Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-08-15

AUTHORS

Blagoy Blagoev, Shao-En Ong, Irina Kratchmarova, Matthias Mann

ABSTRACT

To study the global dynamics of phosphotyrosine-based signaling events in early growth factor stimulation, we developed a mass spectrometric method that converts temporal changes to differences in peptide isotopic abundance. The proteomes of three cell populations were metabolically encoded with different stable isotopic forms of arginine. Each population was stimulated by epidermal growth factor for a different length of time, and tyrosine-phosphorylated proteins and closely associated binders were affinity purified. Arginine-containing peptides occurred in three forms, which were quantified; we then combined two experiments to generate five-point dynamic profiles. We identified 81 signaling proteins, including virtually all known epidermal growth factor receptor substrates, 31 novel effectors and the time course of their activation upon epidermal growth factor stimulation. Global activation profiles provide an informative perspective on cell signaling and will be crucial to modeling signaling networks in a systems biology approach. More... »

PAGES

1139-1145

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nbt1005

DOI

http://dx.doi.org/10.1038/nbt1005

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048011450

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15314609


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Epidermal Growth Factor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ErbB Receptors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "HeLa Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Isotope Labeling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kinetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mass Spectrometry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oxidative Phosphorylation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phosphotyrosine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Transduction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Biochemistry and Molecular Biology, Center for Experimental BioInformatics (CEBI), University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.10825.3e", 
          "name": [
            "Department of Biochemistry and Molecular Biology, Center for Experimental BioInformatics (CEBI), University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blagoev", 
        "givenName": "Blagoy", 
        "id": "sg:person.01366315675.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366315675.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biochemistry and Molecular Biology, Center for Experimental BioInformatics (CEBI), University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.10825.3e", 
          "name": [
            "Department of Biochemistry and Molecular Biology, Center for Experimental BioInformatics (CEBI), University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ong", 
        "givenName": "Shao-En", 
        "id": "sg:person.01212465062.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212465062.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biochemistry and Molecular Biology, Center for Experimental BioInformatics (CEBI), University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.10825.3e", 
          "name": [
            "Department of Biochemistry and Molecular Biology, Center for Experimental BioInformatics (CEBI), University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kratchmarova", 
        "givenName": "Irina", 
        "id": "sg:person.0742221042.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742221042.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biochemistry and Molecular Biology, Center for Experimental BioInformatics (CEBI), University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.10825.3e", 
          "name": [
            "Department of Biochemistry and Molecular Biology, Center for Experimental BioInformatics (CEBI), University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mann", 
        "givenName": "Matthias", 
        "id": "sg:person.01210517576.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210517576.72"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature01511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012180132", 
          "https://doi.org/10.1038/nature01511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002213324", 
          "https://doi.org/10.1038/ng1101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037026782", 
          "https://doi.org/10.1038/nature01803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35077225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037528958", 
          "https://doi.org/10.1038/35077225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0302-301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002975314", 
          "https://doi.org/10.1038/nbt0302-301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/13690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029022565", 
          "https://doi.org/10.1038/13690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026687985", 
          "https://doi.org/10.1038/nature01811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.onc.1205988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036573883", 
          "https://doi.org/10.1038/sj.onc.1205988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002942507", 
          "https://doi.org/10.1038/nbt790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010362117", 
          "https://doi.org/10.1038/nature01802"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-08-15", 
    "datePublishedReg": "2004-08-15", 
    "description": "To study the global dynamics of phosphotyrosine-based signaling events in early growth factor stimulation, we developed a mass spectrometric method that converts temporal changes to differences in peptide isotopic abundance. The proteomes of three cell populations were metabolically encoded with different stable isotopic forms of arginine. Each population was stimulated by epidermal growth factor for a different length of time, and tyrosine-phosphorylated proteins and closely associated binders were affinity purified. Arginine-containing peptides occurred in three forms, which were quantified; we then combined two experiments to generate five-point dynamic profiles. We identified 81 signaling proteins, including virtually all known epidermal growth factor receptor substrates, 31 novel effectors and the time course of their activation upon epidermal growth factor stimulation. Global activation profiles provide an informative perspective on cell signaling and will be crucial to modeling signaling networks in a systems biology approach.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nbt1005", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1115214", 
        "issn": [
          "1087-0156", 
          "1546-1696"
        ], 
        "name": "Nature Biotechnology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "keywords": [
      "growth factor stimulation", 
      "factor stimulation", 
      "epidermal growth factor stimulation", 
      "tyrosine-phosphorylated proteins", 
      "systems biology approach", 
      "stable isotopic forms", 
      "signaling networks", 
      "biology approach", 
      "novel effector", 
      "quantitative proteomics", 
      "epidermal growth factor", 
      "cell signaling", 
      "receptor substrate", 
      "cell populations", 
      "growth factor", 
      "protein", 
      "activation profiles", 
      "proteome", 
      "phosphotyrosine", 
      "proteomics", 
      "temporal changes", 
      "dynamic profile", 
      "signaling", 
      "arginine", 
      "effectors", 
      "abundance", 
      "population", 
      "mass spectrometric method", 
      "activation", 
      "peptides", 
      "stimulation", 
      "affinity", 
      "informative perspective", 
      "temporal analysis", 
      "different lengths", 
      "time course", 
      "substrate", 
      "profile", 
      "form", 
      "isotopic forms", 
      "dynamics", 
      "spectrometric method", 
      "global dynamics", 
      "events", 
      "factors", 
      "changes", 
      "analysis", 
      "length", 
      "experiments", 
      "network", 
      "differences", 
      "isotopic abundances", 
      "approach", 
      "time", 
      "perspective", 
      "method", 
      "course", 
      "binder"
    ], 
    "name": "Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics", 
    "pagination": "1139-1145", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048011450"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nbt1005"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15314609"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nbt1005", 
      "https://app.dimensions.ai/details/publication/pub.1048011450"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T09:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_389.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nbt1005"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nbt1005'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nbt1005'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nbt1005'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nbt1005'


