Challenges in deriving high-confidence protein identifications from data gathered by a HUPO plasma proteome collaborative study View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-03-08

AUTHORS

David J States, Gilbert S Omenn, Thomas W Blackwell, Damian Fermin, Jimmy Eng, David W Speicher, Samir M Hanash

ABSTRACT

The Human Proteome Organization (HUPO) recently completed the first large-scale collaborative study to characterize the human serum and plasma proteomes. The study was carried out in different locations and used diverse methods and instruments to compare and integrate tandem mass spectrometry (MS/MS) data on aliquots of pooled serum and plasma from healthy subjects. Liquid chromatography (LC)-MS/MS data sets from 18 laboratories were matched to the International Protein Index database, and an initial integration exercise resulted in 9,504 proteins identified with one or more peptides, and 3,020 proteins identified with two or more peptides. This article uses a rigorous statistical approach to take into account the length of coding regions in genes, and multiple hypothesis-testing techniques. On this basis, we now present a reduced set of 889 proteins identified with a confidence level of at least 95%. We also discuss the importance of such an integrated analysis in providing an accurate representation of a proteome as well as the value such data sets contain for the high-confidence identification of protein matches to novel exons, some of which may be localized in alternatively spliced forms of known plasma proteins and some in previously nonannotated gene sequences. More... »

