A New Generation of Animal Cell Expression Vectors Based on the Semliki Forest Virus Replicon View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1991-12

AUTHORS

P Liljeström, H Garoff

ABSTRACT

We have developed a novel DNA expression system, based on the Semliki Forest virus (SFV) replicon, which combines a wide choice of animal cell hosts, high efficiency and ease of use. DNA of interest is cloned into SFV plasmid vectors that serve as templates for in vitro synthesis of recombinant RNA. The RNA is transfected with virtually 100% efficiency into animal tissue culture cells by means of electroporation. Within the cell, the recombinant RNA drives its own replication and capping and leads to massive production of the heterologous protein while competing out the host protein synthesis. The expression system also includes an in vivo packaging procedure whereby recombinant RNA is packaged into infectious virus particles using cotransfection with packaging-deficient helper RNA molecules. The resulting high titer recombinant virus stock can be used to infect a wide range of animal cells with subsequent high expression of the heterologous gene product, but without expression of any structural proteins of the helper. The infected cells produce protein for up to 75 hours post infection after which the heterologous product can constitute as much as 25% of the total cell protein. The general utility of the system is demonstrated through the expression of human transferrin receptor, mouse dihydrofolate reductase, chick lysozyme and Escherichia coli beta-galactosidase. More... »

PAGES

1356

Journal

TITLE

Bio/Technology

ISSUE

12

VOLUME

9

Author Affiliations

Related Patents

  • Adenovirus/Alphavirus Hybrid Vector For The Effective Administration And Expression Of Therapeutic Genes In Tumour Cells
  • Viral Vectors And Methods Used In The Preparation Of Gdnf
  • Prrs Viruses, Infectious Clones, Mutants Thereof, And Method Of Use
  • Multi-Antigenic Alphavirus Replicon Particles And Methods
  • Method Of Rapidly Producing Improved Vaccines For Animals
  • Viral Adjuvants
  • Alphavirus Structural Protein Expression Cassettes
  • Recombinant Alphavirus Particles
  • Peptide-Enhanced Transfections
  • Recombinant Alphavirus-Based Vectors With Reduced Inhibition Of Cellular Macromolecular Synthesis
  • Infectious Papillomavirus Pseudoviral Particles
  • System For The In Vivo Delivery And Expression Of Heterologous Genes In The Bone Marrow
  • Composition And Methods For Transfecting Eukaryotic Cells
  • Eukaryotic Layered Vector Initiation Systems
  • Alphavirus Expression Vector
  • Inducible Alphaviral Gene Expression System
  • Alpha Virus-Based Cytomegalovirus Vaccines
  • Angiotensin Peptide-Carrier Conjugates And Uses Thereof
  • Antibody Treatment Of Alzheimer's And Related Diseases
  • Bacterial Artificial Chromosome Construct Encoding Recombinant Coronavirus
  • Prrs Virus Inducing Type I Interferon In Susceptible Cells
  • Transfection Reagents
  • Eukaryotic Layered Vector Initiation Systems
  • Promoterless Cassettes For Expression Of Alphavirus Structural Proteins
  • A Method And Composition For Creating Conditional Lethality For Virus Mutants And For Eliminating The Viability Of An Eukaryotic Cell
  • Antigen Arrays For Treatment Of Bone Disease
  • Peptide-Enhanced Transfections
  • Transfection Reagents
  • Compositions And Methods For Generating An Immune Response Utilizing Alphavirus-Based Vector Systems
  • Porcine Reproductive And Respiratory Syndrome Isolates And Methods Of Use
  • Identifying Virally Infected And Vaccinated Organisms
  • Transfection Reagents
  • Method Of Rapidly Producing Improved Vaccines For Animals
  • Tc-83-Derived Alphavirus Vectors, Particles And Methods
  • Commercial Scale Process For Production Of Prrsv
  • Eukaryotic Layered Vector Initiation Systems
  • Porcine Reproductive And Respiratory Syndrome Vaccine Based On Isolate Ja-142
