Statistical practice in high-throughput screening data analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-02

AUTHORS

Nathalie Malo, James A Hanley, Sonia Cerquozzi, Jerry Pelletier, Robert Nadon

ABSTRACT

High-throughput screening is an early critical step in drug discovery. Its aim is to screen a large number of diverse chemical compounds to identify candidate 'hits' rapidly and accurately. Few statistical tools are currently available, however, to detect quality hits with a high degree of confidence. We examine statistical aspects of data preprocessing and hit identification for primary screens. We focus on concerns related to positional effects of wells within plates, choice of hit threshold and the importance of minimizing false-positive and false-negative rates. We argue that replicate measurements are needed to verify assumptions of current methods and to suggest data analysis strategies when assumptions are not met. The integration of replicates with robust statistical methods in primary screens will facilitate the discovery of reliable hits, ultimately improving the sensitivity and specificity of the screening process. More... »

PAGES

167-175

References to SciGraph publications

Journal

TITLE

Nature Biotechnology

ISSUE

2

VOLUME

24

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nbt1186

DOI

http://dx.doi.org/10.1038/nbt1186

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023338227

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16465162


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biological Assay", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biometry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Interpretation, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Design", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Evaluation, Preclinical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Guidelines as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microarray Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "McGill University and G\u00e9nome Qu\u00e9bec Innovation Centre", 
          "id": "https://www.grid.ac/institutes/grid.411640.6", 
          "name": [
            "McGill University and Genome Quebec Innovation Centre, 740 avenue du Docteur Penfield, Montreal, Quebec, Canada, H3A 1A4."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Malo", 
        "givenName": "Nathalie", 
        "id": "sg:person.01115212067.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115212067.43"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Hanley", 
        "givenName": "James A", 
        "id": "sg:person.0625255275.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625255275.43"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Cerquozzi", 
        "givenName": "Sonia", 
        "id": "sg:person.0726560140.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726560140.92"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Pelletier", 
        "givenName": "Jerry", 
        "id": "sg:person.0762415735.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762415735.82"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Nadon", 
        "givenName": "Robert", 
        "id": "sg:person.01051557541.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051557541.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s1056-8719(00)00108-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004141500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1087057103260741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006416595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1087057103260741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006416595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1087057103256465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009600193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1087057103256465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009600193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ab.2005.01.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010081587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0803-859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012204052", 
          "https://doi.org/10.1038/nbt0803-859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0803-859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012204052", 
          "https://doi.org/10.1038/nbt0803-859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.281504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014486858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-9525(02)02665-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020073866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6446(02)02439-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024132574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/17.6.509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024143031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1087057103258284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041006599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1087057103258284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041006599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6446(03)02649-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041197790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6446(03)02649-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041197790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.semcdb.2004.09.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046450687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpcell.00397.2003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048034051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1087057103258285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049958189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1087057103258285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049958189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050059585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.97.18.9834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051886548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cc9900706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055228686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cc9900706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055228686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2202/1544-6115.1027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069289261"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-02", 
    "datePublishedReg": "2006-02-01", 
    "description": "High-throughput screening is an early critical step in drug discovery. Its aim is to screen a large number of diverse chemical compounds to identify candidate 'hits' rapidly and accurately. Few statistical tools are currently available, however, to detect quality hits with a high degree of confidence. We examine statistical aspects of data preprocessing and hit identification for primary screens. We focus on concerns related to positional effects of wells within plates, choice of hit threshold and the importance of minimizing false-positive and false-negative rates. We argue that replicate measurements are needed to verify assumptions of current methods and to suggest data analysis strategies when assumptions are not met. The integration of replicates with robust statistical methods in primary screens will facilitate the discovery of reliable hits, ultimately improving the sensitivity and specificity of the screening process.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nbt1186", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1115214", 
        "issn": [
          "1087-0156", 
          "1546-1696"
        ], 
        "name": "Nature Biotechnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "name": "Statistical practice in high-throughput screening data analysis", 
    "pagination": "167-175", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6f30ad98cbc3e004c2b6e6f5ea95e2c55da0d48277009260022f006604d13096"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16465162"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9604648"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nbt1186"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023338227"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nbt1186", 
      "https://app.dimensions.ai/details/publication/pub.1023338227"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_53993_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/nbt/journal/v24/n2/full/nbt1186.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nbt1186'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nbt1186'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nbt1186'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nbt1186'


 

This table displays all metadata directly associated to this object as RDF triples.

