Metabolic Flux Balancing: Basic Concepts, Scientific and Practical Use View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-10

AUTHORS

Amit Varma, Bernhard O. Palsson

ABSTRACT

Recently, there has been an increasing interest in stoichiometric analysis of metabolic flux distributions. Flux balance methods only require information about metabolic reaction stoichiometry, metabolic requirements for growth, and the measurement of a few strain–specific parameters. This information determines the domain of stoichiometrically allowable flux distributions that may be taken to define a strain's “metabolic genotype”. Within this domain a single flux distribution is sought based on assumed behavior, such as maximal growth rates. The optimal flux distributions are calculated using linear optimization and may be taken to represent the strain's “metabolic phenotype” under the particular conditions. This flux balance methodology allows the quantitative interpretation of metabolic physiology, gives an interpretation of experimental data, provides a guide to metabolic engineering, enables optimal medium formulation, and provides a method for bioprocess optimization. This spectrum of applications, and its ease of use, makes the metabolic flux balance model a potentially valuable approach for the design and optimization of bioprocesses. More... »

PAGES

994

References to SciGraph publications

Journal

TITLE

Nature Biotechnology

ISSUE

10

VOLUME

12

Related Patents

  • Microorganisms And Methods For The Co-Production Of Isopropanol And 1,4-Butanediol
  • Human Metabolic Models And Methods
  • Microorganisms And Methods For The Coproduction 1,4-Butanediol And Gamma-Butyrolactone
  • Microorganisms For The Production Of Methacrylic Acid
  • Microorganisms And Methods For Production Of 4-Hydroxybutyrate, 1,4-Butanediol And Related Compounds
  • Citrin Inhibitors For The Treatment Of Cancer
  • Microorganisms And Methods For Conversion Of Syngas And Other Carbon Sources To Useful Products
  • Flux Balance Analysis With Molecular Crowding
  • Methods And Organisms For Converting Synthesis Gas Or Other Gaseous Carbon Sources And Methanol To 1,3-Butanediol
  • Semi-Synthetic Terephthalic Acid Via Microorganisms That Produce Muconic Acid
  • Microorganisms And Methods For The Biosynthesis Of Adipate, Hexamethylenediamine And 6-Aminocaproic Acid
  • Microorganisms For The Production Of Adipic Acid And Other Compounds
  • Method And System For Modeling Cellular Metabolism
  • Methods And Organisms For Utilizing Synthesis Gas Or Other Gaseous Carbon Sources And Methanol
  • Microorganisms And Methods For The Biosynthesis Of Butadiene
  • Methods For Identifying Drug Targets Based On Genomic Sequence Data
  • Data Structures And Methods For Modeling Saccharomyces Cerevisiae Metabolism
  • Microorganisms For The Production Of 1,4-Butanediol
  • Microorganisms And Methods For The Biosynthesis Of Propylene
  • Semi-Synthetic Terephthalic Acid Via Microorganisms That Produce Muconic Acid
  • Microorganisms And Methods For The Biosynthesis Of Adipate, Hexamethylenediamine And 6-Aminocaproic Acid
  • Methods For Synthesis Of Olefins And Derivatives
  • Whole Cell Engineering Using Real-Time Metabolic Flux Analysis
  • Method For Determining Metabolic Flux Affecting Substance Production
  • Method For Redesign Of Microbial Production Systems
  • Methods For The Synthesis Of Olefins And Derivatives
  • Microorganisms And Methods For Carbon-Efficient Biosynthesis Of Mek And 2-Butanol
  • Microorganisms For The Production Of 2-Hydroxyisobutyric Acid
  • Microorganisms For The Production Of Methacrylic Acid
  • Microorganisms And Methods For The Coproduction 1,4-Butanediol And Gamma-Butyrolactone
  • Microorganisms And Methods For The Biosynthesis Of Fumarate, Malate, And Acrylate
  • Methods And Systems To Identify Operational Reaction Pathways
  • Methods And Organisms For Utilizing Synthesis Gas Or Other Gaseous Carbon Sources And Methanol
  • Methods For Identifying Drug Targets Based On Genomic Sequence Data
  • Microorganisms And Methods For The Biosynthesis Of Aromatics, 2,4-Pentadienoate And 1,3-Butadiene
  • Mammalian Cell Line Models And Related Methods
  • Method And System For Modeling Cellular Metabolism
  • Organisms For The Production Of 1,3-Butanediol
  • Microbial Organisms Comprising Exogenous Nucleic Acids Encoding Reductive Tca Pathway Enzymes
  • Methods For The Synthesis Of Olefins And Derivatives
  • Microorganisms For The Production Of Methacrylic Acid
  • Whole Cell Engineering Using Real-Time Metabolic Flux Analysis
  • Method For The Evolutionary Design Of Biochemical Reaction Networks
  • Articles Of Manufacture And Methods For Modeling Saccharomyces Cerevisiae Metabolism
  • Methods And Systems To Identify Operational Reaction Pathways
  • Systems And Methods For Constructing Genomic-Based Phenotypic Models
  • Method For Redesign Of Microbial Production Systems
  • Method For Determining Metabolic Flux Affecting Substance Production
  • Microorganisms And Methods For The Biosynthesis Of Fumarate, Malate, And Acrylate
  • Flux Balance Analysis With Molecular Crowding
  • Methods And Organisms For Utilizing Synthesis Gas Or Other Gaseous Carbon Sources And Methanol
  • Method For Determining Metabolic Flux Affecting Substance Production
  • Microorganisms For The Production Of Adipic Acid And Other Compounds
  • Primary Alcohol Producing Organisms
  • Microorganisms For The Production Of Adipic Acid And Other Compounds
  • Method For The Evolutionary Design Of Biochemical Reaction Networks
  • Microorganisms And Methods For The Biosynthesis Of Fumarate, Malate, And Acrylate
  • Methods And Organisms For Utilizing Synthesis Gas Or Other Gaseous Carbon Sources And Methanol
  • Methods For Increasing Product Yields
  • Microorganisms For The Production Of 1,4-Butanediol, 4-Hydroxybutanal, 4-Hydroxybutyryl-Coa, Putrescine And Related Compounds, And Methods Related Thereto
  • Methods And Organisms For Utilizing Synthesis Gas Or Other Gaseous Carbon Sources And Methanol
  • Organisms For The Production Of Isopropanol, N-Butanol, And Isobutanol
  • Primary Alcohol Producing Organisms
  • Microorganisms For The Production Of 1,4-Butanediol And Related Methods
  • Methods And Organisms For Utilizing Synthesis Gas Or Other Gaseous Carbon Sources And Methanol
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nbt1094-994