PAGES

333-338

Journal

TITLE

Nature Biotechnology

ISSUE

3

VOLUME

24

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nbt1183

DOI

http://dx.doi.org/10.1038/nbt1183

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028080269

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16525410


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Blood Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromatography, Liquid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Confidence Intervals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Protein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Immunoassay", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mass Spectrometry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Peptides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteomics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Michigan, 100 Washtenaw Rd., Palmer Commons 2035B, 48109, Ann Arbor, Michigan, USA", 
          "id": "http://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "University of Michigan, 100 Washtenaw Rd., Palmer Commons 2035B, 48109, Ann Arbor, Michigan, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "States", 
        "givenName": "David J", 
        "id": "sg:person.01132002037.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132002037.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Michigan, 100 Washtenaw Rd., Palmer Commons 2035B, 48109, Ann Arbor, Michigan, USA", 
          "id": "http://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "University of Michigan, 100 Washtenaw Rd., Palmer Commons 2035B, 48109, Ann Arbor, Michigan, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Omenn", 
        "givenName": "Gilbert S", 
        "id": "sg:person.013417635337.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013417635337.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Michigan, 100 Washtenaw Rd., Palmer Commons 2035B, 48109, Ann Arbor, Michigan, USA", 
          "id": "http://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "University of Michigan, 100 Washtenaw Rd., Palmer Commons 2035B, 48109, Ann Arbor, Michigan, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blackwell", 
        "givenName": "Thomas W", 
        "id": "sg:person.0756576305.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756576305.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Michigan, 100 Washtenaw Rd., Palmer Commons 2035B, 48109, Ann Arbor, Michigan, USA", 
          "id": "http://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "University of Michigan, 100 Washtenaw Rd., Palmer Commons 2035B, 48109, Ann Arbor, Michigan, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fermin", 
        "givenName": "Damian", 
        "id": "sg:person.01346236536.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346236536.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., PO Box 19024, 98109, Seattle, Washington, USA", 
          "id": "http://www.grid.ac/institutes/grid.270240.3", 
          "name": [
            "Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., PO Box 19024, 98109, Seattle, Washington, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eng", 
        "givenName": "Jimmy", 
        "id": "sg:person.010623237677.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010623237677.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Wistar Institute, 3601 Spruce St., 19104, Philadelphia, Pennsylvania, USA", 
          "id": "http://www.grid.ac/institutes/grid.251075.4", 
          "name": [
            "The Wistar Institute, 3601 Spruce St., 19104, Philadelphia, Pennsylvania, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Speicher", 
        "givenName": "David W", 
        "id": "sg:person.0577076001.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577076001.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., PO Box 19024, 98109, Seattle, Washington, USA", 
          "id": "http://www.grid.ac/institutes/grid.270240.3", 
          "name": [
            "University of Michigan, 100 Washtenaw Rd., Palmer Commons 2035B, 48109, Ann Arbor, Michigan, USA", 
            "Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., PO Box 19024, 98109, Seattle, Washington, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hanash", 
        "givenName": "Samir M", 
        "id": "sg:person.016103106037.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016103106037.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1159/000050638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024169672", 
          "https://doi.org/10.1159/000050638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012180132", 
          "https://doi.org/10.1038/nature01511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016490499", 
          "https://doi.org/10.1038/nature02046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/1044-0305(94)80016-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018629105", 
          "https://doi.org/10.1016/1044-0305(94)80016-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/10890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012772847", 
          "https://doi.org/10.1038/10890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025718494", 
          "https://doi.org/10.1038/nmeth725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1385/cp:1:2:101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031986400", 
          "https://doi.org/10.1385/cp:1:2:101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/85686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050637706", 
          "https://doi.org/10.1038/85686"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-03-08", 
    "datePublishedReg": "2006-03-08", 
    "description": "The Human Proteome Organization (HUPO) recently completed the first large-scale collaborative study to characterize the human serum and plasma proteomes. The study was carried out in different locations and used diverse methods and instruments to compare and integrate tandem mass spectrometry (MS/MS) data on aliquots of pooled serum and plasma from healthy subjects. Liquid chromatography (LC)-MS/MS data sets from 18 laboratories were matched to the International Protein Index database, and an initial integration exercise resulted in 9,504 proteins identified with one or more peptides, and 3,020 proteins identified with two or more peptides. This article uses a rigorous statistical approach to take into account the length of coding regions in genes, and multiple hypothesis-testing techniques. On this basis, we now present a reduced set of 889 proteins identified with a confidence level of at least 95%. We also discuss the importance of such an integrated analysis in providing an accurate representation of a proteome as well as the value such data sets contain for the high-confidence identification of protein matches to novel exons, some of which may be localized in alternatively spliced forms of known plasma proteins and some in previously nonannotated gene sequences.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nbt1183", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2438794", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1115214", 
        "issn": [
          "1087-0156", 
          "1546-1696"
        ], 
        "name": "Nature Biotechnology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "keywords": [
      "Human Proteome Organization", 
      "high confidence protein identifications", 
      "International Protein Index database", 
      "novel exons", 
      "gene sequences", 
      "Proteome Organization", 
      "tandem mass spectrometry data", 
      "more peptides", 
      "high-confidence identification", 
      "protein matches", 
      "spliced forms", 
      "protein identification", 
      "plasma proteome", 
      "proteome", 
      "mass spectrometry data", 
      "protein", 
      "integrated analysis", 
      "MS/MS data sets", 
      "spectrometry data", 
      "MS data sets", 
      "large-scale collaborative studies", 
      "peptides", 
      "genes", 
      "exons", 
      "plasma proteins", 
      "rigorous statistical approach", 
      "identification", 
      "sequence", 
      "data sets", 
      "different locations", 
      "such data sets", 
      "diverse methods", 
      "statistical approach", 
      "region", 
      "study", 
      "human serum", 
      "liquid chromatography", 
      "chromatography", 
      "basis", 
      "levels", 
      "importance", 
      "collaborative study", 
      "serum", 
      "data", 
      "healthy subjects", 
      "set", 
      "Index database", 
      "length", 
      "analysis", 
      "form", 
      "organization", 
      "location", 
      "laboratory", 
      "database", 
      "reduced set", 
      "aliquots", 
      "approach", 
      "match", 
      "subjects", 
      "exercise", 
      "accurate representation", 
      "challenges", 
      "method", 
      "plasma", 
      "technique", 
      "instrument", 
      "integration exercise", 
      "article", 
      "account", 
      "confidence level", 
      "representation", 
      "hypothesis testing techniques", 
      "multiple hypothesis testing technique"
    ], 
    "name": "Challenges in deriving high-confidence protein identifications from data gathered by a HUPO plasma proteome collaborative study", 
    "pagination": "333-338", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028080269"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nbt1183"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16525410"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nbt1183", 
      "https://app.dimensions.ai/details/publication/pub.1028080269"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_432.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nbt1183"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nbt1183'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nbt1183'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nbt1183'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nbt1183'


 

This table displays all metadata directly associated to this object as RDF triples.