188 TRIPLES      21 PREDICATES      57 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nbt1186 schema:about N1b8903ff258b40cfb051e177f73f41c8
2 N3361e561a8294c5b8e19a9dfc88d6466
3 N5d8720418ea848c0a5c04c3d401584af
4 N79a6ec05b0a5403ebb81950afbe58631
5 N937a42f751c3465d8b059251334a5578
6 N97032390fe314d19b238d1b434a1742a
7 Nb7ca77e4f4a04a1bb5e764236045a9ba
8 Nba542d43f67c4e02850b29aec3fb52d7
9 Nc627553f6ae9442fb62920802dfa2527
10 Ncdd004e6950a49dd98619c21db6b332d
11 anzsrc-for:01
12 anzsrc-for:0104
13 schema:author Nf0135820e8de428abc1c0d313199d041
14 schema:citation sg:pub.10.1038/nbt0803-859
15 https://doi.org/10.1016/j.ab.2005.01.034
16 https://doi.org/10.1016/j.semcdb.2004.09.007
17 https://doi.org/10.1016/s0168-9525(02)02665-3
18 https://doi.org/10.1016/s1056-8719(00)00108-8
19 https://doi.org/10.1016/s1359-6446(02)02439-x
20 https://doi.org/10.1016/s1359-6446(03)02649-7
21 https://doi.org/10.1021/cc9900706
22 https://doi.org/10.1073/pnas.97.18.9834
23 https://doi.org/10.1093/bioinformatics/17.6.509
24 https://doi.org/10.1093/bioinformatics/btg345
25 https://doi.org/10.1117/12.281504
26 https://doi.org/10.1152/ajpcell.00397.2003
27 https://doi.org/10.1177/1087057103256465
28 https://doi.org/10.1177/1087057103258284
29 https://doi.org/10.1177/1087057103258285
30 https://doi.org/10.1177/1087057103260741
31 https://doi.org/10.2202/1544-6115.1027
32 schema:datePublished 2006-02
33 schema:datePublishedReg 2006-02-01
34 schema:description High-throughput screening is an early critical step in drug discovery. Its aim is to screen a large number of diverse chemical compounds to identify candidate 'hits' rapidly and accurately. Few statistical tools are currently available, however, to detect quality hits with a high degree of confidence. We examine statistical aspects of data preprocessing and hit identification for primary screens. We focus on concerns related to positional effects of wells within plates, choice of hit threshold and the importance of minimizing false-positive and false-negative rates. We argue that replicate measurements are needed to verify assumptions of current methods and to suggest data analysis strategies when assumptions are not met. The integration of replicates with robust statistical methods in primary screens will facilitate the discovery of reliable hits, ultimately improving the sensitivity and specificity of the screening process.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf N775baccee96e458e8d24039620ff6d50
39 Nc41b3254738c401388302b2826dbc5aa
40 sg:journal.1115214
41 schema:name Statistical practice in high-throughput screening data analysis
42 schema:pagination 167-175
43 schema:productId N15851878e4ae4a43bec647269378f358
44 N3e78545d8ba640a1a8ec4d82fb833ee7
45 N9e566a0c5e174a268767fa97936f1012
46 Ndd1cf857e9c64493946600ecf74120de
47 Nf66a844929e34b60b05fdb86002653ab
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023338227
49 https://doi.org/10.1038/nbt1186
50 schema:sdDatePublished 2019-04-11T12:12
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N7781c1b8808b46479170939b05746f21
53 schema:url http://www.nature.com/nbt/journal/v24/n2/full/nbt1186.html
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N023808d4c9234365b26c5fec3aa1d777 rdf:first sg:person.0726560140.92
58 rdf:rest N4142080b0bb64eb2ae213cb9fbf1df35
59 N15851878e4ae4a43bec647269378f358 schema:name readcube_id
60 schema:value 6f30ad98cbc3e004c2b6e6f5ea95e2c55da0d48277009260022f006604d13096
61 rdf:type schema:PropertyValue
62 N1b8903ff258b40cfb051e177f73f41c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Drug Evaluation, Preclinical
64 rdf:type schema:DefinedTerm
65 N3361e561a8294c5b8e19a9dfc88d6466 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Reproducibility of Results
67 rdf:type schema:DefinedTerm
68 N3e78545d8ba640a1a8ec4d82fb833ee7 schema:name pubmed_id
69 schema:value 16465162
70 rdf:type schema:PropertyValue
71 N4142080b0bb64eb2ae213cb9fbf1df35 rdf:first sg:person.0762415735.82
72 rdf:rest Nc5f883fb55794dd2981dbad77c8d28fd
73 N5d8720418ea848c0a5c04c3d401584af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Gene Expression Profiling
75 rdf:type schema:DefinedTerm
76 N775baccee96e458e8d24039620ff6d50 schema:volumeNumber 24
77 rdf:type schema:PublicationVolume
78 N7781c1b8808b46479170939b05746f21 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N79a6ec05b0a5403ebb81950afbe58631 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Microarray Analysis
82 rdf:type schema:DefinedTerm
83 N937a42f751c3465d8b059251334a5578 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Guidelines as Topic
85 rdf:type schema:DefinedTerm
86 N97032390fe314d19b238d1b434a1742a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Drug Design
88 rdf:type schema:DefinedTerm
89 N9e566a0c5e174a268767fa97936f1012 schema:name doi
90 schema:value 10.1038/nbt1186
91 rdf:type schema:PropertyValue
92 Nb7ca77e4f4a04a1bb5e764236045a9ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Data Interpretation, Statistical
94 rdf:type schema:DefinedTerm
95 Nba542d43f67c4e02850b29aec3fb52d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Sensitivity and Specificity