  • Compositions Of Coronaviruses With A Recombination-Resistant Genome
  • Polynucleotides Encoding Porcine Transmissible Gastroenteritis Virus
  • Defective Sindbis Virus Vectors That Express Toxoplasma Gondii P30 Antigens
  • Recombinant Alphavirus-Based Vectors With Reduced Inhibition Of Cellular Macromolecular Synthesis
  • Peptide-Enhanced Cationic Lipid Transfections
  • Method For Stimulating An Immune Response Utilizing Recombinant Alphavirus Particles
  • Expression Cloning Processes For The Discovery Characterization, And Isolation Of Genes Encoding Polypeptides With A Predetermined Property
  • Ordered Molecular Presentation Of Antigens, Method Of Preparation And Use
  • System For The In Vivo Delivery And Expression Of Heterologous Genes In The Bone Marrow
  • Recombinant Alphavirus-Based Vectors With Reduced Inhibition Of Cellular Macromolecular Synthesis
  • Alphavirus Rna As Carrier For Vaccines
  • Infectious Cdna Clone Of European Prrs Virus And Uses Thereof
  • Molecular Antigen Array Presenting Amyloid Beta
  • Hapten-Carrier Conjugates And Uses Thereof
  • Live Virus Vaccines
  • Tc-83-Derived Alphavirus Vectors, Particles And Methods
  • Vectors Derived From South African Arbovirus No. 86
  • Method Of Rapidly Producing Improved Vaccines For Animals
  • Alphaviral Vectors And Cell Lines For Producing Recombinant Proteins
  • Viral Adjuvants
  • System For The In Vivo Delivery And Expression Of Heterologous Genes In The Bone Marrow
  • Alphavirus Replicon Vector Systems
  • Alphavirus Rna Replicon Systems
  • Highly Infectious Rubella Virus Dna Constructs And Methods Of Production
  • Optimized Recognition Site Of The Alphavirus Non-Structural Protease For Tag Removal And Specific Processing Of Recombinant Proteins
  • Infectious Clones Of Rna Viruses And Vaccines And Diagnostic Assays Derived Thereof
  • Recombinant Alphavirus-Based Vectors With Reduced Inhibition Of Cellular Macromolecular Synthesis
  • Method Of Rapidly Producing Improved Vaccines For Animals
  • Viral Vector And Uses Thereof
  • European Prrsv Strain
  • Alphavirus Vector Constructs
  • Alphavirus Rna Replicon Systems
  • Transgenomic Viruses
  • Recombinant Packaging Defective Sindbis Virus Vaccines
  • Transfection Reagents
  • Peptide-Mediated Gene Transfer
  • Transfection Reagents
  • Regulated Expression Of Recombinant Proteins Using Rna Viruses
  • Alphavirus Rna Replicon Systems
  • Alphavirus Rna Replicon Systems
  • Alphavirus Rna Replicon Systems
  • Prrsv Vaccines
  • Alphavirus Rna Replicon Systems
  • Recombinant Alphavirus-Based Vectors With Reduced Inhibition Of Cellular Macromolecular Synthesis
  • Chimeric Alphavirus Replicon Particles
  • Expression Cloning Processes For The Discovery, Characterization And Isolation Of Genes Encoding Polypeptides With A Predetermined Property
  • Promoterless Cassettes For Expression Of Alpha Virus Structural Proteins
  • Methods For Producing Recombinant Coronavirus
  • Angiotensin Peptide-Carrier Conjugates And Uses Thereof
  • Method Of Rapidly Producing Improved Vaccines For Animals
  • Angiotensin Peptide-Carrier Conjugates And Uses Thereof
  • Gene Expression System
  • Porcine Reproductive And Respiratory Syndrome Vaccine Based On Isolate Ja-142
  • Methods And Compositions For Raising An Immune Response To Hiv
  • Alphavirus Particles And Methods For Preparation
  • Method For The Quantitation Of Alphavirus Replicon Particles
  • Recombinant Alphavirus-Based Vectors With Reduced Inhibition Of Cellular Macromolecular Synthesis
  • Eukaryotic Layered Vector Initiation Systems For Production Of Recombinant Proteins
  • Replicon Based Activation Of Endogenous Genes
  • Peptide-Enhanced Cationic Lipid Transfections
  • Alphavirus Rna Replicon Systems
  • Alphavirus Structural Protein Expression Cassettes
  • Eukaryotic Layered Vector Initiation Systems
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nbt1291-1356