257 TRIPLES      21 PREDICATES      115 URIs      99 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nbt1183 schema:about N24aea50720ad4787aa1ef0c3034b60ab
2 N324137147a60491a95bb9bf23898fd0b
3 N353aabfd8165435090530b5177c48590
4 N3b610d18f5c1411684915211d47fea4c
5 N905fbed91dd64b95af290a0b10ca51ad
6 Na792fc3ea7f046a3be8c9e1da032f829
7 Nbd0f487faded434b8f7fb80087f3860f
8 Nc776fdcbe590486db909e16aa60b7c4b
9 Ne54ce42d2761462b9808d326d3ed8966
10 Nf2b4b724d91c49efb8ecf2ec8e4ca417
11 anzsrc-for:06
12 anzsrc-for:0601
13 schema:author Nc57ee638643447198f761648cbd12179
14 schema:citation sg:pub.10.1016/1044-0305(94)80016-2
15 sg:pub.10.1038/10890
16 sg:pub.10.1038/85686
17 sg:pub.10.1038/nature01511
18 sg:pub.10.1038/nature02046
19 sg:pub.10.1038/nmeth725
20 sg:pub.10.1159/000050638
21 sg:pub.10.1385/cp:1:2:101
22 schema:datePublished 2006-03-08
23 schema:datePublishedReg 2006-03-08
24 schema:description The Human Proteome Organization (HUPO) recently completed the first large-scale collaborative study to characterize the human serum and plasma proteomes. The study was carried out in different locations and used diverse methods and instruments to compare and integrate tandem mass spectrometry (MS/MS) data on aliquots of pooled serum and plasma from healthy subjects. Liquid chromatography (LC)-MS/MS data sets from 18 laboratories were matched to the International Protein Index database, and an initial integration exercise resulted in 9,504 proteins identified with one or more peptides, and 3,020 proteins identified with two or more peptides. This article uses a rigorous statistical approach to take into account the length of coding regions in genes, and multiple hypothesis-testing techniques. On this basis, we now present a reduced set of 889 proteins identified with a confidence level of at least 95%. We also discuss the importance of such an integrated analysis in providing an accurate representation of a proteome as well as the value such data sets contain for the high-confidence identification of protein matches to novel exons, some of which may be localized in alternatively spliced forms of known plasma proteins and some in previously nonannotated gene sequences.
25 schema:genre article
26 schema:isAccessibleForFree false
27 schema:isPartOf Nd08171287a0547db8bf40233098012b5
28 Nf2bd51f4696f4d66bf943fe03e3c66fb
29 sg:journal.1115214
30 schema:keywords Human Proteome Organization
31 Index database
32 International Protein Index database
33 MS data sets
34 MS/MS data sets
35 Proteome Organization
36 account
37 accurate representation
38 aliquots
39 analysis
40 approach
41 article
42 basis
43 challenges
44 chromatography
45 collaborative study
46 confidence level
47 data
48 data sets
49 database
50 different locations
51 diverse methods
52 exercise
53 exons
54 form
55 gene sequences
56 genes
57 healthy subjects
58 high confidence protein identifications
59 high-confidence identification
60 human serum
61 hypothesis testing techniques
62 identification
63 importance
64 instrument
65 integrated analysis
66 integration exercise
67 laboratory
68 large-scale collaborative studies
69 length
70 levels
71 liquid chromatography
72 location
73 mass spectrometry data
74 match
75 method
76 more peptides
77 multiple hypothesis testing technique
78 novel exons
79 organization
80 peptides
81 plasma
82 plasma proteins
83 plasma proteome
84 protein
85 protein identification
86 protein matches
87 proteome
88 reduced set
89 region
90 representation
91 rigorous statistical approach
92 sequence
93 serum
94 set
95 spectrometry data
96 spliced forms
97 statistical approach
98 study
99 subjects
100 such data sets
101 tandem mass spectrometry data
102 technique
103 schema:name Challenges in deriving high-confidence protein identifications from data gathered by a HUPO plasma proteome collaborative study
104 schema:pagination 333-338
105 schema:productId N4cc56a939b6949869d2ca8d189038faf
