Inheritance and Expression of Chimeric Genes in the Progeny of Transgenic Maize Plants View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1990-09-01

AUTHORS

Michael E. Fromm, Fionnuala Morrish, Charles Armstrong, Rosalind Williams, John Thomas, Theodore M. Klein

ABSTRACT

We obtained transgenic maize plants by using high-velocity microprojectiles to transfer genes into embryogenic cells. Two selectable genes were used to confer resistance to either chlorsulfuron or phosphinothricin, and genes encoding either E. coli β-glucuronidase or firefly luciferase were used as markers to provide convenient assays for transformation. When regenerated without selection, only two of the eight transformed embryogenic calli obtained produced transgenic maize plants. With selection, transgenic plants were obtained from three of the other eight calli. One of the two initial lines produced 15 fertile transgenic plants. The progeny of these plants contained and expressed the foreign genes. Luciferase expression could be visualized, in the presence of added luciferin, by overlaying leaf sections with color film. More... »

PAGES

833-839

References to SciGraph publications

  • 1986-03-01. Genotype Specificity of Somatic Embryogenesis and Regeneration in Maize in NATURE BIOTECHNOLOGY
  • 1988-07. Transient expression of foreign genes in rice, wheat and soybean cells following particle bombardment in PLANT MOLECULAR BIOLOGY
  • 1988-08-01. Stable Transformation of Soybean (Glycine Max) by Particle Acceleration in NATURE BIOTECHNOLOGY
  • 1989-03. Fertile transgenic rice plants regenerated from transformed protoplasts in NATURE
  • 1989-12. The GUS reporter gene system in NATURE
  • 1990-01. Shedding light on PCR contamination in NATURE
  • 1990-06-01. Gene Transfer to Cereals: An Assessment in NATURE BIOTECHNOLOGY
  • 1988-01-01. Plant Regeneration from Protoplasts Isolated from Embryogenic Maize Cell Cultures in NATURE BIOTECHNOLOGY
  • 1988-04-01. Progress in the Regeneration and Genetic Manipulation of Cereal Crops in NATURE BIOTECHNOLOGY
  • 1990-02. Transgenic tobacco plants and their progeny derived by microprojectile bombardment of tobacco leaves in PLANT MOLECULAR BIOLOGY
  • 1989-06-01. Plant Regeneration and Recovery of Fertile Plants from Protoplasts of Maize (Zea Mays L.) in NATURE BIOTECHNOLOGY
  • 1989-09. Transformation of plant cells via Agrobacterium in PLANT MOLECULAR BIOLOGY
  • 1986-02. Stable transformation of maize after gene transfer by electroporation in NATURE
  • 1990-01-01. Agrobacterium–Mediated Transformation of Rice (Oryza sativa L.) in NATURE BIOTECHNOLOGY
  • 1985-05. Establishment and maintenance of friable, embryogenic maize callus and the involvement of L-proline in PLANTA
  • 1989-12. Transient expression of chloramphenicol acetyltransferase (CAT) gene in barley cell cultures and immature embryos through microprojectile bombardment in PLANT CELL REPORTS
  • 1988-05-01. Factors Influencing Gene Delivery into Zea Mays Cells by High–Velocity Microprojectiles in NATURE BIOTECHNOLOGY
  • 1989-05. Simultaneous amplification of multiple DNA fragments by polymerase chain reaction in the analysis of transgenic plants and their progeny in PLANT MOLECULAR BIOLOGY REPORTER
  • 1989-01. Specificity of Agrobacterium-mediated delivery of maize streak virus DNA to members of the Gramineae in PLANT MOLECULAR BIOLOGY
  • 1989-09. Direct DNA transfer to plant cells in PLANT MOLECULAR BIOLOGY
  • 1987-11. Genetic and biochemical evidence for multiple forms of acetolactate synthase in Nicotiana tabacum in MOLECULAR GENETICS AND GENOMICS
  • 1989-06. DNA transfer fromAgrobacterium toZea mays orBrassica by agroinfection is dependent on bacterial virulence functions in MOLECULAR GENETICS AND GENOMICS
  • 1988-02. Transformation with a mutant Arabidopsis acetolactate synthase gene renders tobacco resistant to sulfonylurea herbicides in MOLECULAR GENETICS AND GENOMICS
  • 1989-06-01. Regeneration of Fertile Plants from Protoplasts of Elite Inbread Maize. in NATURE BIOTECHNOLOGY
  • Journal

