
    112 Nbc4311c30fa64cf9ae9eb94c938a912f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Animals
    114 rdf:type schema:DefinedTerm
    115 Nc33494001c664c1f98899a82f918151b schema:volumeNumber 9
    116 rdf:type schema:PublicationVolume
    117 Nc76130289834470c9294e28c989dd1b4 schema:name pubmed_id
    118 schema:value 1370252
    119 rdf:type schema:PropertyValue
    120 Nc8165f5accbd49969565cce94b74d24a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Plasmids
    122 rdf:type schema:DefinedTerm
    123 Nd0e4d64be74a4194a789c9bdea34fa05 rdf:first sg:person.01062515416.75
    124 rdf:rest N2a3f63218a78420bbeba4303a7c7932c
    125 Nd332f2d2bea84cbc8360d42b352b875a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Molecular Sequence Data
    127 rdf:type schema:DefinedTerm
    128 Nd86daaae1d8a4a74847ce5e8c4c90518 schema:name dimensions_id
    129 schema:value pub.1034399064
    130 rdf:type schema:PropertyValue
    131 Neb218298f25d4ca3913899aef43aad1a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Semliki forest virus
    133 rdf:type schema:DefinedTerm
    134 Nfa7c759bd6a84b0a9110c860faff0346 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Humans
    136 rdf:type schema:DefinedTerm
    137 Nfcacd7747a344076b90a7b69020e572b schema:name doi
    138 schema:value 10.1038/nbt1291-1356
    139 rdf:type schema:PropertyValue
    140 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    141 schema:name Biological Sciences
    142 rdf:type schema:DefinedTerm
    143 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    144 schema:name Biochemistry and Cell Biology
    145 rdf:type schema:DefinedTerm
    146 sg:journal.1094195 schema:issn 0733-222X
    147 schema:name Bio/Technology
    148 rdf:type schema:Periodical
    149 sg:person.01062515416.75 schema:affiliation https://www.grid.ac/institutes/grid.4714.6
    150 schema:familyName Liljeström
    151 schema:givenName P
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062515416.75
    153 rdf:type schema:Person
    154 sg:person.01254467327.01 schema:familyName Garoff
    155 schema:givenName H
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254467327.01
    157 rdf:type schema:Person
    158 sg:pub.10.1007/978-1-4757-0785-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010919523
    159 https://doi.org/10.1007/978-1-4757-0785-4
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/978-1-4757-0785-4_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045760101
    162 https://doi.org/10.1007/978-1-4757-0785-4_3
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/978-1-4757-0785-4_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008630668
    165 https://doi.org/10.1007/978-1-4757-0785-4_8
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/978-3-642-68528-6_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001796841
    168 https://doi.org/10.1007/978-3-642-68528-6_1
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1038/348091a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037197500
    171 https://doi.org/10.1038/348091a0
    172 rdf:type schema:CreativeWork
    173 https://app.dimensions.ai/details/publication/pub.1077974795 schema:CreativeWork
    174 https://app.dimensions.ai/details/publication/pub.1078203832 schema:CreativeWork
    175 https://app.dimensions.ai/details/publication/pub.1078203834 schema:CreativeWork
    176 https://app.dimensions.ai/details/publication/pub.1078654744 schema:CreativeWork
    177 https://app.dimensions.ai/details/publication/pub.1078654749 schema:CreativeWork
    178 https://app.dimensions.ai/details/publication/pub.1078654753 schema:CreativeWork
    179 https://app.dimensions.ai/details/publication/pub.1078755888 schema:CreativeWork
    180 https://app.dimensions.ai/details/publication/pub.1078778048 schema:CreativeWork
    181 https://app.dimensions.ai/details/publication/pub.1078905894 schema:CreativeWork
    182 https://app.dimensions.ai/details/publication/pub.1079068962 schema:CreativeWork
    183 https://app.dimensions.ai/details/publication/pub.1079223530 schema:CreativeWork
    184 https://app.dimensions.ai/details/publication/pub.1079692268 schema:CreativeWork
    185 https://app.dimensions.ai/details/publication/pub.1080295426 schema:CreativeWork
    186 https://app.dimensions.ai/details/publication/pub.1081619084 schema:CreativeWork
    187 https://doi.org/10.1002/j.1460-2075.1986.tb04395.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1079509142
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1016/0022-2836(84)90030-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031988279
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1016/0042-6822(91)90556-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1007807078
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1016/0076-6879(83)00063-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021306087
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1016/0092-8674(85)90035-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048112765
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1016/0092-8674(86)90492-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008412359
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1016/0958-1669(90)90011-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048369927
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1016/b978-0-12-625380-1.50020-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024586128
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1083/jcb.108.2.229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042238721
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1083/jcb.111.3.867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013666373
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1099/0022-1317-35-2-335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060352501
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1099/0022-1317-69-9-2165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060356859
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1099/0022-1317-70-3-743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060357098
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1126/science.2922607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062574292
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1146/annurev.bi.59.070190.003305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012689194
    216 rdf:type schema:CreativeWork
    217 https://www.grid.ac/institutes/grid.4714.6 schema:alternateName Karolinska Institute
    218 schema:name Department of Molecular Biology, Karolinska Institute, Huddinge, Sweden.
    219 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...