106 N5a53fd1fe3104b8485f337ba549fedf1
107 N5b0157fe1f194c8388e008bbe5934073
108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028080269
109 https://doi.org/10.1038/nbt1183
110 schema:sdDatePublished 2022-10-01T06:34
111 schema:sdLicense https://scigraph.springernature.com/explorer/license/
112 schema:sdPublisher N4f0593cbacb64a5aa1f69f6f625b43ca
113 schema:url https://doi.org/10.1038/nbt1183
114 sgo:license sg:explorer/license/
115 sgo:sdDataset articles
116 rdf:type schema:ScholarlyArticle
117 N05cbec9836ea4695850191139a37ecf8 rdf:first sg:person.0577076001.81
118 rdf:rest N3bd0f855f8a04bf888ae82405193ce3d
119 N24aea50720ad4787aa1ef0c3034b60ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Peptides
121 rdf:type schema:DefinedTerm
122 N2d32cd28e5614e0db959af7a0f1e6486 rdf:first sg:person.01346236536.39
123 rdf:rest Nff946d783ab145868e233e78004d54e1
124 N324137147a60491a95bb9bf23898fd0b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Immunoassay
126 rdf:type schema:DefinedTerm
127 N353aabfd8165435090530b5177c48590 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Mass Spectrometry
129 rdf:type schema:DefinedTerm
130 N3b610d18f5c1411684915211d47fea4c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Proteome
132 rdf:type schema:DefinedTerm
133 N3bd0f855f8a04bf888ae82405193ce3d rdf:first sg:person.016103106037.44
134 rdf:rest rdf:nil
135 N4cc56a939b6949869d2ca8d189038faf schema:name doi
136 schema:value 10.1038/nbt1183
137 rdf:type schema:PropertyValue
138 N4f0593cbacb64a5aa1f69f6f625b43ca schema:name Springer Nature - SN SciGraph project
139 rdf:type schema:Organization
140 N5a53fd1fe3104b8485f337ba549fedf1 schema:name dimensions_id
141 schema:value pub.1028080269
142 rdf:type schema:PropertyValue
143 N5b0157fe1f194c8388e008bbe5934073 schema:name pubmed_id
144 schema:value 16525410
145 rdf:type schema:PropertyValue
146 N6cb554a3d9de48108a2060856dbcf31a rdf:first sg:person.013417635337.41
147 rdf:rest N853c2ad22d6b468cbd070633053eda73
148 N853c2ad22d6b468cbd070633053eda73 rdf:first sg:person.0756576305.77
149 rdf:rest N2d32cd28e5614e0db959af7a0f1e6486
150 N905fbed91dd64b95af290a0b10ca51ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Chromatography, Liquid
152 rdf:type schema:DefinedTerm
153 Na792fc3ea7f046a3be8c9e1da032f829 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Confidence Intervals
155 rdf:type schema:DefinedTerm
156 Nbd0f487faded434b8f7fb80087f3860f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Proteomics
158 rdf:type schema:DefinedTerm
159 Nc57ee638643447198f761648cbd12179 rdf:first sg:person.01132002037.85
160 rdf:rest N6cb554a3d9de48108a2060856dbcf31a
161 Nc776fdcbe590486db909e16aa60b7c4b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Humans
163 rdf:type schema:DefinedTerm
164 Nd08171287a0547db8bf40233098012b5 schema:volumeNumber 24
165 rdf:type schema:PublicationVolume
166 Ne54ce42d2761462b9808d326d3ed8966 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Databases, Protein
168 rdf:type schema:DefinedTerm
169 Nf2b4b724d91c49efb8ecf2ec8e4ca417 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Blood Proteins
171 rdf:type schema:DefinedTerm
172 Nf2bd51f4696f4d66bf943fe03e3c66fb schema:issueNumber 3
173 rdf:type schema:PublicationIssue
174 Nff946d783ab145868e233e78004d54e1 rdf:first sg:person.010623237677.28
175 rdf:rest N05cbec9836ea4695850191139a37ecf8
176 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
177 schema:name Biological Sciences
178 rdf:type schema:DefinedTerm
179 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
180 schema:name Biochemistry and Cell Biology
181 rdf:type schema:DefinedTerm
182 sg:grant.2438794 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt1183
183 rdf:type schema:MonetaryGrant
184 sg:journal.1115214 schema:issn 1087-0156
185 1546-1696
186 schema:name Nature Biotechnology
187 schema:publisher Springer Nature
188 rdf:type schema:Periodical