 

This table displays all metadata directly associated to this object as RDF triples.

237 TRIPLES      22 PREDICATES      108 URIs      90 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nbt1005 schema:about N16fd9bcf2f644875b556296a4645b72c
2 N5350165a32c24c7f8692e6a9933954f4
3 N5b3600de5d874fdb954fdd66e10d0ab9
4 N8172715ef3ea49948ce1b37a5ff9a2cb
5 N8c3811bfb48547d3ab2603d61277f5d0
6 N99d4b24e0b1641c2b9d14e5955001599
7 Nb7bd9ebc896d4283b55e4370e7d39327
8 Nbd6ae3046d814f6195e14d2550aa263b
9 Ndd4959b23ce04ce788732dfb5ab3c60f
10 Ne4f9fabbca4145bd8cb031259b423af8
11 Ne754fb55a1764e8a8f40e5b9f369c59c
12 Nf09bfc33e4c145fd8e3fc6f2cfc19c13
13 Nf997a87403414889ba6b388e2489b9be
14 Nfc4f265f644b48a6b3fc7cc8681a20c3
15 anzsrc-for:06
16 anzsrc-for:0601
17 schema:author Ncc19990500a642a2ab3aa2b31243d5e9
18 schema:citation sg:pub.10.1038/13690
19 sg:pub.10.1038/35077225
20 sg:pub.10.1038/nature01511
21 sg:pub.10.1038/nature01802
22 sg:pub.10.1038/nature01803
23 sg:pub.10.1038/nature01811
24 sg:pub.10.1038/nbt0302-301
25 sg:pub.10.1038/nbt790
26 sg:pub.10.1038/ng1101
27 sg:pub.10.1038/sj.onc.1205988
28 schema:datePublished 2004-08-15
29 schema:datePublishedReg 2004-08-15
30 schema:description To study the global dynamics of phosphotyrosine-based signaling events in early growth factor stimulation, we developed a mass spectrometric method that converts temporal changes to differences in peptide isotopic abundance. The proteomes of three cell populations were metabolically encoded with different stable isotopic forms of arginine. Each population was stimulated by epidermal growth factor for a different length of time, and tyrosine-phosphorylated proteins and closely associated binders were affinity purified. Arginine-containing peptides occurred in three forms, which were quantified; we then combined two experiments to generate five-point dynamic profiles. We identified 81 signaling proteins, including virtually all known epidermal growth factor receptor substrates, 31 novel effectors and the time course of their activation upon epidermal growth factor stimulation. Global activation profiles provide an informative perspective on cell signaling and will be crucial to modeling signaling networks in a systems biology approach.
31 schema:genre article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf N0f69889733eb45bfbf9585553bf537e3
35 Na268124d911f4999a14106f185d84d55
36 sg:journal.1115214
37 schema:keywords abundance
38 activation
39 activation profiles
40 affinity
41 analysis
42 approach
43 arginine
44 binder
45 biology approach
46 cell populations
47 cell signaling
48 changes
49 course
50 differences
51 different lengths
52 dynamic profile
53 dynamics
54 effectors
55 epidermal growth factor
56 epidermal growth factor stimulation
57 events
58 experiments
59 factor stimulation
60 factors
61 form
62 global dynamics
63 growth factor
64 growth factor stimulation
65 informative perspective
66 isotopic abundances
67 isotopic forms
68 length
69 mass spectrometric method
70 method
71 network
72 novel effector
73 peptides
74 perspective
75 phosphotyrosine
76 population
77 profile
78 protein
79 proteome
80 proteomics
81 quantitative proteomics
82 receptor substrate
83 signaling
84 signaling networks
85 spectrometric method
86 stable isotopic forms
87 stimulation
88 substrate
89 systems biology approach
90 temporal analysis
91 temporal changes
92 time
93 time course
94 tyrosine-phosphorylated proteins
95 schema:name Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics
96 schema:pagination 1139-1145