    TITLE

    Bio/Technology

    ISSUE

    9

    VOLUME

    8

    Related Patents

  • Process For The Production Of Xylose From A Paper-Grade Hardwood Pulp
  • Plant Transformation Without Selection
  • Expression Cassettes Derived From Maize
  • Dna Encoding Insecticidal Cry9fa Bacillus Thuringiensis Proteins And Recombinant Hosts Expressing Same
  • Producing Reproducing Maize Plant; Bombarding Intact Maize Cells With Nucleic Acid Coated Projectile With Marker Gene, Selecting Transformed Cells With Marker Gene, Propagating Reproduction Capable Hybrid Plants Resistant To Herbicide
  • Method For Making A Biofabricated Material Containing Collagen Fibrils
  • Methods For Producing Transgenic Plants
  • Methods For Rapidly Transforming Monocots
  • Nucleic Acid Encoding Polypeptide Of Given Sequence; Modulating Pyruvate Dehydrogenase Kinase Using Recombinant Expression Cassettes;
  • Glucoamylase Variants With Altered Properties
  • Methods For Producing Hybrid Seed
  • Alteration Of Oil Traits In Plants
  • Fertile Transgenic Maize Plants Containing A Gene Encoding The Pat Protein
  • Modulating Plant Oil Levels
  • Nucleotide Sequences Coding Cysteine-Rich Proteins For Generation Of Disease/Insect/Fungal/Nematode Resistant Dicots/Monocots
  • Genetic Engineering
  • Comt1 Gene Fiber-Specific Promoter Elements From Poplar
  • Methods And An Acetyl Coa Carboxylase Gene For Conferring Herbicide Tolerance And An Alteration In Oil Content Of Plants
  • Nucleotide Sequences Of A New Class Of Diverged Delta-9 Stearoyl-Acp Desaturase Genes
  • Regulated Gene Expression In Plants
  • Defensin Polynucleotides And Methods Of Use
  • Regulatory Sequences For Expressing Gene Products In Plant Reproductive Tissue
  • Methods And Compositions For The Production Of Stably Transformed Fertile Monocot Plants And Cells Thereof
  • Dna Encoding Insecticidal Cry9fa Bacillus Thuringiensis Proteins And Recombinant Hosts Expressing Same
  • Transgenic Plants And Plant Cells With Enhanced Pathogen Resistance And Related Methods
  • Methods For Producing Transgenic Plants
  • High Lysine Fertile Transgenic Corn Plants
  • Encodes A Zinc Finger, C3hc4 Type Polypeptide; For Making Transgenic Plants Or Organisms
  • Transgenic Monocots Plants With Increased Glycine-Betaine Content
  • Reversible Nuclear Genetic System For Male Sterility In Transgenic Plants
  • Methods For Rapidly Transforming Monocots
  • Methods For Producing Transgenic Plants
  • Enhancing Disease Resistance Of Plants, Such As Soybean Resistant To Phakopsora Pachyrhizi
  • Method For The Production Of Calendic Acid, A Fatty Acid Containing Delta-8,10,12 Conjugated Double Bonds And Related Fatty Acids Having A Modification At The Delta-9 Position
  • Fertile Transgenic Corn Plants
  • Insecticidal Proteins From Bacillus Thuringiensis
  • Enzyme Directed Oil Biosynthesis In Microalgae
  • Glucoamylase Variants
  • Genetically Modified Plant Comprising Transcription Factor Sequences For Enhancing Efficacy Of Exogenous Gene Expression
  • Δ6-Desaturase Genes And Uses Thereof
  • Auxin Transport Proteins
  • Method For Obtaining A Monocotyledon Plant Containing A Gene Of Interest Free Of Foreign Ancillary Sequence
  • Generation Of Transgentic Crop Plant; Obtain Plant Tissue, Incubate With Exogenous Nucleotide Sequences In Microparticle, Transform Plant With Particle Bombardment, Recover Transformed Plant
  • Biofabricated Material Containing Collagen Fibrils
  • System For Production Of Stable, Genetically Transformed Maize Cells; Methods Of Achieving Stable Transformation Include Tissue Culture Methods And Media, Methods For Bombardment Of Recipient Cells With Desired Transforming Dna, And Methods Of Growing Fertile Plants From Transformed Cells
  • Use Of The Soybean Sucrose Synthase Promoter To Increase Plant Seed Lipid Content
  • Methods And Compositions For Selective Regulation Of Protein Expression
  • Methods And Compositions For Selective Regulation Of Protein Expression
  • Generation Of Drought Resistant Transgenic Plants Via Controlled Expression Of Root Growth Transcription Factor
  • Dna Encoding Insecticidal Cry1bf Bacillus Thuringiensis Proteins And Recombinant Hosts Expressing Same
  • Method For The Production Of Transgenic Wheat Plants
  • Glucoamylase Variants With Altered Properties
  • Auxin Transport Proteins
  • Regulatory Sequences Associated With The Transcription Of Heterologous Nucleotide Sequences In Plants
  • For Enhancing Embryogenic Callus Production Of Elilte Lines Of Soybean By Delivering Carbohydrates, Nucleic Acids, Plant Growth Regulators And Peptides Into Bacterial Or Plant Cells
  • Biofabricated Material Containing Collagen Fibrils
  • Hybrid Corn Seeds And Plants Produced By Crossing The Inbred Line G4901 With At Least One Other Corn Line