    DOI

    http://dx.doi.org/10.1038/nbt1291-1356

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1034399064

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/1370252


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Base Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Recombinant", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Vectors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Sequence Data", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Plasmids", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Recombinant Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Replicon", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Semliki forest virus", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Karolinska Institute", 
              "id": "https://www.grid.ac/institutes/grid.4714.6", 
              "name": [
                "Department of Molecular Biology, Karolinska Institute, Huddinge, Sweden."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liljestr\u00f6m", 
            "givenName": "P", 
            "id": "sg:person.01062515416.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062515416.75"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Garoff", 
            "givenName": "H", 
            "id": "sg:person.01254467327.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254467327.01"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-68528-6_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001796841", 
              "https://doi.org/10.1007/978-3-642-68528-6_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0042-6822(91)90556-q", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007807078"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0092-8674(86)90492-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008412359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-0785-4_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008630668", 
              "https://doi.org/10.1007/978-1-4757-0785-4_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-0785-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010919523", 
              "https://doi.org/10.1007/978-1-4757-0785-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-0785-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010919523", 
              "https://doi.org/10.1007/978-1-4757-0785-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.bi.59.070190.003305", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012689194"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1083/jcb.111.3.867", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013666373"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0076-6879(83)00063-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021306087"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-0-12-625380-1.50020-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024586128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-2836(84)90030-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031988279"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/348091a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037197500", 
              "https://doi.org/10.1038/348091a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1083/jcb.108.2.229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042238721"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-0785-4_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045760101", 
              "https://doi.org/10.1007/978-1-4757-0785-4_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0092-8674(85)90035-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048112765"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0958-1669(90)90011-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048369927"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1099/0022-1317-35-2-335", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060352501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1099/0022-1317-69-9-2165", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060356859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1099/0022-1317-70-3-743", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060357098"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.2922607", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062574292"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077974795", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078203832", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078203834", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078654744", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078654749", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078654753", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078755888", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078778048", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078905894", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079068962", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079223530", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/j.1460-2075.1986.tb04395.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1079509142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079692268", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1080295426", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1081619084", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1991-12", 
        "datePublishedReg": "1991-12-01", 
        "description": "We have developed a novel DNA expression system, based on the Semliki Forest virus (SFV) replicon, which combines a wide choice of animal cell hosts, high efficiency and ease of use. DNA of interest is cloned into SFV plasmid vectors that serve as templates for in vitro synthesis of recombinant RNA. The RNA is transfected with virtually 100% efficiency into animal tissue culture cells by means of electroporation. Within the cell, the recombinant RNA drives its own replication and capping and leads to massive production of the heterologous protein while competing out the host protein synthesis. The expression system also includes an in vivo packaging procedure whereby recombinant RNA is packaged into infectious virus particles using cotransfection with packaging-deficient helper RNA molecules. The resulting high titer recombinant virus stock can be used to infect a wide range of animal cells with subsequent high expression of the heterologous gene product, but without expression of any structural proteins of the helper. The infected cells produce protein for up to 75 hours post infection after which the heterologous product can constitute as much as 25% of the total cell protein. The general utility of the system is demonstrated through the expression of human transferrin receptor, mouse dihydrofolate reductase, chick lysozyme and Escherichia coli beta-galactosidase.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nbt1291-1356", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1094195", 
            "issn": [
              "0733-222X"
            ], 
            "name": "Bio/Technology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "name": "A New Generation of Animal Cell Expression Vectors Based on the Semliki Forest Virus Replicon", 
        "pagination": "1356", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a3dd3b74dcab6308317fd68dcc0f910b4bd49218dd244a44f3e25d7e5adedfc0"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "1370252"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "8309273"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nbt1291-1356"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1034399064"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nbt1291-1356", 
          "https://app.dimensions.ai/details/publication/pub.1034399064"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000442.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nbt1291-1356"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nbt1291-1356'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nbt1291-1356'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nbt1291-1356'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nbt1291-1356'


     

    This table displays all metadata directly associated to this object as RDF triples.

