Oligonucleotide Arrays: New Concepts and Possibilities View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-11

AUTHORS

A B Chetverin, F R Kramer

ABSTRACT

Advances in solid-phase oligonucleotide synthesis and hybridization techniques have led to an incipient technology based on the use of oligonucleotide arrays. The inclusion of a large number of oligonucleotide probes within a single array greatly reduces the cost of their synthesis and allows thousands of hybridizations to be carried out simultaneously. The range of potential applications of oligonucleotide arrays was expanded by the realization that nucleic acids can be sequenced by hybridizing them to all possible oligonucleotides of a given length. Additional possibilities are offered by novel types of oligonucleotide arrays that are capable of parallel sorting, isolating, and manipulating thousands, and even millions, of nucleic acid species. Fields, such as site-directed mutagenesis, protein engineering, and recombinant DNA technology, would benefit from using these arrays. Further, these approaches could enable the analysis of entire genomes by preparing ordered fragment libraries, and by sequencing complex pools of nucleic acids, in a novel approach that provides long-range sequence information by generating nested nucleic acids and then surveying the oligonucleotides contained in the nested strands. This would allow large diploid genomes to be sequenced directly in a completely automated procedure that does not require fragment cloning or chromosome mapping. More... »

PAGES

1093

References to SciGraph publications

Journal

TITLE

Bio/Technology

ISSUE

11

VOLUME

12

Author Affiliations

Related Patents

  • Polynucleotides For Use As Tags And Tag Complements, Manufacture And Use Thereof
  • Systems And Methods For Sequencing By Hybridization
  • Systems And Methods For Sequencing By Hybridization
  • Very Large Scale Immobilized Polymer Synthesis
  • System For Determining Receptor-Ligand Binding Affinity
  • Very Large Scale Immobilized Polymer Synthesis
  • Methods For Polymer Synthesis
  • De Novo Or “Universal” Sequencing Array
  • De Novo Or “Universal” Sequencing Array
  • Universal Primer Sequence For Multiplex Dna Amplification
  • Compositions For Sorting Polynucleotides
  • Method, Apparatus And Computer Program Product For Determining A Set Of Non-Hybridizing Oligonucleotides
  • Methods And Computer Software For Detecting Splice Variants
  • Multiplexed Diagnostic And Therapeutics
  • Methods For Sorting Polynucleotides Using Oligonucleotide Tags
  • Measurement Of Gene Expression Profiles In Toxicity Determination
  • Dna Separating, Fractionating And Analyzing Method And System Therefor
  • Methods For Nucleic Acid Manipulation
  • Methods For Sequencing A Biomolecule By Detecting Relative Positions Of Hybridized Probes
  • Methods And Compositions For Whole Genome Amplification And Genotyping
  • Polypeptide Arrays
  • Methods, Compositions, Systems, Apparatuses And Kits For Nucleic Acid Amplification
  • Method Of Nucleic Acid Amplification
  • Nucleic Acid Amplification
  • Biopolymer Sequencing By Hybridization Of Probes To Form Ternary Complexes And Variable Range Alignment
  • Methods And Computer Software For Detecting Splice Variants
  • Devices And Methods For Analyzing Biomolecules And Probes Bound Thereto
  • Use Of Longitudinally Displaced Nanoscale Electrodes For Voltage Sensing Of Biomolecules And Other Analytes In Fluidic Channels
  • Support Bound Probes And Methods Of Analysis Using The Same
  • Noninvasive Diagnosis Of Fetal Aneuploidy By Sequencing
  • Polynucleotides For Use As Tags And Tag Complements, Manufacture And Use Thereof
  • Polynucleotides For Use As Tags And Tag Complements, Manufacture And Use Thereof
  • Polynucleotides For Use As Tags And Tag Complements, Manufacture And Use Thereof
  • Methods And Compositions For Whole Genome Amplification And Genotyping
  • Methods For Nucleic Acid Manipulation
  • Methods For Sequencing A Biomolecule By Detecting Relative Positions Of Hybridized Probes
  • Tagged-Fragment Map Assembly
  • Nucleic Acid Directed Immobilization Arrays And Methods Of Assembly
  • Sequencing Of Surface Immobilized Polymers Utilizing Microfluorescence Detection
  • Apparatus For Forming Polynucleotides Or Polypeptides
  • Streptavidin Mutants
  • High Throughput Assay System
