Gene targeting using zinc finger nucleases View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-08

AUTHORS

Matthew H Porteus, Dana Carroll

ABSTRACT

The ability to achieve site-specific manipulation of the mammalian genome has widespread implications for basic and applied research. Gene targeting is a process in which a DNA molecule introduced into a cell replaces the corresponding chromosomal segment by homologous recombination, and thus presents a precise way to manipulate the genome. In the past, the application of gene targeting to mammalian cells has been limited by its low efficiency. Zinc finger nucleases (ZFNs) show promise in improving the efficiency of gene targeting by introducing DNA double-strand breaks in target genes, which then stimulate the cell's endogenous homologous recombination machinery. Recent results have shown that ZFNs can be used to create targeting frequencies of up to 20% in a human disease-causing gene. Future work will be needed to translate these in vitro findings to in vivo applications and to determine whether zinc finger nucleases create undesired genomic instability. More... »

PAGES

967-973

Journal

TITLE

Nature Biotechnology

ISSUE

8

VOLUME

23

Related Patents

  • Methods And Compositions For Gene Inactivation
  • Targeted Integration Into The Ppp1r12c Locus
  • Genome Editing In Rats Using Zinc-Finger Nucleases
  • A Novel Zinc Finger Nuclease And Uses Thereof
  • Compositions And Methods For Inhibiting Endogenous Immunoglobulin Genes And Producing Transgenic Human Idiotype Antibodies
  • Engineering And Optimization Of Systems, Methods And Compositions For Sequence Manipulation With Functional Domains
  • Targeted Integration Into The Ppp1r12c Locus
  • Meganuclease Recombination System
  • T Cell Modifying Compounds And Uses Thereof
  • Methods For Genomic Modification
  • In Vivo Determination Of The Lokalization Of Dna Double-Stand Breaks And Application Thereof
  • Modular Dna-Binding Domains And Methods Of Use
  • Methods And Products For Transfecting Cells
  • Genome Editing Of A Rosa Locus Using Nucleases
  • Targeted Integration And Expression Of Exogenous Nucleic Acid Sequences
  • Methods And Compositions For Gene Inactivation
  • Methods And Products For Expressing Proteins In Cells
  • Methods And Compositions For Targeted Single-Stranded Cleavage And Targeted Integration
  • Doubly Secure Transgenic Algae Or Cyanobacteria Strains To Prevent Their Establishment And Spread In Natural Ecosystems
  • Linear Donor Constructs For Targeted Integration
  • Methods And Compositions For Targeted Cleavage And Recombination
  • Method For Targeted Modification Of Algae Genomes
  • Methods Of Cleaving Dna With Rationally-Designed Meganucleases
  • Methods And Compositions For Gene Inactivation
  • Homologous Recombination In The Oocyte
  • Tevl Chimeric Endonuclease And Their Preferential Cleavage Sites
  • Multi-Chain Chimeric Antigen Receptor And Uses Thereof
  • Use Of Meganucleases For Inducing Homologous Recombination Ex Vivo And In Toto In Vertebrate Somatic Tissues And Application Thereof
  • Rationally-Designed Meganuclease Variants Of Lig-34 And I-Crei For Maize Genome Engineering
  • Rationally-Designed Single-Chain Meganucleases With Non-Palindromic Recognition Sequences
  • Methods And Compositions For Targeted Single-Stranded Cleavage And Targeted Integration
  • Methods And Products For Expressing Proteins In Cells
  • Methods And Products For Expressing Proteins In Cells
  • Dna-Binding Proteins And Uses Thereof