    219 TRIPLES      21 PREDICATES      76 URIs      34 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nbt1291-1356 schema:about N0fb87793ed79434ea3c702bb9eed8edc
    2 N3165a113e96048a3be9af774819810a2
    3 N3a79115df9ab44e090f5af39888aaf86
    4 N4358830db87e46cd950bae60c4ce9a4b
    5 N4a814843c8d14d68b64a087ea7734999
    6 N75b98891bf8c4998b55a2c4c6f9a114c
    7 N89b027ac75934b718140945832d67288
    8 Na8fee2c8586a463fb5339b2faa82d1bb
    9 Nb401ab750de04837b79f8d0575a245bb
    10 Nb921eaa46f754c3b906731a452fd364a
    11 Nd39fa18da2bf431cbc93d7c4eb7a8a76
    12 Nda3a2e8036ab47e897f5e53af14403ac
    13 Ne46a83533ed54f038f3c69cbe85e8ac9
    14 anzsrc-for:06
    15 anzsrc-for:0601
    16 schema:author N0f90b5a8493b4807b504199cf5176800
    17 schema:citation sg:pub.10.1007/978-1-4757-0785-4
    18 sg:pub.10.1007/978-1-4757-0785-4_3
    19 sg:pub.10.1007/978-1-4757-0785-4_8
    20 sg:pub.10.1007/978-3-642-68528-6_1
    21 sg:pub.10.1038/348091a0
    22 https://app.dimensions.ai/details/publication/pub.1077974795
    23 https://app.dimensions.ai/details/publication/pub.1078203832
    24 https://app.dimensions.ai/details/publication/pub.1078203834
    25 https://app.dimensions.ai/details/publication/pub.1078654744
    26 https://app.dimensions.ai/details/publication/pub.1078654749
    27 https://app.dimensions.ai/details/publication/pub.1078654753
    28 https://app.dimensions.ai/details/publication/pub.1078755888
    29 https://app.dimensions.ai/details/publication/pub.1078778048
    30 https://app.dimensions.ai/details/publication/pub.1078905894
    31 https://app.dimensions.ai/details/publication/pub.1079068962
    32 https://app.dimensions.ai/details/publication/pub.1079223530
    33 https://app.dimensions.ai/details/publication/pub.1079692268
    34 https://app.dimensions.ai/details/publication/pub.1080295426
    35 https://app.dimensions.ai/details/publication/pub.1081619084
    36 https://doi.org/10.1002/j.1460-2075.1986.tb04395.x
    37 https://doi.org/10.1016/0022-2836(84)90030-5
    38 https://doi.org/10.1016/0042-6822(91)90556-q
    39 https://doi.org/10.1016/0076-6879(83)00063-4
    40 https://doi.org/10.1016/0092-8674(85)90035-2
    41 https://doi.org/10.1016/0092-8674(86)90492-7
    42 https://doi.org/10.1016/0958-1669(90)90011-9
    43 https://doi.org/10.1016/b978-0-12-625380-1.50020-5
    44 https://doi.org/10.1083/jcb.108.2.229
    45 https://doi.org/10.1083/jcb.111.3.867
    46 https://doi.org/10.1099/0022-1317-35-2-335
    47 https://doi.org/10.1099/0022-1317-69-9-2165
    48 https://doi.org/10.1099/0022-1317-70-3-743
    49 https://doi.org/10.1126/science.2922607
    50 https://doi.org/10.1146/annurev.bi.59.070190.003305
    51 schema:datePublished 1991-12
    52 schema:datePublishedReg 1991-12-01
    53 schema:description We have developed a novel DNA expression system, based on the Semliki Forest virus (SFV) replicon, which combines a wide choice of animal cell hosts, high efficiency and ease of use. DNA of interest is cloned into SFV plasmid vectors that serve as templates for in vitro synthesis of recombinant RNA. The RNA is transfected with virtually 100% efficiency into animal tissue culture cells by means of electroporation. Within the cell, the recombinant RNA drives its own replication and capping and leads to massive production of the heterologous protein while competing out the host protein synthesis. The expression system also includes an in vivo packaging procedure whereby recombinant RNA is packaged into infectious virus particles using cotransfection with packaging-deficient helper RNA molecules. The resulting high titer recombinant virus stock can be used to infect a wide range of animal cells with subsequent high expression of the heterologous gene product, but without expression of any structural proteins of the helper. The infected cells produce protein for up to 75 hours post infection after which the heterologous product can constitute as much as 25% of the total cell protein. The general utility of the system is demonstrated through the expression of human transferrin receptor, mouse dihydrofolate reductase, chick lysozyme and Escherichia coli beta-galactosidase.
    54 schema:genre research_article
    55 schema:inLanguage en
    56 schema:isAccessibleForFree false
    57 schema:isPartOf N6af9249a4e1241df9dd41aa69138e971
    58 N8de6a9d8e2644505a91bde2a211e1200
    59 sg:journal.1094195
    60 schema:name A New Generation of Animal Cell Expression Vectors Based on the Semliki Forest Virus Replicon
    61 schema:pagination 1356
    62 schema:productId N33619628cdcb44f9908ced3033318eed