  • Defensin Polynucleotides And Methods Of Use
  • Anthranilate Synthase Gene And Method Of Use Thereof For Conferring Tryptophan Overproduction
  • Nucleotide Sequences Encoding Ramosa3 And Sister Of Ramosa3 And Methods Of Use For Same
  • Increased Caloric And Nutritional Content Of Plant Biomass
  • Reproducible System For The Production Of Stable, Genetically Transformed Maize Cells, And To Methods Of Selecting Cells That Have Been Transformed
  • Methods And Compositions For The Production Of Stably Transformed Fertile Monocot Plants And Cells Thereof
  • Methods For Protecting Zea Mays Plants Against Pest Damage
  • Glucoamylase Variants With Altered Properties
  • Methods For Producing Transgenic Plants
  • Expression Cassettes Derived From Maize
  • Nucleotide Sequences Coding Cysteine-Rich Proteins For Generation Of Disease/Insect/Fungal/Nematode Resistant Dicots/Monocots
  • Polynucleotides Encoding Proteins Involved In Plant Metabolism
  • Plant Transformation Without Selection
  • Method And Compositions For The Production Of Transgenic Plants
  • Method To Produce Acetyldiacylglycerols (Ac-Tags) By Expression Of An Acetyltransferase Gene Isolated From Euonymus Alatus (Burning Bush)
  • Fertile Transgenic Corn Plants
  • Isolated Genes And Proteins Encoding Resistance To Photosensitizers
  • Dna Promoter 5126 And Constructs Useful In A Reversible Nuclear Genetic System For Male Sterility In Transgenic Plants
  • Plants With Altered Phytochromes
  • Methods Of Seed Treatment And Resulting Products
  • Endosperm-Specific Plant Promoters And Uses Therefor
  • Reversible Nuclear Genetic System For Male Sterility In Transgenic Plants
  • Auxin Transport Proteins
  • Variant Buttiauxella Sp. Phytases Having Altered Properties
  • Using A Dna Adenine Methylating Gene As A Dominant Negative Gene And A Promoter To Reverse Male Sterility In Maize
  • Methods And Compositions For The Production Of Stably Transformed, Fertile Monocot Plants And Cells Thereof
  • Genetic Engineering
  • Method For The Production Of Calendic Acid, A Fatty Acid Containing Delta 8,10,12 Conjugated Double Bonds And Related Fatty Acids Having A Modification At The Delta 9 Position
  • Hap2-Like Transcription Factor For Use In Adjusting Lipid Expression, Phenotype And Biosynthesis In Crops Such As Corn, Soybean And Wheat; Antisense Agents; Gene Expression Inhibition; Leafy Cotyledon-1 Activator Protein (Lec1)
  • Fertile Glyphosate-Resistant Transgenic Corn Plants
  • Expression Of The Chimeric Gene Results In Production Of Altered Levels Of The Sclbr Protein In A Transformed Host Cell.
  • Ads Genes For Reducing Saturated Fatty Acid Levels In Seed Oils
  • Methods For Producing Transgenic Plants
  • Nucleotide Sequences Coding Regulatory Protein Associated With Pollen Formation; For Use In Controlled Gene Expression In Plant Anthers
  • Phage Display Selection Of Anti Fungal Peptides
  • Promoter
  • Fertile Transgenic Corn Plants
  • Anthranilate Synthase Gene And Method Of Use Thereof For Conferring Tryptophan Overproduction
  • Defensin Polynucleotides And Methods Of Use
  • Expression Vector For Use In The Treatment Of Defects Of Immunological Response
  • Enzyme Directed Oil Biosynthesis In Microalgae
  • Water And Salt Stress Resistance
  • Polyhydroxyalkanoate Synthesis In Plants
  • Generation Of Plants With Improved Pathogen Resistance
  • Anthranilate Synthase Gene And Method Of Use Thereof For Conferring Tryptophan Overproduction
  • Expression Vector For Use In The Treatment Of Defects Of Immunological Response
  • Water And Salt Stress Resistance
  • Polyhydroxyalkanoate Synthesis In Plants
  • Enzyme Directed Oil Biosynthesis In Microalgae
  • Defensin Polynucleotides And Methods Of Use
  • Chimeric Gene Comprising An Isolated Nucleic Acid Fragment Encoding A Plant Fatty Acid Modifying Enzyme; Can Be Used To Create Transgenic Plants Having Altered Lipid Profiles; Use In Drying Oils, Lubricants, Detergents, Animal Feed Additives
  • Crop Plants With Disease Resistance Against Fungal Pathogens Such As Colletotrichum Graminicola, Diplodia Maydis, Fusarium Graminearum, And Fusarium Moniliforme, Or Nematodes
  • Method And An Acetyl Coa Carboxylase Gene For Conferring Herbicide Tolerance
  • Nucleotide Sequences Coding Regulatory Protein Associated With Pollen Formation; For Use In Controlled Gene Expression In Plant Anthers
  • Promoter
  • A Dna Encoding A Gene That Inhibits Pollen Formation; Producing Hybrid Seeds For Commercial Sale
  • Methods For Producing Transgenic Plants
  • Phage Display Selection Of Anti Fungal Peptides
  • Nucleotide Sequences Encoding Ramosa3 And Sister Of Ramosa3 And Methods Of Use For Same
  • Fertile Transgenic Corn Plants