97 rdf:type schema:DefinedTerm
98 Nc41b3254738c401388302b2826dbc5aa schema:issueNumber 2
99 rdf:type schema:PublicationIssue
100 Nc5f883fb55794dd2981dbad77c8d28fd rdf:first sg:person.01051557541.36
101 rdf:rest rdf:nil
102 Nc627553f6ae9442fb62920802dfa2527 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Biological Assay
104 rdf:type schema:DefinedTerm
105 Ncdd004e6950a49dd98619c21db6b332d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Biometry
107 rdf:type schema:DefinedTerm
108 Ndd1cf857e9c64493946600ecf74120de schema:name nlm_unique_id
109 schema:value 9604648
110 rdf:type schema:PropertyValue
111 Ne025f9af8fdb40889e4d6ec87fdb14db rdf:first sg:person.0625255275.43
112 rdf:rest N023808d4c9234365b26c5fec3aa1d777
113 Nf0135820e8de428abc1c0d313199d041 rdf:first sg:person.01115212067.43
114 rdf:rest Ne025f9af8fdb40889e4d6ec87fdb14db
115 Nf66a844929e34b60b05fdb86002653ab schema:name dimensions_id
116 schema:value pub.1023338227
117 rdf:type schema:PropertyValue
118 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
119 schema:name Mathematical Sciences
120 rdf:type schema:DefinedTerm
121 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
122 schema:name Statistics
123 rdf:type schema:DefinedTerm
124 sg:journal.1115214 schema:issn 1087-0156
125 1546-1696
126 schema:name Nature Biotechnology
127 rdf:type schema:Periodical
128 sg:person.01051557541.36 schema:familyName Nadon
129 schema:givenName Robert
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051557541.36
131 rdf:type schema:Person
132 sg:person.01115212067.43 schema:affiliation https://www.grid.ac/institutes/grid.411640.6
133 schema:familyName Malo
134 schema:givenName Nathalie
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115212067.43
136 rdf:type schema:Person
137 sg:person.0625255275.43 schema:familyName Hanley
138 schema:givenName James A
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625255275.43
140 rdf:type schema:Person
141 sg:person.0726560140.92 schema:familyName Cerquozzi
142 schema:givenName Sonia
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726560140.92
144 rdf:type schema:Person
145 sg:person.0762415735.82 schema:familyName Pelletier
146 schema:givenName Jerry
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762415735.82
148 rdf:type schema:Person
149 sg:pub.10.1038/nbt0803-859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012204052
150 https://doi.org/10.1038/nbt0803-859
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.ab.2005.01.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010081587
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.semcdb.2004.09.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046450687
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/s0168-9525(02)02665-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020073866
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/s1056-8719(00)00108-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004141500
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/s1359-6446(02)02439-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024132574
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/s1359-6446(03)02649-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041197790
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1021/cc9900706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055228686
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1073/pnas.97.18.9834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051886548
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1093/bioinformatics/17.6.509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024143031
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1093/bioinformatics/btg345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050059585
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1117/12.281504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014486858
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1152/ajpcell.00397.2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048034051
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1177/1087057103256465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009600193
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1177/1087057103258284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041006599
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1177/1087057103258285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049958189
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1177/1087057103260741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006416595
183 rdf:type schema:CreativeWork
184 https://doi.org/10.2202/1544-6115.1027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069289261
185 rdf:type schema:CreativeWork
186 https://www.grid.ac/institutes/grid.411640.6 schema:alternateName McGill University and Génome Québec Innovation Centre
187 schema:name McGill University and Genome Quebec Innovation Centre, 740 avenue du Docteur Penfield, Montreal, Quebec, Canada, H3A 1A4.
188 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...