    63 N6816ce99cc54425a80dd4d6ad1d83460
    64 N9d0cb48cec554f26b2c07e9102ace7b2
    65 Nbf00850f0a204308ac4dcfee6d617c73
    66 Nc4835aad57714bee8fd20686c67729e0
    67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034399064
    68 https://doi.org/10.1038/nbt1291-1356
    69 schema:sdDatePublished 2019-04-10T16:30
    70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    71 schema:sdPublisher N19f60b0cfc93463085f6387117553ca1
    72 schema:url https://www.nature.com/articles/nbt1291-1356
    73 sgo:license sg:explorer/license/
    74 sgo:sdDataset articles
    75 rdf:type schema:ScholarlyArticle
    76 N0f90b5a8493b4807b504199cf5176800 rdf:first sg:person.01062515416.75
    77 rdf:rest N4e3445033c2049e99b04d6984c443948
    78 N0fb87793ed79434ea3c702bb9eed8edc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    79 schema:name Replicon
    80 rdf:type schema:DefinedTerm
    81 N19f60b0cfc93463085f6387117553ca1 schema:name Springer Nature - SN SciGraph project
    82 rdf:type schema:Organization
    83 N3165a113e96048a3be9af774819810a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    84 schema:name Biotechnology
    85 rdf:type schema:DefinedTerm
    86 N33619628cdcb44f9908ced3033318eed schema:name pubmed_id
    87 schema:value 1370252
    88 rdf:type schema:PropertyValue
    89 N3a79115df9ab44e090f5af39888aaf86 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    90 schema:name DNA, Recombinant
    91 rdf:type schema:DefinedTerm
    92 N4358830db87e46cd950bae60c4ce9a4b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    93 schema:name Plasmids
    94 rdf:type schema:DefinedTerm
    95 N4a814843c8d14d68b64a087ea7734999 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    96 schema:name Humans
    97 rdf:type schema:DefinedTerm
    98 N4e3445033c2049e99b04d6984c443948 rdf:first sg:person.01254467327.01
    99 rdf:rest rdf:nil
    100 N6816ce99cc54425a80dd4d6ad1d83460 schema:name nlm_unique_id
    101 schema:value 8309273
    102 rdf:type schema:PropertyValue
    103 N6af9249a4e1241df9dd41aa69138e971 schema:issueNumber 12
    104 rdf:type schema:PublicationIssue
    105 N75b98891bf8c4998b55a2c4c6f9a114c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    106 schema:name RNA
    107 rdf:type schema:DefinedTerm
    108 N89b027ac75934b718140945832d67288 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name Semliki forest virus
    110 rdf:type schema:DefinedTerm
    111 N8de6a9d8e2644505a91bde2a211e1200 schema:volumeNumber 9
    112 rdf:type schema:PublicationVolume
    113 N9d0cb48cec554f26b2c07e9102ace7b2 schema:name readcube_id
    114 schema:value a3dd3b74dcab6308317fd68dcc0f910b4bd49218dd244a44f3e25d7e5adedfc0
    115 rdf:type schema:PropertyValue
    116 Na8fee2c8586a463fb5339b2faa82d1bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Animals
    118 rdf:type schema:DefinedTerm
    119 Nb401ab750de04837b79f8d0575a245bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    120 schema:name Molecular Sequence Data
    121 rdf:type schema:DefinedTerm
    122 Nb921eaa46f754c3b906731a452fd364a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name Base Sequence
    124 rdf:type schema:DefinedTerm
    125 Nbf00850f0a204308ac4dcfee6d617c73 schema:name dimensions_id
    126 schema:value pub.1034399064
    127 rdf:type schema:PropertyValue
    128 Nc4835aad57714bee8fd20686c67729e0 schema:name doi
    129 schema:value 10.1038/nbt1291-1356
    130 rdf:type schema:PropertyValue
    131 Nd39fa18da2bf431cbc93d7c4eb7a8a76 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Recombinant Proteins
    133 rdf:type schema:DefinedTerm
    134 Nda3a2e8036ab47e897f5e53af14403ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Genetic Vectors
    136 rdf:type schema:DefinedTerm
    137 Ne46a83533ed54f038f3c69cbe85e8ac9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Gene Expression
    139 rdf:type schema:DefinedTerm
    140 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    141 schema:name Biological Sciences
    142 rdf:type schema:DefinedTerm
    143 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    144 schema:name Biochemistry and Cell Biology
    145 rdf:type schema:DefinedTerm
    146 sg:journal.1094195 schema:issn 0733-222X
    147 schema:name Bio/Technology
    148 rdf:type schema:Periodical
    149 sg:person.01062515416.75 schema:affiliation https://www.grid.ac/institutes/grid.4714.6
    150 schema:familyName Liljeström
    151 schema:givenName P
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062515416.75
    153 rdf:type schema:Person
    154 sg:person.01254467327.01 schema:familyName Garoff
    155 schema:givenName H