  • For Altering Trehalose-6-Phosphate Phosphatase Activity In A Plant; For Temporal And Spatial Expression In Transgenic Plants To Alter Plant Morphology And Affect Yield In Plants
  • Thermotolerant Phytase For Animal Feed
  • Methods For Rapidly Transforming Monocots
  • Defensin Polynucleotides And Methods Of Use
  • Methods For Producing Hybrid Seed
  • Method For Making Biofabricated Composite
  • Food Comprising Transgenic Plant Material, Ingestible For Nutritional Value, Expressing Recombinant Immunogen Derived From Hepatitis Virus
  • Thermotolerant Phytase For Animal Feed
  • Bt=Bacillus Thuringiensis
  • Polynucleotides Encoding Proteins Involved In Plant Metabolism
  • Method For Producing Transgenic Cereal Plants
  • Polynucleotides Encoding Proteins Involved In Plant Metabolism
  • Thermotolerant Phytase For Animal Feed
  • Defensin Polynucleotides And Methods Of Use
  • Corn Cdna Encoding Southern Leaf Blight Resistance
  • Isolated From Spider Venom
  • Non Antibiotic Selectable Markers For Live Vaccines
  • Nucleotide Sequences Encoding Ramosa3 And Sister Of Ramosa3 And Methods Of Use For Same
  • Rapid And Efficient Regeneration Of Transgenic Wheat Plants
  • Plants
  • Glutenin Genes And Their Uses
  • Drought Tolerant Plants
  • Glucoamylase Variants With Altered Properties
  • Method To Obtain Male Sterile Plants
  • Transgenic Plants Expressing Glk1 And Cca1 Having Increased Nitrogen Assimilation Capacity
  • Method For Altering The Nutritional Content Of Plant Seed
  • Reversible Nuclear Genetic System For Male Sterility In Transgenic Plants
  • Methods And Compositions For The Introduction Of Molecules Into Cells
  • Polynucleotides Encoding Proteins Involved In Plant Metabolism
  • Regulatory Sequences For Expressing Gene Products In Plant Reproductive Tissue
  • Use Of An Aspartic Protease (Ns24) Signal Sequence For Heterologous Protein Expression
  • Method For Making A Biofabricated Material Containing Collagen Fibrils
  • Expression Vector Comprising Nucleotide Sequences Coding Dehydration Response Element Binding Factors(Dreb1 And Dreb2) For Use As Tools In Generating Drought And Salt Resistant Crops
  • Layered Collagen Materials And Methods Of Making The Same
  • Transcription Factor Gene Osnacx From Rice And Use Thereof For Improving Plant Tolerance To Drought And Salt
  • Starches Via Modification Of Expression Of Starch Biosynthetic Enzyme Genes
  • Reversible Male Sterility In Transgenic Plants By Expression Of Cytokinin Oxidase
  • Isolated Genes And Proteins Encoding Resistance To Photosensitizers
  • Nucleotide Sequences Encoding Ramosa3 And Sister Of Ramosa3 And Methods Of Use For Same
  • Glucoamylase Variants
  • Methods Of Expressing And Detecting Activity Of Expansin In Plant Cells
  • Orally Acceptable Immunogenic Composition
  • Methods And Compositions For Selective Regulation Of Protein Expression
  • Dna Sequences
  • Plant Transformation Without Selection
  • A Novel Method For The Production Of Transgenic Plants
  • Biofabricated Leather Articles Having Zonal Properties
  • Methods Of Producing Human Or Animal Food From Stably Transformed, Fertile Maize Plants
  • Vaccines Expressed In Plants
  • Reversible Nuclear Genetic System For Male Sterility In Transgenic Plants
  • Isolation And Targeted Suppression Of Lignin Biosynthetic Genes
  • Methods And Compositions For The Production Of Stably Transformed, Fertile Monocot Plants And Cells Thereof
  • Glyphosate Tolerant Plants
  • Transforming Plant Cells; Controlling Pollination
  • Methods And Compositions For Expression Cassettes Comprising A Maize Gene-Derived Intron For Enhanced Expression
  • Plant Transformation Without Selection
  • Plant Transformation Without Selection
  • Defensin Polynucleotides And Methods Of Use
  • Method For Preparing Fertile Transgenic Corn Plants
  • Crop Plants With Disease Resistance Against Fungal Pathogens Such As Colletotrichum Graminicola, Diplodia Maydis, Fusarium Graminearum, And Fusarium Moniliforme
  • Methods Of Affecting Nitrogen Assimilation In Plants
  • Method For Biofabricating Composite Material
  • Fertile Transgenic Zea Mays Plant With Heterologous Chimeric Dna Which Can Be Transmitted To Progeny Generation And Confers Insect Resistance
  • Use Of The Soybean Sucrose Synthase Promoter To Increase Plant Seed Lipid Content
  • Modified Plant With Improved Rubisco Activity
  • Genetically Engineering Nucleotide Sequences For Expressing Genes In Prokaryotic Cells; Mix Viral And Exogenous Nucleotide Seuences, Tie And Recover Sequences
  • Use Of The Soybean Sucrose Synthase Promoter To Increase Plant Seed Lipid Content
  • Genetically Modified Plants With Altered Starch
  • Insecticidal Proteins From Bacillus Thuringiensis
  • Method For Reduction Of Transgene Copy Number
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nbt0990-833