  • Methods And Compositions For Targeted Cleavage And Recombination
  • Method For The Generation Of Compact Tale-Nucleases And Uses Thereof
  • Rapid Screening Of Biologically Active Nucleases And Isolation Of Nuclease-Modified Cells
  • Crispr-Cas Systems And Methods For Altering Expression Of Gene Products
  • Mice Expressing A Limited Immunoglobulin Light Chain Repertoire
  • Rapid Screening Of Biologically Active Nucleases And Isolation Of Nuclease-Modified Cells
  • Methods And Compositions For Gene Inactivation
  • Methods And Compositions For Increasing Nuclease Activity
  • Methods And Kits For Detecting Nucleic Acid Sequences Of Interest Using Dna-Binding Protein Domain
  • Methods And Products For Producing Engineered Mammalian Cell Lines With Amplified Transgenes
  • Methods And Products For Transfecting Cells
  • Methods And Products For Nucleic Acid Production And Delivery
  • Zinc Finger Nuclease-Mediated Homologous Recombination
  • Rat Having A Disrupted Immunoglobulin Gene
  • Methods And Compositions For Inactivating Glutamine Synthetase Gene Expression
  • Methods Of Cleaving Dna With Rationally-Designed Meganucleases
  • Methods And Compositions For Inactivating Glutamine Synthetase Gene Expression
  • Genome Editing Using Targeting Endonucleases And Single-Stranded Nucleic Acids
  • Linear Donor Constructs For Targeted Integration
  • Method For The Generation Of Compact Tale-Nucleases And Uses Thereof
  • Gene Editing In The Oocyte By Cas9 Nucleases
  • Genome Editing In Rats Using Zinc-Finger Nucleases
  • Methods For Engineering Allogeneic T Cell To Increase Their Persistence And/Or Engraftment Into Patients
  • Methods And Products For Expressing Proteins In Cells
  • Methods For Generating Endogenously Tagged Protein
  • Engineered Nucleases And Their Uses For Nucleic Acid Assembly
  • Dna-Binding Proteins And Uses Thereof
  • Methods Of Cleaving Dna With Rationally-Designed Meganucleases
  • Method For Genome Editing
  • Methods And Compositions For Targeted Single-Stranded Cleavage And Targeted Integration
  • Methods Of Cleaving Dna With Rationally-Designed Meganucleases
  • Method Of Cleaving Dna With Rationally-Designed Meganucleases
  • Genome Editing Of A Rosa Locus Using Zinc-Finger Nucleases
  • Targeted Integration And Expression Of Exogenous Nucleic Acid Sequences
  • Humanized Monoclonal Antibodies From A Transgenic Rat
  • Dna-Binding Proteins And Uses Thereof
  • Method Of Inactivating A Glucocorticoid Receptor Gene In An Isolated Cell
  • Recognition Sequences For I-Crei-Derived Meganucleases And Uses Thereof
  • Genome Editing Of A Rosa Locus Using Zinc-Finger Nucleases
  • Method For Increasing The Efficiency Of Double-Strand Break-Induced Mutagenssis
  • Methods For Generating Endogenously Tagged Protein
  • Rationally-Designed Single-Chain Meganucleases With Non-Palindromic Recognition Sequences
  • Crispr-Based Genome Modification And Regulation
  • Method For Enhancing Rare-Cutting Endonuclease Efficiency And Uses Thereof
  • Method For The Generation Of Compact Tale-Nucleases And Uses Thereof
  • Fusion Proteins Comprising A Dna-Binding Domain Of A Tal Effector Protein And A Non-Specific Cleavage Domain Of A Restriction Nuclease And Their Use
  • Method For Increasing The Efficiency Of Double-Strand Break-Induced Mutagenesis
  • Rationally-Designed Meganucleases With Altered Sequence Specificity And Dna-Binding Affinity
  • Methods For Engineering Allogeneic And Immunosuppressive Resistant T Cell For Immunotherapy