97 schema:productId N7e261b9dc0df458ba2e38fb7dd008cfa
98 Nb7851178c9d64f2680724c0fa7660ceb
99 Nbb523a1d2fc64de1bd109197f7fdf117
100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048011450
101 https://doi.org/10.1038/nbt1005
102 schema:sdDatePublished 2022-05-10T09:55
103 schema:sdLicense https://scigraph.springernature.com/explorer/license/
104 schema:sdPublisher N184b3e0ef2ff4fbcadb6bc44669bdacc
105 schema:url https://doi.org/10.1038/nbt1005
106 sgo:license sg:explorer/license/
107 sgo:sdDataset articles
108 rdf:type schema:ScholarlyArticle
109 N0f69889733eb45bfbf9585553bf537e3 schema:volumeNumber 22
110 rdf:type schema:PublicationVolume
111 N122759ce41014fb2921e215f980f4750 rdf:first sg:person.01212465062.05
112 rdf:rest Ne05430491e6b4aceac189c4f3ad1d884
113 N16fd9bcf2f644875b556296a4645b72c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Proteomics
115 rdf:type schema:DefinedTerm
116 N184b3e0ef2ff4fbcadb6bc44669bdacc schema:name Springer Nature - SN SciGraph project
117 rdf:type schema:Organization
118 N5350165a32c24c7f8692e6a9933954f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Mass Spectrometry
120 rdf:type schema:DefinedTerm
121 N5b3600de5d874fdb954fdd66e10d0ab9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Proteome
123 rdf:type schema:DefinedTerm
124 N7e261b9dc0df458ba2e38fb7dd008cfa schema:name doi
125 schema:value 10.1038/nbt1005
126 rdf:type schema:PropertyValue
127 N8172715ef3ea49948ce1b37a5ff9a2cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name HeLa Cells
129 rdf:type schema:DefinedTerm
130 N8c3811bfb48547d3ab2603d61277f5d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Humans
132 rdf:type schema:DefinedTerm
133 N99d4b24e0b1641c2b9d14e5955001599 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Epidermal Growth Factor
135 rdf:type schema:DefinedTerm
136 N9cf2bc6d27f949119ff8982eaba7bd43 rdf:first sg:person.01210517576.72
137 rdf:rest rdf:nil
138 Na268124d911f4999a14106f185d84d55 schema:issueNumber 9
139 rdf:type schema:PublicationIssue
140 Nb7851178c9d64f2680724c0fa7660ceb schema:name pubmed_id
141 schema:value 15314609
142 rdf:type schema:PropertyValue
143 Nb7bd9ebc896d4283b55e4370e7d39327 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Oxidative Phosphorylation
145 rdf:type schema:DefinedTerm
146 Nbb523a1d2fc64de1bd109197f7fdf117 schema:name dimensions_id
147 schema:value pub.1048011450
148 rdf:type schema:PropertyValue
149 Nbd6ae3046d814f6195e14d2550aa263b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Kinetics
151 rdf:type schema:DefinedTerm
152 Ncc19990500a642a2ab3aa2b31243d5e9 rdf:first sg:person.01366315675.56
153 rdf:rest N122759ce41014fb2921e215f980f4750
154 Ndd4959b23ce04ce788732dfb5ab3c60f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name ErbB Receptors
156 rdf:type schema:DefinedTerm
157 Ne05430491e6b4aceac189c4f3ad1d884 rdf:first sg:person.0742221042.00
158 rdf:rest N9cf2bc6d27f949119ff8982eaba7bd43
159 Ne4f9fabbca4145bd8cb031259b423af8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Isotope Labeling
161 rdf:type schema:DefinedTerm
162 Ne754fb55a1764e8a8f40e5b9f369c59c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Time Factors
164 rdf:type schema:DefinedTerm
165 Nf09bfc33e4c145fd8e3fc6f2cfc19c13 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Signal Transduction
167 rdf:type schema:DefinedTerm
168 Nf997a87403414889ba6b388e2489b9be schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Phosphotyrosine
170 rdf:type schema:DefinedTerm