    DOI

    http://dx.doi.org/10.1038/nbt0990-833

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1025361066

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/1366794


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Plant Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Base Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chimera", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Markers", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Sequence Data", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transformation, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Zea mays", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Plant Sciences, Monsanto Gompany, 700 Chesterfield Village Pkwy, 63198, St. Louis, MO", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Plant Gene Expression Genter, USDA/UG Berkeley, 800 Buchanan St., 94710, Albany, CA", 
                "Plant Sciences, Monsanto Gompany, 700 Chesterfield Village Pkwy, 63198, St. Louis, MO"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fromm", 
            "givenName": "Michael E.", 
            "id": "sg:person.01136051207.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136051207.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Plant Sciences, Monsanto Gompany, 700 Chesterfield Village Pkwy, 63198, St. Louis, MO", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Plant Gene Expression Genter, USDA/UG Berkeley, 800 Buchanan St., 94710, Albany, CA", 
                "Plant Sciences, Monsanto Gompany, 700 Chesterfield Village Pkwy, 63198, St. Louis, MO"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Morrish", 
            "givenName": "Fionnuala", 
            "id": "sg:person.01024510117.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024510117.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Plant Sciences, Monsanto Company, 700 Chesterfield Village Pkwy, 63198, St. Louis, MO", 
              "id": "http://www.grid.ac/institutes/grid.418554.9", 
              "name": [
                "Plant Sciences, Monsanto Company, 700 Chesterfield Village Pkwy, 63198, St. Louis, MO"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Armstrong", 
            "givenName": "Charles", 
            "id": "sg:person.01010736140.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010736140.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Plant Gene Expression Genter, USDA/UG Berkeley, 800 Buchanan St., 94710, Albany, CA", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Plant Gene Expression Genter, USDA/UG Berkeley, 800 Buchanan St., 94710, Albany, CA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Williams", 
            "givenName": "Rosalind", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Plant Gene Expression Genter, USDA/UG Berkeley, 800 Buchanan St., 94710, Albany, CA", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Plant Gene Expression Genter, USDA/UG Berkeley, 800 Buchanan St., 94710, Albany, CA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Thomas", 
            "givenName": "John", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "E. I. DuPont, Medical Products Division, Lab 102, B-100 Box 122, 19702, Glasgow, DE", 
              "id": "http://www.grid.ac/institutes/grid.416832.a", 
              "name": [
                "Plant Gene Expression Genter, USDA/UG Berkeley, 800 Buchanan St., 94710, Albany, CA", 
                "E. I. DuPont, Medical Products Division, Lab 102, B-100 Box 122, 19702, Glasgow, DE"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Klein", 
            "givenName": "Theodore M.", 
            "id": "sg:person.011410766752.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011410766752.54"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/342837a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032700314", 
              "https://doi.org/10.1038/342837a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/343027a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020567502", 
              "https://doi.org/10.1038/343027a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02464898", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044109523", 
              "https://doi.org/10.1007/bf02464898"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00025321", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050821669", 
              "https://doi.org/10.1007/bf00025321"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0588-559", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011531876", 
              "https://doi.org/10.1038/nbt0588-559"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0689-589", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048182616", 
              "https://doi.org/10.1038/nbt0689-589"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0190-33", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003218999", 
              "https://doi.org/10.1038/nbt0190-33"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/338274a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040743981", 
              "https://doi.org/10.1038/338274a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0689-581", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051237377", 
              "https://doi.org/10.1038/nbt0689-581"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02669627", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020098192", 
              "https://doi.org/10.1007/bf02669627"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0386-219", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041984300", 