    DOI

    http://dx.doi.org/10.1038/nbt1094-994

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1021388132


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Current address: SyStemix, Inc., 3155 Porter Drive, Palo Alto, CA 94304."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Varma", 
            "givenName": "Amit", 
            "id": "sg:person.013506606263.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013506606263.68"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Michigan\u2013Ann Arbor", 
              "id": "https://www.grid.ac/institutes/grid.214458.e", 
              "name": [
                "Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Palsson", 
            "givenName": "Bernhard O.", 
            "id": "sg:person.011260472057.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011260472057.92"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1002/bit.260431123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001997599"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bit.260260210", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002986634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jtbi.1993.1202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006090348"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bit.260420604", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007521756"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bit.260431122", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009592970"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1042/bst0121093", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009910787"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1042/bst0121093", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009910787"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-7799(93)90099-u", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011041555"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bit.260420709", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014070563"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bit.260190106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015258125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1042/bj2380781", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015947652"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1042/bj2380781", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015947652"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1749-6632.1987.tb23838.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019382777"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bit.260280620", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020022440"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bit.260280620", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020022440"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bit.260270108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020813328"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bit.260420109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023301534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.bi.39.070170.002353", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025759966"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-5193(05)80161-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026160679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jtbi.1993.1203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027302274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bit.260420603", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028009370"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-5193(89)80233-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029677857"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bit.260410606", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030861779"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-5193(05)80162-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031078060"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-9856-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032718336", 
              "https://doi.org/10.1007/978-1-4757-9856-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-9856-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032718336", 
              "https://doi.org/10.1007/978-1-4757-9856-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bit.260320517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043216879"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0079-6107(78)90017-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043654255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1749-6632.1987.tb23840.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045359066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bit.260350711", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046731051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bit.260350711", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046731051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bit.260430403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048432367"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bit.260270109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049358274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-5193(69)80027-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051994420"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/2.1.23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059413554"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1904627", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062512948"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.2047876", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062519696"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1080156396", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082777895", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1994-10", 
        "datePublishedReg": "1994-10-01", 
        "description": "Recently, there has been an increasing interest in stoichiometric analysis of metabolic flux distributions. Flux balance methods only require information about metabolic reaction stoichiometry, metabolic requirements for growth, and the measurement of a few strain\u2013specific parameters. This information determines the domain of stoichiometrically allowable flux distributions that may be taken to define a strain's \u201cmetabolic genotype\u201d. Within this domain a single flux distribution is sought based on assumed behavior, such as maximal growth rates. The optimal flux distributions are calculated using linear optimization and may be taken to represent the strain's \u201cmetabolic phenotype\u201d under the particular conditions. This flux balance methodology allows the quantitative interpretation of metabolic physiology, gives an interpretation of experimental data, provides a guide to metabolic engineering, enables optimal medium formulation, and provides a method for bioprocess optimization. This spectrum of applications, and its ease of use, makes the metabolic flux balance model a potentially valuable approach for the design and optimization of bioprocesses.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nbt1094-994", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1115214", 
            "issn": [
              "1087-0156", 
              "1546-1696"
            ], 
            "name": "Nature Biotechnology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "12"
          }
        ], 
        "name": "Metabolic Flux Balancing: Basic Concepts, Scientific and Practical Use", 
        "pagination": "994", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "65e76c4acd62000f07b1eaf5a90930517bb3bec80cbc01a3cf1bcc5bfa74bf3c"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nbt1094-994"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1021388132"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nbt1094-994", 
          "https://app.dimensions.ai/details/publication/pub.1021388132"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T19:47", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000442.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nbt1094-994"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nbt1094-994'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nbt1094-994'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nbt1094-994'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nbt1094-994'