  • Measurement Of Gene Expression Profiles In Toxicity Determination
  • De Novo Or “Universal” Sequencing Array
  • Polymerase Signaling Assay
  • Apparatus For Polymer Synthesis
  • Sequencing Of Surface Immobilized Polymers Utilizing Microflourescence Detection
  • Polynucleotides For Use Tags And Tag Complements, Manufacture And Use Thereof
  • High Throughput Assay System For Monitoring Ests
  • Massively Parallel Signature Sequencing By Ligation Of Encoded Adaptors
  • Minimally Cross-Hybridizing Sets Of Oligonucleotide Tags
  • Assay Methods Using Nicking Endonucleases
  • Polynucleotides For Use As Tags And Tag Complements, Manufacture And Use Thereof
  • Methods For Nucleic Acid Manipulation
  • System And Methods For Sequencing By Hybridization
  • Apparatus Comprising Polymers
  • Nucleic Acid Reading And Analysis System
  • Photolithographic And Other Means For Manufacturing Arrays
  • Methods For Nucleic Acid Analysis
  • Method Of Detecting Nucleic Acids
  • Compositions For Sorting Polynucleotides
  • Method Of Identifying Sequence In A Nucleic Acid Target Using Interactive Sequencing By Hybridization
  • Height Referencing Biochemical Cassette
  • Method Of Detecting The Presence Or Absence Of A Plurality Of Target Sequences Using Oligonucleotide Tags
  • High Throughput Assay System
  • Clonal Amplification Of Nucleic Acid On Solid Surface With Template Walking
  • Nucleic Acid Reading And Analysis System
  • Nucleic Acid Amplification
  • Method Of Nucleic Acid Amplification
  • Devices And Methods For Determining The Length Of Biopolymers And Distances Between Probes Bound Thereto
  • Use Of Longitudinally Displaced Nanoscale Electrodes For Voltage Sensing Of Biomolecules And Other Analytes In Fluidic Channels
  • Analysis Of Target Molecules Using An Encoding System
  • Devices And Methods For Determining The Length Of Biopolymers And Distances Between Probes Bound Thereto
  • Devices And Methods For Determining The Length Of Biopolymers And Distances Between Probes Bound Thereto
  • Methods For Nucleic Acid Manipulation
  • Dna Analyzing Method.
  • Dna Analyzing Method
  • Methods Of Fetal Abnormality Detection
  • Oligonucleotide Tags For Sorting And Identification
  • Oligonucleotide Tags For Sorting And Identification
  • Methods For The Use Of Reduced Affinity Streptavidin
  • Method Of Sorting Polynucleotides
  • Oligonucleotide Tags For Sorting And Identification
  • Oligonucleotide Tags For Sorting And Identification
  • Iterative And Regenerative Dna Sequencing Method
  • Apparatus And Methods For Analysis Of Biomolecules Using High Frequency Alternating Current Excitation
  • Nucleotides And Analogs Having Photoremovable Protecting Groups
  • Mycobacterial Rpob Sequences
  • Analysis Of Surface Immobilized Polymers Utilizing Microfluorescence Detection
  • Chip-Based Speciation And Phenotypic Characterization Of Microorganisms
  • De Novo Or 'Universal' Sequencing Array
  • Nucleic Acid Amplification
  • Support Bound Probes And Methods Of Analysis Using The Same
  • Method Of Nucleic Acid Amplification
  • Biopolymer Sequencing By Hybridization Of Probes To Form Ternary Complexes And Variable Range Alignment
  • Noninvasive Diagnosis Of Fetal Aneuploidy By Sequencing
  • Compositions For Sorting Polynucleotides
  • High Throughput Assay System
  • Methods For Nucleic Acid Manipulation
  • Nucleic Acid Amplification
  • Assay Methods Using Nicking Endonucleases
  • Dna Analyzing Method
  • Method Of Identifying Nucleotide Differences
  • Polyethylenimine-Based Biomolecule Arrays
  • Nucleic Acid Amplification
  • Method Of Comparing Nucleic Acid Sequences
  • Iterative And Regenerative Dna Sequencing Method
  • Chip-Based Species Identification And Phenotypic Characterization Of Microorganisms
  • Methods For Removing Primer Sequences And Blocking Restriction Endonuclease Recognition Domains
  • Iterative And Regenerative Dna Sequencing Method
  • Products For Detecting Nucleic Acids
  • Preparation Of Pools Of Nucleic Acids Based On Representation In A Sample
  • Nucleic Acid Detection Methods
  • Photolithographic And Other Means For Manufacturing Arrays
  • Families Of Non-Cross-Hybridizing Polynucleotides For Use As Tags And Tag Complements, Manufacture And Use Thereof
  • Methods Of Synthesizing A Plurality Of Different Polymers On A Surface Of A Substrate
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nbt1194-1093