              "https://doi.org/10.1038/nbt0386-219"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00269041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041737222", 
              "https://doi.org/10.1007/bf00269041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00018566", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021417508", 
              "https://doi.org/10.1007/bf00018566"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00337755", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017108452", 
              "https://doi.org/10.1007/bf00337755"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/319791a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045509134", 
              "https://doi.org/10.1038/319791a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0188-56", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031587290", 
              "https://doi.org/10.1038/nbt0188-56"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0488-397", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016543324", 
              "https://doi.org/10.1038/nbt0488-397"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0888-923", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002791856", 
              "https://doi.org/10.1038/nbt0888-923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00396083", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029032788", 
              "https://doi.org/10.1007/bf00396083"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00330603", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035447644", 
              "https://doi.org/10.1007/bf00330603"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00039024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007714524", 
              "https://doi.org/10.1007/bf00039024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00025315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032564059", 
              "https://doi.org/10.1007/bf00025315"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0690-535", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044542044", 
              "https://doi.org/10.1038/nbt0690-535"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00017445", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031405531", 
              "https://doi.org/10.1007/bf00017445"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1990-09-01", 
        "datePublishedReg": "1990-09-01", 
        "description": "We obtained transgenic maize plants by using high-velocity microprojectiles to transfer genes into embryogenic cells. Two selectable genes were used to confer resistance to either chlorsulfuron or phosphinothricin, and genes encoding either E. coli \u03b2-glucuronidase or firefly luciferase were used as markers to provide convenient assays for transformation. When regenerated without selection, only two of the eight transformed embryogenic calli obtained produced transgenic maize plants. With selection, transgenic plants were obtained from three of the other eight calli. One of the two initial lines produced 15 fertile transgenic plants. The progeny of these plants contained and expressed the foreign genes. Luciferase expression could be visualized, in the presence of added luciferin, by overlaying leaf sections with color film.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nbt0990-833", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1094195", 
            "issn": [
              "0733-222X"
            ], 
            "name": "Bio/Technology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "8"
          }
        ], 
        "keywords": [
          "transgenic maize plants", 
          "maize plants", 
          "transgenic plants", 
          "fertile transgenic plants", 
          "high-velocity microprojectiles", 
          "E. coli \u03b2-glucuronidase", 
          "chimeric gene", 
          "embryogenic cells", 
          "selectable gene", 
          "foreign genes", 
          "leaf sections", 
          "embryogenic callus", 
          "genes", 
          "plants", 
          "firefly luciferase", 
          "luciferase expression", 
          "\u03b2-glucuronidase", 
          "progeny", 
          "convenient assay", 
          "callus", 
          "expression", 
          "microprojectiles", 
          "chlorsulfuron", 
          "luciferase", 
          "inheritance", 
          "selection", 
          "luciferin", 
          "cells", 
          "assays", 
          "markers", 
          "initial line", 
          "lines", 
          "resistance", 
          "presence", 
          "films", 
          "transformation", 
          "color film", 
          "sections"
        ], 
        "name": "Inheritance and Expression of Chimeric Genes in the Progeny of Transgenic Maize Plants", 
        "pagination": "833-839", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1025361066"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nbt0990-833"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "1366794"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nbt0990-833", 
          "https://app.dimensions.ai/details/publication/pub.1025361066"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:47", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_223.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nbt0990-833"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nbt0990-833'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nbt0990-833'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nbt0990-833'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nbt0990-833'


     

    This table displays all metadata directly associated to this object as RDF triples.