  • Trophoblast Glycoprotein (5t4, Tpbg) Specific Chimeric Antigen Receptors For Cancer Immunotherapy
  • Compositions And Methods For Inhibiting Endogenous Immunoglobulin Genes And Producing Transgenis Human Idiotype Antibodies
  • Methods And Compositions For Targeted Cleavage And Recombination
  • Compositions And Methods For Inhibiting Endogenous Immunoglobulin Genes And Producing Transgenic Human Idiotype Antibodies
  • Targeted Integration Into Stem Cells
  • Methods For Making Fully Human Bispecific Antibodies Using A Common Light Chain
  • Methods And Compositions For Increasing Nuclease Activity
  • Use Of Zinc Finger Nucleases To Stimulate Gene Targeting
  • Crispr-Related Methods And Compositions With Governing Grnas
  • Method For Producing Genetically-Modified Cells With Rationally-Designed Meganucleases With Altered Sequence Specificity
  • Nucleic Acid Cleaving Agent
  • Compositions And Methods For Inhibiting Endogenous Immunoglobin Genes And Producing Transgenic Human Idiotype Antibodies
  • Methods And Products For Transfecting Cells
  • Linear Donor Constructs For Targeted Integration
  • Method Of Determination Of Neutral Dna Sequences In The Genome, System For Targeting Sequences Obtained Thereby And Methods For Use Thereof
  • Targeted Integration Into The Ppp1r12c Locus
  • Escorted And Functionalized Guides For Crispr-Cas Systems
  • Meganuclease Recombination System
  • Methods And Products For Expressing Proteins In Cells
  • Methods And Products For Expressing Proteins In Cells
  • Crispr-Cas Systems And Methods For Altering Expression Of Gene Products
  • Dna-Binding Proteins And Uses Thereof
  • Rationally-Designed Meganucleases With Altered Sequence Specificity And Dna-Binding Affinity
  • Methods Of Cleaving Dna With Rationally-Designed Meganucleases
  • Genome Editing In Rats Using Zinc-Finger Nucleases
  • Methods For Engineering Allogeneic And Immunosuppressive Resistant T Cell For Immunotherapy
  • Use Of Pre T Alpha Or Functional Variant Thereof For Expanding Tcr Alpha Deficient T Cells
  • Targeted Integration Into The Ppp1r12c Locus
  • Methods For Engineering Allogeneic And Highly Active T Cell For Immunotheraphy
  • Ralen-Mediated Genetic Modification Techniques
  • Rationally-Designed Single-Chain Meganucleases With Non-Palindromic Recognition Sequences
  • Crispr/Cas-Related Methods And Compositions For Treating Leber's Congenital Amaurosis 10 (Lca10)
  • Dna-Binding Proteins And Uses Thereof
  • Method For Genome Editing
  • A Novel Zinc Finger Nuclease And Uses Thereof
  • Methods Of Cleaving Dna With Rationally-Designed Meganucleases
  • Anti-Hsp70 Specific Chimeric Antigen Receptors (Cars) For Cancer Immunotherapy
  • Rationally-Designed Single-Chain Meganucleases With Non-Palindromic Recognition Sequences
  • Methods And Compositions For Targeted Single-Stranded Cleavage And Targeted Integration
  • Methods And Compositions For Targeted Cleavage And Recombination
  • Use Of Meganucleases For Inducing Homologous Recombination Ex Vivo And In Toto In Vertebrate Somatic Tissues And Application Thereof
  • Efficient Non-Meiotic Allele Introgression
  • Targeted Integration Into Stem Cells
  • Rationally-Designed Meganucleases With Altered Sequence Specificity And Heterodimer Formation
  • Targeted Integration And Expression On Exogenous Nucleic Acid Sequences
  • Modular Dna-Binding Domains And Methods Of Use
  • Genome Editing Of A Rosa Locus Using Zinc-Finger Nucleases
  • Methods Of Cleaving Dna With Rationally-Designed Meganucleases
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nbt1125