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254467327.01
    157 rdf:type schema:Person
    158 sg:pub.10.1007/978-1-4757-0785-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010919523
    159 https://doi.org/10.1007/978-1-4757-0785-4
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/978-1-4757-0785-4_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045760101
    162 https://doi.org/10.1007/978-1-4757-0785-4_3
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/978-1-4757-0785-4_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008630668
    165 https://doi.org/10.1007/978-1-4757-0785-4_8
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/978-3-642-68528-6_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001796841
    168 https://doi.org/10.1007/978-3-642-68528-6_1
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1038/348091a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037197500
    171 https://doi.org/10.1038/348091a0
    172 rdf:type schema:CreativeWork
    173 https://app.dimensions.ai/details/publication/pub.1077974795 schema:CreativeWork
    174 https://app.dimensions.ai/details/publication/pub.1078203832 schema:CreativeWork
    175 https://app.dimensions.ai/details/publication/pub.1078203834 schema:CreativeWork
    176 https://app.dimensions.ai/details/publication/pub.1078654744 schema:CreativeWork
    177 https://app.dimensions.ai/details/publication/pub.1078654749 schema:CreativeWork
    178 https://app.dimensions.ai/details/publication/pub.1078654753 schema:CreativeWork
    179 https://app.dimensions.ai/details/publication/pub.1078755888 schema:CreativeWork
    180 https://app.dimensions.ai/details/publication/pub.1078778048 schema:CreativeWork
    181 https://app.dimensions.ai/details/publication/pub.1078905894 schema:CreativeWork
    182 https://app.dimensions.ai/details/publication/pub.1079068962 schema:CreativeWork
    183 https://app.dimensions.ai/details/publication/pub.1079223530 schema:CreativeWork
    184 https://app.dimensions.ai/details/publication/pub.1079692268 schema:CreativeWork
    185 https://app.dimensions.ai/details/publication/pub.1080295426 schema:CreativeWork
    186 https://app.dimensions.ai/details/publication/pub.1081619084 schema:CreativeWork
    187 https://doi.org/10.1002/j.1460-2075.1986.tb04395.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1079509142
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1016/0022-2836(84)90030-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031988279
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1016/0042-6822(91)90556-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1007807078
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1016/0076-6879(83)00063-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021306087
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1016/0092-8674(85)90035-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048112765
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1016/0092-8674(86)90492-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008412359
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1016/0958-1669(90)90011-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048369927
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1016/b978-0-12-625380-1.50020-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024586128
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1083/jcb.108.2.229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042238721
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1083/jcb.111.3.867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013666373
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1099/0022-1317-35-2-335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060352501
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1099/0022-1317-69-9-2165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060356859
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1099/0022-1317-70-3-743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060357098
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1126/science.2922607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062574292
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1146/annurev.bi.59.070190.003305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012689194
    216 rdf:type schema:CreativeWork
    217 https://www.grid.ac/institutes/grid.4714.6 schema:alternateName Karolinska Institute
    218 schema:name Department of Molecular Biology, Karolinska Institute, Huddinge, Sweden.
    219 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...