     

    This table displays all metadata directly associated to this object as RDF triples.

    171 TRIPLES      21 PREDICATES      61 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nbt1094-994 schema:about anzsrc-for:06
    2 anzsrc-for:0601
    3 schema:author N83a4b284fc264a4196a74d6a3748a0fe
    4 schema:citation sg:pub.10.1007/978-1-4757-9856-2
    5 https://app.dimensions.ai/details/publication/pub.1080156396
    6 https://app.dimensions.ai/details/publication/pub.1082777895
    7 https://doi.org/10.1002/bit.260190106
    8 https://doi.org/10.1002/bit.260260210
    9 https://doi.org/10.1002/bit.260270108
    10 https://doi.org/10.1002/bit.260270109
    11 https://doi.org/10.1002/bit.260280620
    12 https://doi.org/10.1002/bit.260320517
    13 https://doi.org/10.1002/bit.260350711
    14 https://doi.org/10.1002/bit.260410606
    15 https://doi.org/10.1002/bit.260420109
    16 https://doi.org/10.1002/bit.260420603
    17 https://doi.org/10.1002/bit.260420604
    18 https://doi.org/10.1002/bit.260420709
    19 https://doi.org/10.1002/bit.260430403
    20 https://doi.org/10.1002/bit.260431122
    21 https://doi.org/10.1002/bit.260431123
    22 https://doi.org/10.1006/jtbi.1993.1202
    23 https://doi.org/10.1006/jtbi.1993.1203
    24 https://doi.org/10.1016/0079-6107(78)90017-2
    25 https://doi.org/10.1016/0167-7799(93)90099-u
    26 https://doi.org/10.1016/s0022-5193(05)80161-4
    27 https://doi.org/10.1016/s0022-5193(05)80162-6
    28 https://doi.org/10.1016/s0022-5193(69)80027-5
    29 https://doi.org/10.1016/s0022-5193(89)80233-4
    30 https://doi.org/10.1042/bj2380781
    31 https://doi.org/10.1042/bst0121093
    32 https://doi.org/10.1093/bioinformatics/2.1.23
    33 https://doi.org/10.1111/j.1749-6632.1987.tb23838.x
    34 https://doi.org/10.1111/j.1749-6632.1987.tb23840.x
    35 https://doi.org/10.1126/science.1904627
    36 https://doi.org/10.1126/science.2047876
    37 https://doi.org/10.1146/annurev.bi.39.070170.002353
    38 schema:datePublished 1994-10
    39 schema:datePublishedReg 1994-10-01
    40 schema:description Recently, there has been an increasing interest in stoichiometric analysis of metabolic flux distributions. Flux balance methods only require information about metabolic reaction stoichiometry, metabolic requirements for growth, and the measurement of a few strain–specific parameters. This information determines the domain of stoichiometrically allowable flux distributions that may be taken to define a strain's “metabolic genotype”. Within this domain a single flux distribution is sought based on assumed behavior, such as maximal growth rates. The optimal flux distributions are calculated using linear optimization and may be taken to represent the strain's “metabolic phenotype” under the particular conditions. This flux balance methodology allows the quantitative interpretation of metabolic physiology, gives an interpretation of experimental data, provides a guide to metabolic engineering, enables optimal medium formulation, and provides a method for bioprocess optimization. This spectrum of applications, and its ease of use, makes the metabolic flux balance model a potentially valuable approach for the design and optimization of bioprocesses.
    41 schema:genre research_article
    42 schema:inLanguage en
    43 schema:isAccessibleForFree false
    44 schema:isPartOf N7ec6934d483f408f85c8bd94c59f3aff
    45 N84bfabb607ba4f0e82705dce4b89f850
    46 sg:journal.1115214
    47 schema:name Metabolic Flux Balancing: Basic Concepts, Scientific and Practical Use
    48 schema:pagination 994
    49 schema:productId N16ae81eea1fb4a12a5a9041aef6a78ec
    50 Ndf43ae976a554a2185792fafc66cc03c
    51 Ne952f1ee41944d78870250686de470ae
    52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021388132
    53 https://doi.org/10.1038/nbt1094-994
    54 schema:sdDatePublished 2019-04-10T19:47
    55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    56 schema:sdPublisher N44e5e556610c4db183a6aae3bf84bdba
    57 schema:url https://www.nature.com/articles/nbt1094-994
    58 sgo:license sg:explorer/license/
    59 sgo:sdDataset articles
    60 rdf:type schema:ScholarlyArticle
    61 N16ae81eea1fb4a12a5a9041aef6a78ec schema:name dimensions_id
    62 schema:value pub.1021388132
    63 rdf:type schema:PropertyValue
    64 N339a3d2907e04aeaae1f176ac653a611 rdf:first sg:person.011260472057.92
    65 rdf:rest rdf:nil
    66 N44e5e556610c4db183a6aae3bf84bdba schema:name Springer Nature - SN SciGraph project
    67 rdf:type schema:Organization
    68 N538eaea7f8bb4450a8660ce1c0858bfd schema:name Current address: SyStemix, Inc., 3155 Porter Drive, Palo Alto, CA 94304.
    69 rdf:type schema:Organization
    70 N7ec6934d483f408f85c8bd94c59f3aff schema:issueNumber 10
    71 rdf:type schema:PublicationIssue
    72 N83a4b284fc264a4196a74d6a3748a0fe rdf:first sg:person.013506606263.68
    73 rdf:rest N339a3d2907e04aeaae1f176ac653a611
    74 N84bfabb607ba4f0e82705dce4b89f850 schema:volumeNumber 12
    75 rdf:type schema:PublicationVolume
    76 Ndf43ae976a554a2185792fafc66cc03c schema:name readcube_id
    77 schema:value 65e76c4acd62000f07b1eaf5a90930517bb3bec80cbc01a3cf1bcc5bfa74bf3c
    78 rdf:type schema:PropertyValue
    79 Ne952f1ee41944d78870250686de470ae schema:name doi
    80 schema:value 10.1038/nbt1094-994
    81 rdf:type schema:PropertyValue
    82 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    83 schema:name Biological Sciences
    84 rdf:type schema:DefinedTerm
    85 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    86 schema:name Biochemistry and Cell Biology