    DOI

    http://dx.doi.org/10.1038/nbt1194-1093

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1041698020

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/7765552


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Alleles", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Base Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Human", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Sequence Data", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nucleic Acid Hybridization", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oligonucleotide Probes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polymerase Chain Reaction", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Protein Research", 
              "id": "https://www.grid.ac/institutes/grid.418952.3", 
              "name": [
                "Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chetverin", 
            "givenName": "A B", 
            "id": "sg:person.0112212747.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0112212747.01"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Kramer", 
            "givenName": "F R", 
            "id": "sg:person.01164065707.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164065707.84"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1146/annurev.bi.61.070192.001023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001847659"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0092-8674(79)90348-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007129854"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0888-7543(92)90014-j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008628266"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.82.6.1585", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011796587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-0-12-270301-0.50005-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014278711"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.86.16.6230", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015398359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-5193(88)80246-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016652570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/07391102.1991.10507920", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017242077"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0014-5793(89)81730-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017986657"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.86.8.2757", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018971307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/18.9.2653", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019781384"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.74.2.560", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021800596"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.88.22.10089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021912085"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.80.1.278", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022549645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/364555a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024860234", 
              "https://doi.org/10.1038/364555a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.74.12.5463", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025360556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.85.20.7652", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029280461"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/20.7.1675", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030311122"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0014-5793(93)81426-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032640501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3109/10425179109020793", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033366467"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0888-7543(91)90135-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040033651"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0303-2647(93)90072-k", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040917227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0303-2647(93)90072-k", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040917227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.91.8.3072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042008153"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0076-6879(87)54072-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042677474"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/6.11.3543", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044432089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-0-12-131200-8.50041-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045336919"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0888-7543(89)90290-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045636535"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/19.14.3929", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046819103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/21.9.2269", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049389341"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.91.11.5022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050061899"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/14.11.4691", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050337028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/bi00245a001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055166843"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1089/dna.1.1989.8.135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059250640"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1990438", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062516646"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.3413476", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062613076"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.8503011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062656377"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079221999", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/07391102.1989.10507752", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1079221999"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079640572", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0272-2712(18)30857-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1080022023"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1994-11", 
        "datePublishedReg": "1994-11-01", 
        "description": "Advances in solid-phase oligonucleotide synthesis and hybridization techniques have led to an incipient technology based on the use of oligonucleotide arrays. The inclusion of a large number of oligonucleotide probes within a single array greatly reduces the cost of their synthesis and allows thousands of hybridizations to be carried out simultaneously. The range of potential applications of oligonucleotide arrays was expanded by the realization that nucleic acids can be sequenced by hybridizing them to all possible oligonucleotides of a given length. Additional possibilities are offered by novel types of oligonucleotide arrays that are capable of parallel sorting, isolating, and manipulating thousands, and even millions, of nucleic acid species. Fields, such as site-directed mutagenesis, protein engineering, and recombinant DNA technology, would benefit from using these arrays. Further, these approaches could enable the analysis of entire genomes by preparing ordered fragment libraries, and by sequencing complex pools of nucleic acids, in a novel approach that provides long-range sequence information by generating nested nucleic acids and then surveying the oligonucleotides contained in the nested strands. This would allow large diploid genomes to be sequenced directly in a completely automated procedure that does not require fragment cloning or chromosome mapping.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nbt1194-1093", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2533460", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1094195", 
            "issn": [
              "0733-222X"
            ], 
            "name": "Bio/Technology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "12"
          }
        ], 
        "name": "Oligonucleotide Arrays: New Concepts and Possibilities", 
        "pagination": "1093", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c6a1e0c8bfacd02384e28f1911bff73425d8177bbe974646f002d4009acbab9a"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "7765552"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "8309273"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nbt1194-1093"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1041698020"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nbt1194-1093", 
          "https://app.dimensions.ai/details/publication/pub.1041698020"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T20:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000442.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nbt1194-1093"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nbt1194-1093'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nbt1194-1093'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nbt1194-1093'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nbt1194-1093'


     

    This table displays all metadata directly associated to this object as RDF triples.