    DOI

    http://dx.doi.org/10.1038/nbt1125

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1024455353

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/16082368


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA Damage", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA Repair", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Deoxyribonucleases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Targeting", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Recombination, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Zinc Fingers", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "The University of Texas Southwestern Medical Center", 
              "id": "https://www.grid.ac/institutes/grid.267313.2", 
              "name": [
                "Department of Pediatrics, University of Texas Southwestern Medical Center, USA. matthew.porteus@utsouthwestern.edu"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Porteus", 
            "givenName": "Matthew H", 
            "id": "sg:person.01115066120.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115066120.22"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Carroll", 
            "givenName": "Dana", 
            "id": "sg:person.01161333067.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161333067.34"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1073/pnas.93.3.1156", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001210891"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.biophys.29.1.183", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003240135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1078395", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003888273"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1074-5521(00)00085-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007963810"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9780470514221.ch15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008947283"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.78.10.6354", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009524139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.91.13.6064", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009846907"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.95.6.2812", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010012220"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/27.2.674", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011869221"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/mcb.18.7.4070", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011921702"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmb.2003.10.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014343686"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmb.2004.07.031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014507230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0703-759", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014625236", 
              "https://doi.org/10.1038/nbt0703-759"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0703-759", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014625236", 
              "https://doi.org/10.1038/nbt0703-759"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkg375", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016134561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1574-6968.2000.tb09046.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016498212"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1574-6968.2000.tb09046.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016498212"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.98.4.1437", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016864882"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1088547", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018519577"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/mcb.21.1.289-297.2001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019605954"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.288.5466.669", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019730668"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1074/jbc.m110669200", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020428610"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0140-6736(04)17590-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020712301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1034/j.1600-065x.2000.17812.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021224363"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0076-6879(83)01015-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021896981"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/mcb.14.12.8096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022051171"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.95.18.10570", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022863238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/23.24.5012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024116167"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/336348a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024391427", 
              "https://doi.org/10.1038/336348a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1079512", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024409172"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.94.11.5525", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027937720"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.chembiol.2003.09.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028351457"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35056049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028620907", 
              "https://doi.org/10.1038/35056049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35056049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028620907", 
              "https://doi.org/10.1038/35056049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0958-1669(01)00272-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028699509"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/25.17.3379", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030001797"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/mcb.15.4.1968", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034391289"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.iy.09.040191.001251", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035148259"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0409339102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035663961"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0959-440x(03)00081-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035955267"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0959-440x(03)00081-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035955267"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0202-135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036673431", 
              "https://doi.org/10.1038/nbt0202-135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0202-135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036673431", 
              "https://doi.org/10.1038/nbt0202-135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/mcb.17.1.267", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039424106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.2035056100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039566043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.91.3.883", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039714161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03556", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040117781", 
              "https://doi.org/10.1038/nature03556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03556", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040117781", 
              "https://doi.org/10.1038/nature03556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrd1087", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040287926", 
              "https://doi.org/10.1038/nrd1087"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrd1087", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040287926", 
              "https://doi.org/10.1038/nrd1087"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.biochem.70.1.313", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041153456"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/324698a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041632119", 
              "https://doi.org/10.1038/324698a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/324698a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041632119", 
              "https://doi.org/10.1038/324698a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00018-002-8429-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041730580", 
              "https://doi.org/10.1007/s00018-002-8429-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.86.1.227", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042029467"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35015097", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042287457", 
              "https://doi.org/10.1038/35015097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35015097", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042287457", 
              "https://doi.org/10.1038/35015097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/29.18.3757", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043449639"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.96.6.2758", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043463987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/bchm.1998.379.4-5.489", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045226136"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.75.4.1929", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046556482"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3109/07357900009023065", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046692766"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/bc.1999.103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049605296"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0168-9525(96)10019-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050061304"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/28.17.3361", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051444401"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/mcb.18.3.1444", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052738181"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1385/1-59259-208-2:417", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053500542", 
              "https://doi.org/10.1385/1-59259-208-2:417"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1097-2765(02)00690-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053679810"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/cr020603o", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053827177"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/cr020603o", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053827177"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/bi020095c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055195197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/bi020095c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055195197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/bi026806o", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055196379"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/bi026806o", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055196379"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/sqb.2000.65.315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060415778"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.2028256", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062518816"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.2660260", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062549377"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074471852", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074815655", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1075091342", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1076636997", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2005-08", 
        "datePublishedReg": "2005-08-01", 
        "description": "The ability to achieve site-specific manipulation of the mammalian genome has widespread implications for basic and applied research. Gene targeting is a process in which a DNA molecule introduced into a cell replaces the corresponding chromosomal segment by homologous recombination, and thus presents a precise way to manipulate the genome. In the past, the application of gene targeting to mammalian cells has been limited by its low efficiency. Zinc finger nucleases (ZFNs) show promise in improving the efficiency of gene targeting by introducing DNA double-strand breaks in target genes, which then stimulate the cell's endogenous homologous recombination machinery. Recent results have shown that ZFNs can be used to create targeting frequencies of up to 20% in a human disease-causing gene. Future work will be needed to translate these in vitro findings to in vivo applications and to determine whether zinc finger nucleases create undesired genomic instability.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nbt1125", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1115214", 
            "issn": [
              "1087-0156", 
              "1546-1696"
            ], 
            "name": "Nature Biotechnology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "23"
          }
        ], 
        "name": "Gene targeting using zinc finger nucleases", 
        "pagination": "967-973", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "7481d07cd8a745d3861fe12317190982f634c754e44c2b8165488850455b343e"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "16082368"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9604648"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nbt1125"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1024455353"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nbt1125", 
          "https://app.dimensions.ai/details/publication/pub.1024455353"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:13", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_54002_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/nbt/journal/v23/n8/full/nbt1125.html"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nbt1125'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nbt1125'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nbt1125'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nbt1125'


     

    This table displays all metadata directly associated to this object as RDF triples.