    87 rdf:type schema:DefinedTerm
    88 sg:journal.1115214 schema:issn 1087-0156
    89 1546-1696
    90 schema:name Nature Biotechnology
    91 rdf:type schema:Periodical
    92 sg:person.011260472057.92 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
    93 schema:familyName Palsson
    94 schema:givenName Bernhard O.
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011260472057.92
    96 rdf:type schema:Person
    97 sg:person.013506606263.68 schema:affiliation N538eaea7f8bb4450a8660ce1c0858bfd
    98 schema:familyName Varma
    99 schema:givenName Amit
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013506606263.68
    101 rdf:type schema:Person
    102 sg:pub.10.1007/978-1-4757-9856-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032718336
    103 https://doi.org/10.1007/978-1-4757-9856-2
    104 rdf:type schema:CreativeWork
    105 https://app.dimensions.ai/details/publication/pub.1080156396 schema:CreativeWork
    106 https://app.dimensions.ai/details/publication/pub.1082777895 schema:CreativeWork
    107 https://doi.org/10.1002/bit.260190106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015258125
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1002/bit.260260210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002986634
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1002/bit.260270108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020813328
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1002/bit.260270109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049358274
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1002/bit.260280620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020022440
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1002/bit.260320517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043216879
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1002/bit.260350711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046731051
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1002/bit.260410606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030861779
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1002/bit.260420109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023301534
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1002/bit.260420603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028009370
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1002/bit.260420604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007521756
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1002/bit.260420709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014070563
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1002/bit.260430403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048432367
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1002/bit.260431122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009592970
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1002/bit.260431123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001997599
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1006/jtbi.1993.1202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006090348
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1006/jtbi.1993.1203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027302274
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1016/0079-6107(78)90017-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043654255
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1016/0167-7799(93)90099-u schema:sameAs https://app.dimensions.ai/details/publication/pub.1011041555
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1016/s0022-5193(05)80161-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026160679
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1016/s0022-5193(05)80162-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031078060
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1016/s0022-5193(69)80027-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051994420
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1016/s0022-5193(89)80233-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029677857
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1042/bj2380781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015947652
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1042/bst0121093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009910787
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1093/bioinformatics/2.1.23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059413554
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1111/j.1749-6632.1987.tb23838.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019382777
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1111/j.1749-6632.1987.tb23840.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045359066
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1126/science.1904627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062512948
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1126/science.2047876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062519696
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1146/annurev.bi.39.070170.002353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025759966
    168 rdf:type schema:CreativeWork
    169 https://www.grid.ac/institutes/grid.214458.e schema:alternateName University of Michigan–Ann Arbor
    170 schema:name Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109.
    171 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...