    227 TRIPLES      21 PREDICATES      77 URIs      29 LITERALS      17 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nbt1194-1093 schema:about N0fc056dcdd284e3ba01ed207fd311d54
    2 N5678398b41c04f43a51ebe1d12a2bcac
    3 N87eb67fe4f5c435f9b2fb6b41a6df2b0
    4 Nc49be7462cf2443c9d89457f47eda6c3
    5 Ncb444d87192143b48fd5a0da2884e16a
    6 Nd1c9fbdb6445466789cb68bed09b69f4
    7 Nf863549ebfc1470cb226f4251caa7e3d
    8 Nfdb3212796c64489816c2c430c17346a
    9 anzsrc-for:06
    10 anzsrc-for:0604
    11 schema:author Nbcf7f2fd306f4c9eb02bc4302550f80f
    12 schema:citation sg:pub.10.1038/364555a0
    13 https://app.dimensions.ai/details/publication/pub.1079221999
    14 https://app.dimensions.ai/details/publication/pub.1079640572
    15 https://doi.org/10.1016/0014-5793(89)81730-2
    16 https://doi.org/10.1016/0014-5793(93)81426-z
    17 https://doi.org/10.1016/0076-6879(87)54072-1
    18 https://doi.org/10.1016/0092-8674(79)90348-9
    19 https://doi.org/10.1016/0303-2647(93)90072-k
    20 https://doi.org/10.1016/0888-7543(89)90290-5
    21 https://doi.org/10.1016/0888-7543(91)90135-2
    22 https://doi.org/10.1016/0888-7543(92)90014-j
    23 https://doi.org/10.1016/b978-0-12-131200-8.50041-1
    24 https://doi.org/10.1016/b978-0-12-270301-0.50005-1
    25 https://doi.org/10.1016/s0022-5193(88)80246-7
    26 https://doi.org/10.1016/s0272-2712(18)30857-6
    27 https://doi.org/10.1021/bi00245a001
    28 https://doi.org/10.1073/pnas.74.12.5463
    29 https://doi.org/10.1073/pnas.74.2.560
    30 https://doi.org/10.1073/pnas.80.1.278
    31 https://doi.org/10.1073/pnas.82.6.1585
    32 https://doi.org/10.1073/pnas.85.20.7652
    33 https://doi.org/10.1073/pnas.86.16.6230
    34 https://doi.org/10.1073/pnas.86.8.2757
    35 https://doi.org/10.1073/pnas.88.22.10089
    36 https://doi.org/10.1073/pnas.91.11.5022
    37 https://doi.org/10.1073/pnas.91.8.3072
    38 https://doi.org/10.1080/07391102.1989.10507752
    39 https://doi.org/10.1080/07391102.1991.10507920
    40 https://doi.org/10.1089/dna.1.1989.8.135
    41 https://doi.org/10.1093/nar/14.11.4691
    42 https://doi.org/10.1093/nar/18.9.2653
    43 https://doi.org/10.1093/nar/19.14.3929
    44 https://doi.org/10.1093/nar/20.7.1675
    45 https://doi.org/10.1093/nar/21.9.2269
    46 https://doi.org/10.1093/nar/6.11.3543
    47 https://doi.org/10.1126/science.1990438
    48 https://doi.org/10.1126/science.3413476
    49 https://doi.org/10.1126/science.8503011
    50 https://doi.org/10.1146/annurev.bi.61.070192.001023
    51 https://doi.org/10.3109/10425179109020793
    52 schema:datePublished 1994-11
    53 schema:datePublishedReg 1994-11-01
    54 schema:description Advances in solid-phase oligonucleotide synthesis and hybridization techniques have led to an incipient technology based on the use of oligonucleotide arrays. The inclusion of a large number of oligonucleotide probes within a single array greatly reduces the cost of their synthesis and allows thousands of hybridizations to be carried out simultaneously. The range of potential applications of oligonucleotide arrays was expanded by the realization that nucleic acids can be sequenced by hybridizing them to all possible oligonucleotides of a given length. Additional possibilities are offered by novel types of oligonucleotide arrays that are capable of parallel sorting, isolating, and manipulating thousands, and even millions, of nucleic acid species. Fields, such as site-directed mutagenesis, protein engineering, and recombinant DNA technology, would benefit from using these arrays. Further, these approaches could enable the analysis of entire genomes by preparing ordered fragment libraries, and by sequencing complex pools of nucleic acids, in a novel approach that provides long-range sequence information by generating nested nucleic acids and then surveying the oligonucleotides contained in the nested strands. This would allow large diploid genomes to be sequenced directly in a completely automated procedure that does not require fragment cloning or chromosome mapping.
    55 schema:genre research_article
    56 schema:inLanguage en
    57 schema:isAccessibleForFree false
    58 schema:isPartOf N42c9d46c8ced4b01819e4af023b6027f
    59 Naef4ed81e1534d66ae86e39869b6793f
    60 sg:journal.1094195
    61 schema:name Oligonucleotide Arrays: New Concepts and Possibilities
    62 schema:pagination 1093
    63 schema:productId N32cb0506c7f744609c210ab3445396d7
    64 N90f5fe0ae2594e9ba30f5f90e3637f3e
    65 Nb23030b7a65945348385da212b06c892
    66 Nb6874c5da223474d8b74000d6aeeb5ad
    67 Ndc613442412c4188ad87121fb3e9405b
    68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041698020
    69 https://doi.org/10.1038/nbt1194-1093
    70 schema:sdDatePublished 2019-04-10T20:36