    320 TRIPLES      21 PREDICATES      106 URIs      29 LITERALS      17 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nbt1125 schema:about N24247d9ccfaf49898460e1063c0242f5
    2 N2d4e7c318e004fd7aa62db5a28806286
    3 N832b61668839465595746d1f979b1792
    4 N8ab9f3c8365446bfb959c55ca0835ef6
    5 N9a0ecdc2c93a4d8a98849ba3f99bf93d
    6 Nc5e5235fa2f847d6bf891a4fab1b7fc9
    7 Ncaebdd36a12b43179684c1d258766f77
    8 Ncdcd38a422af4e879df59eb82d242d40
    9 anzsrc-for:06
    10 anzsrc-for:0604
    11 schema:author N9f8cba6c463947858688b801fd3b0094
    12 schema:citation sg:pub.10.1007/s00018-002-8429-3
    13 sg:pub.10.1038/324698a0
    14 sg:pub.10.1038/336348a0
    15 sg:pub.10.1038/35015097
    16 sg:pub.10.1038/35056049
    17 sg:pub.10.1038/nature03556
    18 sg:pub.10.1038/nbt0202-135
    19 sg:pub.10.1038/nbt0703-759
    20 sg:pub.10.1038/nrd1087
    21 sg:pub.10.1385/1-59259-208-2:417
    22 https://app.dimensions.ai/details/publication/pub.1074471852
    23 https://app.dimensions.ai/details/publication/pub.1074815655
    24 https://app.dimensions.ai/details/publication/pub.1075091342
    25 https://app.dimensions.ai/details/publication/pub.1076636997
    26 https://doi.org/10.1002/9780470514221.ch15
    27 https://doi.org/10.1016/0076-6879(83)01015-0
    28 https://doi.org/10.1016/0168-9525(96)10019-6
    29 https://doi.org/10.1016/j.chembiol.2003.09.014
    30 https://doi.org/10.1016/j.jmb.2003.10.013
    31 https://doi.org/10.1016/j.jmb.2004.07.031
    32 https://doi.org/10.1016/s0140-6736(04)17590-9
    33 https://doi.org/10.1016/s0958-1669(01)00272-5
    34 https://doi.org/10.1016/s0959-440x(03)00081-2
    35 https://doi.org/10.1016/s1074-5521(00)00085-5
    36 https://doi.org/10.1016/s1097-2765(02)00690-1
    37 https://doi.org/10.1021/bi020095c
    38 https://doi.org/10.1021/bi026806o
    39 https://doi.org/10.1021/cr020603o
    40 https://doi.org/10.1034/j.1600-065x.2000.17812.x
    41 https://doi.org/10.1073/pnas.0409339102
    42 https://doi.org/10.1073/pnas.2035056100
    43 https://doi.org/10.1073/pnas.75.4.1929
    44 https://doi.org/10.1073/pnas.78.10.6354
    45 https://doi.org/10.1073/pnas.86.1.227
    46 https://doi.org/10.1073/pnas.91.13.6064
    47 https://doi.org/10.1073/pnas.91.3.883
    48 https://doi.org/10.1073/pnas.93.3.1156
    49 https://doi.org/10.1073/pnas.94.11.5525
    50 https://doi.org/10.1073/pnas.95.18.10570
    51 https://doi.org/10.1073/pnas.95.6.2812
    52 https://doi.org/10.1073/pnas.96.6.2758
    53 https://doi.org/10.1073/pnas.98.4.1437
    54 https://doi.org/10.1074/jbc.m110669200
    55 https://doi.org/10.1093/nar/23.24.5012
    56 https://doi.org/10.1093/nar/25.17.3379
    57 https://doi.org/10.1093/nar/27.2.674
    58 https://doi.org/10.1093/nar/28.17.3361
    59 https://doi.org/10.1093/nar/29.18.3757
    60 https://doi.org/10.1093/nar/gkg375
    61 https://doi.org/10.1101/sqb.2000.65.315
    62 https://doi.org/10.1111/j.1574-6968.2000.tb09046.x
    63 https://doi.org/10.1126/science.1078395
    64 https://doi.org/10.1126/science.1079512
    65 https://doi.org/10.1126/science.1088547
    66 https://doi.org/10.1126/science.2028256
    67 https://doi.org/10.1126/science.2660260
    68 https://doi.org/10.1126/science.288.5466.669
    69 https://doi.org/10.1128/mcb.14.12.8096
    70 https://doi.org/10.1128/mcb.15.4.1968
    71 https://doi.org/10.1128/mcb.17.1.267
    72 https://doi.org/10.1128/mcb.18.3.1444
    73 https://doi.org/10.1128/mcb.18.7.4070
    74 https://doi.org/10.1128/mcb.21.1.289-297.2001
    75 https://doi.org/10.1146/annurev.biochem.70.1.313
    76 https://doi.org/10.1146/annurev.biophys.29.1.183
    77 https://doi.org/10.1146/annurev.iy.09.040191.001251
    78 https://doi.org/10.1515/bc.1999.103
    79 https://doi.org/10.1515/bchm.1998.379.4-5.489
    80 https://doi.org/10.3109/07357900009023065
    81 schema:datePublished 2005-08
    82 schema:datePublishedReg 2005-08-01
    83 schema:description The ability to achieve site-specific manipulation of the mammalian genome has widespread implications for basic and applied research. Gene targeting is a process in which a DNA molecule introduced into a cell replaces the corresponding chromosomal segment by homologous recombination, and thus presents a precise way to manipulate the genome. In the past, the application of gene targeting to mammalian cells has been limited by its low efficiency. Zinc finger nucleases (ZFNs) show promise in improving the efficiency of gene targeting by introducing DNA double-strand breaks in target genes, which then stimulate the cell's endogenous homologous recombination machinery. Recent results have shown that ZFNs can be used to create targeting frequencies of up to 20% in a human disease-causing gene. Future work will be needed to translate these in vitro findings to in vivo applications and to determine whether zinc finger nucleases create undesired genomic instability.