    272 TRIPLES      21 PREDICATES      96 URIs      63 LITERALS      15 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nbt0990-833 schema:about N1d41401a84294102860eef53940478dd
    2 N1df25d0789db43daabcbf20c346d2ce8
    3 N6f88c7897aad44d897b51509bf1552f1
    4 N720708b9924e4ba39ed78f4d4f9e22b3
    5 N81ff19507f364819b5b62468913c3e28
    6 N9056e2a2c871461fa7931485f56a7f8f
    7 Nbc5718589e9c4d7aafd500e88268f2f7
    8 Nd1f0f19187354408ada6686060c60181
    9 anzsrc-for:06
    10 anzsrc-for:0604
    11 anzsrc-for:0607
    12 schema:author N3b7e9bc3f4a14a3a93e7799a21f76569
    13 schema:citation sg:pub.10.1007/bf00017445
    14 sg:pub.10.1007/bf00018566
    15 sg:pub.10.1007/bf00025315
    16 sg:pub.10.1007/bf00025321
    17 sg:pub.10.1007/bf00039024
    18 sg:pub.10.1007/bf00269041
    19 sg:pub.10.1007/bf00330603
    20 sg:pub.10.1007/bf00337755
    21 sg:pub.10.1007/bf00396083
    22 sg:pub.10.1007/bf02464898
    23 sg:pub.10.1007/bf02669627
    24 sg:pub.10.1038/319791a0
    25 sg:pub.10.1038/338274a0
    26 sg:pub.10.1038/342837a0
    27 sg:pub.10.1038/343027a0
    28 sg:pub.10.1038/nbt0188-56
    29 sg:pub.10.1038/nbt0190-33
    30 sg:pub.10.1038/nbt0386-219
    31 sg:pub.10.1038/nbt0488-397
    32 sg:pub.10.1038/nbt0588-559
    33 sg:pub.10.1038/nbt0689-581
    34 sg:pub.10.1038/nbt0689-589
    35 sg:pub.10.1038/nbt0690-535
    36 sg:pub.10.1038/nbt0888-923
    37 schema:datePublished 1990-09-01
    38 schema:datePublishedReg 1990-09-01
    39 schema:description We obtained transgenic maize plants by using high-velocity microprojectiles to transfer genes into embryogenic cells. Two selectable genes were used to confer resistance to either chlorsulfuron or phosphinothricin, and genes encoding either E. coli β-glucuronidase or firefly luciferase were used as markers to provide convenient assays for transformation. When regenerated without selection, only two of the eight transformed embryogenic calli obtained produced transgenic maize plants. With selection, transgenic plants were obtained from three of the other eight calli. One of the two initial lines produced 15 fertile transgenic plants. The progeny of these plants contained and expressed the foreign genes. Luciferase expression could be visualized, in the presence of added luciferin, by overlaying leaf sections with color film.
    40 schema:genre article
    41 schema:isAccessibleForFree false
    42 schema:isPartOf N4c509d41e4434a859198554d7e12217b
    43 Nd8809869d2cf4232bba9bb8345e35c8a
    44 sg:journal.1094195
    45 schema:keywords E. coli β-glucuronidase
    46 assays
    47 callus
    48 cells
    49 chimeric gene
    50 chlorsulfuron
    51 color film
    52 convenient assay
    53 embryogenic callus
    54 embryogenic cells
    55 expression
    56 fertile transgenic plants
    57 films
    58 firefly luciferase
    59 foreign genes
    60 genes
    61 high-velocity microprojectiles
    62 inheritance
    63 initial line
    64 leaf sections
    65 lines
    66 luciferase
    67 luciferase expression
    68 luciferin
    69 maize plants
    70 markers
    71 microprojectiles
    72 plants
    73 presence
    74 progeny
    75 resistance
    76 sections
    77 selectable gene
    78 selection
    79 transformation
    80 transgenic maize plants
    81 transgenic plants
    82 β-glucuronidase
    83 schema:name Inheritance and Expression of Chimeric Genes in the Progeny of Transgenic Maize Plants
    84 schema:pagination 833-839
    85 schema:productId N17eb0ec9e8c54520b2e15d7d8b34a11b
    86 N7fd9a5fbe95a4554aa2a2aafd1002802
    87 Ndef9ad308f1b4e2f806ebda7e4b2af7f
    88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025361066
    89 https://doi.org/10.1038/nbt0990-833
    90 schema:sdDatePublished 2022-09-02T15:47
    91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    92 schema:sdPublisher N4e2e3993c60b4680957a76db467db44c