189 sg:person.010623237677.28 schema:affiliation grid-institutes:grid.270240.3
190 schema:familyName Eng
191 schema:givenName Jimmy
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010623237677.28
193 rdf:type schema:Person
194 sg:person.01132002037.85 schema:affiliation grid-institutes:grid.214458.e
195 schema:familyName States
196 schema:givenName David J
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132002037.85
198 rdf:type schema:Person
199 sg:person.013417635337.41 schema:affiliation grid-institutes:grid.214458.e
200 schema:familyName Omenn
201 schema:givenName Gilbert S
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013417635337.41
203 rdf:type schema:Person
204 sg:person.01346236536.39 schema:affiliation grid-institutes:grid.214458.e
205 schema:familyName Fermin
206 schema:givenName Damian
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346236536.39
208 rdf:type schema:Person
209 sg:person.016103106037.44 schema:affiliation grid-institutes:grid.270240.3
210 schema:familyName Hanash
211 schema:givenName Samir M
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016103106037.44
213 rdf:type schema:Person
214 sg:person.0577076001.81 schema:affiliation grid-institutes:grid.251075.4
215 schema:familyName Speicher
216 schema:givenName David W
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577076001.81
218 rdf:type schema:Person
219 sg:person.0756576305.77 schema:affiliation grid-institutes:grid.214458.e
220 schema:familyName Blackwell
221 schema:givenName Thomas W
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756576305.77
223 rdf:type schema:Person
224 sg:pub.10.1016/1044-0305(94)80016-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018629105
225 https://doi.org/10.1016/1044-0305(94)80016-2
226 rdf:type schema:CreativeWork
227 sg:pub.10.1038/10890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012772847
228 https://doi.org/10.1038/10890
229 rdf:type schema:CreativeWork
230 sg:pub.10.1038/85686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050637706
231 https://doi.org/10.1038/85686
232 rdf:type schema:CreativeWork
233 sg:pub.10.1038/nature01511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012180132
234 https://doi.org/10.1038/nature01511
235 rdf:type schema:CreativeWork
236 sg:pub.10.1038/nature02046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016490499
237 https://doi.org/10.1038/nature02046
238 rdf:type schema:CreativeWork
239 sg:pub.10.1038/nmeth725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025718494
240 https://doi.org/10.1038/nmeth725
241 rdf:type schema:CreativeWork
242 sg:pub.10.1159/000050638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024169672
243 https://doi.org/10.1159/000050638
244 rdf:type schema:CreativeWork
245 sg:pub.10.1385/cp:1:2:101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031986400
246 https://doi.org/10.1385/cp:1:2:101
247 rdf:type schema:CreativeWork
248 grid-institutes:grid.214458.e schema:alternateName University of Michigan, 100 Washtenaw Rd., Palmer Commons 2035B, 48109, Ann Arbor, Michigan, USA
249 schema:name University of Michigan, 100 Washtenaw Rd., Palmer Commons 2035B, 48109, Ann Arbor, Michigan, USA
250 rdf:type schema:Organization
251 grid-institutes:grid.251075.4 schema:alternateName The Wistar Institute, 3601 Spruce St., 19104, Philadelphia, Pennsylvania, USA
252 schema:name The Wistar Institute, 3601 Spruce St., 19104, Philadelphia, Pennsylvania, USA
253 rdf:type schema:Organization
254 grid-institutes:grid.270240.3 schema:alternateName Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., PO Box 19024, 98109, Seattle, Washington, USA
255 schema:name Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., PO Box 19024, 98109, Seattle, Washington, USA
256 University of Michigan, 100 Washtenaw Rd., Palmer Commons 2035B, 48109, Ann Arbor, Michigan, USA
257 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...