    84 schema:genre research_article
    85 schema:inLanguage en
    86 schema:isAccessibleForFree false
    87 schema:isPartOf N115abed3fc99450dbd3a501f4e61da9f
    88 Nbf00196475bd4ca28b510d52f77b5e82
    89 sg:journal.1115214
    90 schema:name Gene targeting using zinc finger nucleases
    91 schema:pagination 967-973
    92 schema:productId N2ee6512035b24c6bb395a0efbbdf0c61
    93 N49cade1456364d7ea526b8bd36f6fd8d
    94 Nb9c0387523044cab8eacf710b0b56c58
    95 Nc085bf1d10654472b4b7841e567c1e5d
    96 Ne0fa6adcc162440da651556bb6ecb337
    97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024455353
    98 https://doi.org/10.1038/nbt1125
    99 schema:sdDatePublished 2019-04-11T12:13
    100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    101 schema:sdPublisher N3fce68e92c4e45c798015101b9a3063f
    102 schema:url http://www.nature.com/nbt/journal/v23/n8/full/nbt1125.html
    103 sgo:license sg:explorer/license/
    104 sgo:sdDataset articles
    105 rdf:type schema:ScholarlyArticle
    106 N115abed3fc99450dbd3a501f4e61da9f schema:volumeNumber 23
    107 rdf:type schema:PublicationVolume
    108 N24247d9ccfaf49898460e1063c0242f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name DNA Repair
    110 rdf:type schema:DefinedTerm
    111 N2d4e7c318e004fd7aa62db5a28806286 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Recombination, Genetic
    113 rdf:type schema:DefinedTerm
    114 N2ee6512035b24c6bb395a0efbbdf0c61 schema:name doi
    115 schema:value 10.1038/nbt1125
    116 rdf:type schema:PropertyValue
    117 N3fce68e92c4e45c798015101b9a3063f schema:name Springer Nature - SN SciGraph project
    118 rdf:type schema:Organization
    119 N49cade1456364d7ea526b8bd36f6fd8d schema:name dimensions_id
    120 schema:value pub.1024455353
    121 rdf:type schema:PropertyValue
    122 N832b61668839465595746d1f979b1792 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name Deoxyribonucleases
    124 rdf:type schema:DefinedTerm
    125 N8ab9f3c8365446bfb959c55ca0835ef6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Genetic Engineering
    127 rdf:type schema:DefinedTerm
    128 N9a0ecdc2c93a4d8a98849ba3f99bf93d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name Gene Targeting
    130 rdf:type schema:DefinedTerm
    131 N9f8cba6c463947858688b801fd3b0094 rdf:first sg:person.01115066120.22
    132 rdf:rest Nb998b3510b774579baed06a71ae71642
    133 Nb998b3510b774579baed06a71ae71642 rdf:first sg:person.01161333067.34
    134 rdf:rest rdf:nil
    135 Nb9c0387523044cab8eacf710b0b56c58 schema:name pubmed_id
    136 schema:value 16082368
    137 rdf:type schema:PropertyValue
    138 Nbf00196475bd4ca28b510d52f77b5e82 schema:issueNumber 8
    139 rdf:type schema:PublicationIssue
    140 Nc085bf1d10654472b4b7841e567c1e5d schema:name nlm_unique_id
    141 schema:value 9604648
    142 rdf:type schema:PropertyValue
    143 Nc5e5235fa2f847d6bf891a4fab1b7fc9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Zinc Fingers
    145 rdf:type schema:DefinedTerm
    146 Ncaebdd36a12b43179684c1d258766f77 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name DNA Damage
    148 rdf:type schema:DefinedTerm
    149 Ncdcd38a422af4e879df59eb82d242d40 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name DNA
    151 rdf:type schema:DefinedTerm
    152 Ne0fa6adcc162440da651556bb6ecb337 schema:name readcube_id
    153 schema:value 7481d07cd8a745d3861fe12317190982f634c754e44c2b8165488850455b343e
    154 rdf:type schema:PropertyValue
    155 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    156 schema:name Biological Sciences
    157 rdf:type schema:DefinedTerm
    158 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    159 schema:name Genetics
    160 rdf:type schema:DefinedTerm
    161 sg:journal.1115214 schema:issn 1087-0156
    162 1546-1696
    163 schema:name Nature Biotechnology
    164 rdf:type schema:Periodical
    165 sg:person.01115066120.22 schema:affiliation https://www.grid.ac/institutes/grid.267313.2
    166 schema:familyName Porteus
    167 schema:givenName Matthew H
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115066120.22
    169 rdf:type schema:Person
    170 sg:person.01161333067.34 schema:familyName Carroll
    171 schema:givenName Dana
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161333067.34
    173 rdf:type schema:Person
    174 sg:pub.10.1007/s00018-002-8429-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041730580
    175 https://doi.org/10.1007/s00018-002-8429-3
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1038/324698a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041632119
    178 https://doi.org/10.1038/324698a0
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1038/336348a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024391427