171 Nfc4f265f644b48a6b3fc7cc8681a20c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Gene Expression Regulation
173 rdf:type schema:DefinedTerm
174 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
175 schema:name Biological Sciences
176 rdf:type schema:DefinedTerm
177 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
178 schema:name Biochemistry and Cell Biology
179 rdf:type schema:DefinedTerm
180 sg:journal.1115214 schema:issn 1087-0156
181 1546-1696
182 schema:name Nature Biotechnology
183 schema:publisher Springer Nature
184 rdf:type schema:Periodical
185 sg:person.01210517576.72 schema:affiliation grid-institutes:grid.10825.3e
186 schema:familyName Mann
187 schema:givenName Matthias
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210517576.72
189 rdf:type schema:Person
190 sg:person.01212465062.05 schema:affiliation grid-institutes:grid.10825.3e
191 schema:familyName Ong
192 schema:givenName Shao-En
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212465062.05
194 rdf:type schema:Person
195 sg:person.01366315675.56 schema:affiliation grid-institutes:grid.10825.3e
196 schema:familyName Blagoev
197 schema:givenName Blagoy
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366315675.56
199 rdf:type schema:Person
200 sg:person.0742221042.00 schema:affiliation grid-institutes:grid.10825.3e
201 schema:familyName Kratchmarova
202 schema:givenName Irina
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742221042.00
204 rdf:type schema:Person
205 sg:pub.10.1038/13690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029022565
206 https://doi.org/10.1038/13690
207 rdf:type schema:CreativeWork
208 sg:pub.10.1038/35077225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037528958
209 https://doi.org/10.1038/35077225
210 rdf:type schema:CreativeWork
211 sg:pub.10.1038/nature01511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012180132
212 https://doi.org/10.1038/nature01511
213 rdf:type schema:CreativeWork
214 sg:pub.10.1038/nature01802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010362117
215 https://doi.org/10.1038/nature01802
216 rdf:type schema:CreativeWork
217 sg:pub.10.1038/nature01803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037026782
218 https://doi.org/10.1038/nature01803
219 rdf:type schema:CreativeWork
220 sg:pub.10.1038/nature01811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026687985
221 https://doi.org/10.1038/nature01811
222 rdf:type schema:CreativeWork
223 sg:pub.10.1038/nbt0302-301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002975314
224 https://doi.org/10.1038/nbt0302-301
225 rdf:type schema:CreativeWork
226 sg:pub.10.1038/nbt790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002942507
227 https://doi.org/10.1038/nbt790
228 rdf:type schema:CreativeWork
229 sg:pub.10.1038/ng1101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002213324
230 https://doi.org/10.1038/ng1101
231 rdf:type schema:CreativeWork
232 sg:pub.10.1038/sj.onc.1205988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036573883
233 https://doi.org/10.1038/sj.onc.1205988
234 rdf:type schema:CreativeWork
235 grid-institutes:grid.10825.3e schema:alternateName Department of Biochemistry and Molecular Biology, Center for Experimental BioInformatics (CEBI), University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
236 schema:name Department of Biochemistry and Molecular Biology, Center for Experimental BioInformatics (CEBI), University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
237 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...