    71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    72 schema:sdPublisher N777f930fe06048c89232aa6a1ee7949f
    73 schema:url https://www.nature.com/articles/nbt1194-1093
    74 sgo:license sg:explorer/license/
    75 sgo:sdDataset articles
    76 rdf:type schema:ScholarlyArticle
    77 N0fc056dcdd284e3ba01ed207fd311d54 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    78 schema:name Polymerase Chain Reaction
    79 rdf:type schema:DefinedTerm
    80 N32cb0506c7f744609c210ab3445396d7 schema:name pubmed_id
    81 schema:value 7765552
    82 rdf:type schema:PropertyValue
    83 N42c9d46c8ced4b01819e4af023b6027f schema:volumeNumber 12
    84 rdf:type schema:PublicationVolume
    85 N5678398b41c04f43a51ebe1d12a2bcac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    86 schema:name Genome, Human
    87 rdf:type schema:DefinedTerm
    88 N777f930fe06048c89232aa6a1ee7949f schema:name Springer Nature - SN SciGraph project
    89 rdf:type schema:Organization
    90 N87eb67fe4f5c435f9b2fb6b41a6df2b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    91 schema:name Oligonucleotide Probes
    92 rdf:type schema:DefinedTerm
    93 N90f5fe0ae2594e9ba30f5f90e3637f3e schema:name nlm_unique_id
    94 schema:value 8309273
    95 rdf:type schema:PropertyValue
    96 Naef4ed81e1534d66ae86e39869b6793f schema:issueNumber 11
    97 rdf:type schema:PublicationIssue
    98 Nb23030b7a65945348385da212b06c892 schema:name doi
    99 schema:value 10.1038/nbt1194-1093
    100 rdf:type schema:PropertyValue
    101 Nb6874c5da223474d8b74000d6aeeb5ad schema:name dimensions_id
    102 schema:value pub.1041698020
    103 rdf:type schema:PropertyValue
    104 Nbbda3404c3384837887f7970424a7c17 rdf:first sg:person.01164065707.84
    105 rdf:rest rdf:nil
    106 Nbcf7f2fd306f4c9eb02bc4302550f80f rdf:first sg:person.0112212747.01
    107 rdf:rest Nbbda3404c3384837887f7970424a7c17
    108 Nc49be7462cf2443c9d89457f47eda6c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name Humans
    110 rdf:type schema:DefinedTerm
    111 Ncb444d87192143b48fd5a0da2884e16a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Alleles
    113 rdf:type schema:DefinedTerm
    114 Nd1c9fbdb6445466789cb68bed09b69f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name Molecular Sequence Data
    116 rdf:type schema:DefinedTerm
    117 Ndc613442412c4188ad87121fb3e9405b schema:name readcube_id
    118 schema:value c6a1e0c8bfacd02384e28f1911bff73425d8177bbe974646f002d4009acbab9a
    119 rdf:type schema:PropertyValue
    120 Nf863549ebfc1470cb226f4251caa7e3d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Base Sequence
    122 rdf:type schema:DefinedTerm
    123 Nfdb3212796c64489816c2c430c17346a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Nucleic Acid Hybridization
    125 rdf:type schema:DefinedTerm
    126 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    127 schema:name Biological Sciences
    128 rdf:type schema:DefinedTerm
    129 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    130 schema:name Genetics
    131 rdf:type schema:DefinedTerm
    132 sg:grant.2533460 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt1194-1093
    133 rdf:type schema:MonetaryGrant
    134 sg:journal.1094195 schema:issn 0733-222X
    135 schema:name Bio/Technology
    136 rdf:type schema:Periodical
    137 sg:person.0112212747.01 schema:affiliation https://www.grid.ac/institutes/grid.418952.3
    138 schema:familyName Chetverin
    139 schema:givenName A B
    140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0112212747.01
    141 rdf:type schema:Person
    142 sg:person.01164065707.84 schema:familyName Kramer
    143 schema:givenName F R
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164065707.84
    145 rdf:type schema:Person
    146 sg:pub.10.1038/364555a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024860234
    147 https://doi.org/10.1038/364555a0
    148 rdf:type schema:CreativeWork
    149 https://app.dimensions.ai/details/publication/pub.1079221999 schema:CreativeWork
    150 https://app.dimensions.ai/details/publication/pub.1079640572 schema:CreativeWork
    151 https://doi.org/10.1016/0014-5793(89)81730-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017986657
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1016/0014-5793(93)81426-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1032640501
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1016/0076-6879(87)54072-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042677474
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1016/0092-8674(79)90348-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007129854
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1016/0303-2647(93)90072-k schema:sameAs https://app.dimensions.ai/details/publication/pub.1040917227