    181 https://doi.org/10.1038/336348a0
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1038/35015097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042287457
    184 https://doi.org/10.1038/35015097
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1038/35056049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028620907
    187 https://doi.org/10.1038/35056049
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1038/nature03556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040117781
    190 https://doi.org/10.1038/nature03556
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1038/nbt0202-135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036673431
    193 https://doi.org/10.1038/nbt0202-135
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1038/nbt0703-759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014625236
    196 https://doi.org/10.1038/nbt0703-759
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/nrd1087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040287926
    199 https://doi.org/10.1038/nrd1087
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1385/1-59259-208-2:417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053500542
    202 https://doi.org/10.1385/1-59259-208-2:417
    203 rdf:type schema:CreativeWork
    204 https://app.dimensions.ai/details/publication/pub.1074471852 schema:CreativeWork
    205 https://app.dimensions.ai/details/publication/pub.1074815655 schema:CreativeWork
    206 https://app.dimensions.ai/details/publication/pub.1075091342 schema:CreativeWork
    207 https://app.dimensions.ai/details/publication/pub.1076636997 schema:CreativeWork
    208 https://doi.org/10.1002/9780470514221.ch15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008947283
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1016/0076-6879(83)01015-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021896981
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1016/0168-9525(96)10019-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050061304
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1016/j.chembiol.2003.09.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028351457
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1016/j.jmb.2003.10.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014343686
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1016/j.jmb.2004.07.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014507230
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1016/s0140-6736(04)17590-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020712301
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1016/s0958-1669(01)00272-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028699509
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1016/s0959-440x(03)00081-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035955267
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1016/s1074-5521(00)00085-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007963810
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1016/s1097-2765(02)00690-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053679810
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1021/bi020095c schema:sameAs https://app.dimensions.ai/details/publication/pub.1055195197
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1021/bi026806o schema:sameAs https://app.dimensions.ai/details/publication/pub.1055196379
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1021/cr020603o schema:sameAs https://app.dimensions.ai/details/publication/pub.1053827177
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1034/j.1600-065x.2000.17812.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021224363
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1073/pnas.0409339102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035663961
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1073/pnas.2035056100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039566043
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1073/pnas.75.4.1929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046556482
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1073/pnas.78.10.6354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009524139
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1073/pnas.86.1.227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042029467
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1073/pnas.91.13.6064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009846907
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1073/pnas.91.3.883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039714161
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1073/pnas.93.3.1156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001210891
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1073/pnas.94.11.5525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027937720
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1073/pnas.95.18.10570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022863238
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1073/pnas.95.6.2812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010012220
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1073/pnas.96.6.2758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043463987
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1073/pnas.98.4.1437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016864882
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1074/jbc.m110669200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020428610
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1093/nar/23.24.5012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024116167
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1093/nar/25.17.3379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030001797
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1093/nar/27.2.674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011869221
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1093/nar/28.17.3361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051444401
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1093/nar/29.18.3757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043449639
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.1093/nar/gkg375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016134561
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.1101/sqb.2000.65.315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060415778
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.1111/j.1574-6968.2000.tb09046.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016498212
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.1126/science.1078395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003888273
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.1126/science.1079512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024409172
    285 rdf:type schema:CreativeWork
    286 https://doi.org/10.1126/science.1088547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018519577
    287 rdf:type schema:CreativeWork
    288 https://doi.org/10.1126/science.2028256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062518816
    289 rdf:type schema:CreativeWork
    290 https://doi.org/10.1126/science.2660260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062549377
    291 rdf:type schema:CreativeWork
    292 https://doi.org/10.1126/science.288.5466.669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019730668
    293 rdf:type schema:CreativeWork
    294 https://doi.org/10.1128/mcb.14.12.8096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022051171
    295 rdf:type schema:CreativeWork
    296 https://doi.org/10.1128/mcb.15.4.1968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034391289
    297 rdf:type schema:CreativeWork
    298 https://doi.org/10.1128/mcb.17.1.267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039424106
    299 rdf:type schema:CreativeWork
    300 https://doi.org/10.1128/mcb.18.3.1444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052738181
    301 rdf:type schema:CreativeWork
    302 https://doi.org/10.1128/mcb.18.7.4070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011921702
    303 rdf:type schema:CreativeWork
    304 https://doi.org/10.1128/mcb.21.1.289-297.2001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019605954
    305 rdf:type schema:CreativeWork
    306 https://doi.org/10.1146/annurev.biochem.70.1.313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041153456
    307 rdf:type schema:CreativeWork
    308 https://doi.org/10.1146/annurev.biophys.29.1.183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003240135
    309 rdf:type schema:CreativeWork
    310 https://doi.org/10.1146/annurev.iy.09.040191.001251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035148259
    311 rdf:type schema:CreativeWork
    312 https://doi.org/10.1515/bc.1999.103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049605296
    313 rdf:type schema:CreativeWork
    314 https://doi.org/10.1515/bchm.1998.379.4-5.489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045226136
    315 rdf:type schema:CreativeWork
    316 https://doi.org/10.3109/07357900009023065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046692766
    317 rdf:type schema:CreativeWork
    318 https://www.grid.ac/institutes/grid.267313.2 schema:alternateName The University of Texas Southwestern Medical Center
    319 schema:name Department of Pediatrics, University of Texas Southwestern Medical Center, USA. matthew.porteus@utsouthwestern.edu
    320 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...