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1016/0888-7543(89)90290-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045636535
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1016/0888-7543(91)90135-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040033651
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1016/0888-7543(92)90014-j schema:sameAs https://app.dimensions.ai/details/publication/pub.1008628266
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1016/b978-0-12-131200-8.50041-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045336919
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1016/b978-0-12-270301-0.50005-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014278711
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1016/s0022-5193(88)80246-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016652570
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1016/s0272-2712(18)30857-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1080022023
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1021/bi00245a001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055166843
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1073/pnas.74.12.5463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025360556
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1073/pnas.74.2.560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021800596
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1073/pnas.80.1.278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022549645
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1073/pnas.82.6.1585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011796587
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1073/pnas.85.20.7652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029280461
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1073/pnas.86.16.6230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015398359
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1073/pnas.86.8.2757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018971307
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1073/pnas.88.22.10089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021912085
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1073/pnas.91.11.5022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050061899
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1073/pnas.91.8.3072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042008153
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1080/07391102.1989.10507752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079221999
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1080/07391102.1991.10507920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017242077
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1089/dna.1.1989.8.135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059250640
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1093/nar/14.11.4691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050337028
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1093/nar/18.9.2653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019781384
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1093/nar/19.14.3929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046819103
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1093/nar/20.7.1675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030311122
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1093/nar/21.9.2269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049389341
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1093/nar/6.11.3543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044432089
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1126/science.1990438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062516646
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1126/science.3413476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062613076
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1126/science.8503011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062656377
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1146/annurev.bi.61.070192.001023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001847659
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.3109/10425179109020793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033366467
    224 rdf:type schema:CreativeWork
    225 https://www.grid.ac/institutes/grid.418952.3 schema:alternateName Institute of Protein Research
    226 schema:name Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region.
    227 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...