    93 schema:url https://doi.org/10.1038/nbt0990-833
    94 sgo:license sg:explorer/license/
    95 sgo:sdDataset articles
    96 rdf:type schema:ScholarlyArticle
    97 N17eb0ec9e8c54520b2e15d7d8b34a11b schema:name doi
    98 schema:value 10.1038/nbt0990-833
    99 rdf:type schema:PropertyValue
    100 N1d41401a84294102860eef53940478dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    101 schema:name Chimera
    102 rdf:type schema:DefinedTerm
    103 N1df25d0789db43daabcbf20c346d2ce8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    104 schema:name Genetic Markers
    105 rdf:type schema:DefinedTerm
    106 N3b7e9bc3f4a14a3a93e7799a21f76569 rdf:first sg:person.01136051207.03
    107 rdf:rest Nb9c09a1ff800492d8458d1fdf89a3a17
    108 N4745afcd0892409e94817935a181d8f3 schema:affiliation grid-institutes:None
    109 schema:familyName Thomas
    110 schema:givenName John
    111 rdf:type schema:Person
    112 N4c509d41e4434a859198554d7e12217b schema:issueNumber 9
    113 rdf:type schema:PublicationIssue
    114 N4e2e3993c60b4680957a76db467db44c schema:name Springer Nature - SN SciGraph project
    115 rdf:type schema:Organization
    116 N5978bf92c6d64d778099d4b09ef4677e schema:affiliation grid-institutes:None
    117 schema:familyName Williams
    118 schema:givenName Rosalind
    119 rdf:type schema:Person
    120 N652885f56d3249c9940172d39565e93f rdf:first sg:person.01010736140.00
    121 rdf:rest N9d05041c511e4a8181d4c94364e3bd81
    122 N6f88c7897aad44d897b51509bf1552f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name Zea mays
    124 rdf:type schema:DefinedTerm
    125 N720708b9924e4ba39ed78f4d4f9e22b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Molecular Sequence Data
    127 rdf:type schema:DefinedTerm
    128 N7fd9a5fbe95a4554aa2a2aafd1002802 schema:name pubmed_id
    129 schema:value 1366794
    130 rdf:type schema:PropertyValue
    131 N81ff19507f364819b5b62468913c3e28 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Transformation, Genetic
    133 rdf:type schema:DefinedTerm
    134 N873aa906becb4bfd9e68ca3f891405a8 rdf:first sg:person.011410766752.54
    135 rdf:rest rdf:nil
    136 N9056e2a2c871461fa7931485f56a7f8f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name DNA
    138 rdf:type schema:DefinedTerm
    139 N9d05041c511e4a8181d4c94364e3bd81 rdf:first N5978bf92c6d64d778099d4b09ef4677e
    140 rdf:rest Na98e52677888495a87690ab27cbd8916
    141 Na98e52677888495a87690ab27cbd8916 rdf:first N4745afcd0892409e94817935a181d8f3
    142 rdf:rest N873aa906becb4bfd9e68ca3f891405a8
    143 Nb9c09a1ff800492d8458d1fdf89a3a17 rdf:first sg:person.01024510117.29
    144 rdf:rest N652885f56d3249c9940172d39565e93f
    145 Nbc5718589e9c4d7aafd500e88268f2f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Base Sequence
    147 rdf:type schema:DefinedTerm
    148 Nd1f0f19187354408ada6686060c60181 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Gene Expression
    150 rdf:type schema:DefinedTerm
    151 Nd8809869d2cf4232bba9bb8345e35c8a schema:volumeNumber 8
    152 rdf:type schema:PublicationVolume
    153 Ndef9ad308f1b4e2f806ebda7e4b2af7f schema:name dimensions_id
    154 schema:value pub.1025361066
    155 rdf:type schema:PropertyValue
    156 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    157 schema:name Biological Sciences
    158 rdf:type schema:DefinedTerm
    159 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    160 schema:name Genetics
    161 rdf:type schema:DefinedTerm
    162 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
    163 schema:name Plant Biology
    164 rdf:type schema:DefinedTerm
    165 sg:journal.1094195 schema:issn 0733-222X
    166 schema:name Bio/Technology
    167 schema:publisher Springer Nature
    168 rdf:type schema:Periodical
    169 sg:person.01010736140.00 schema:affiliation grid-institutes:grid.418554.9
    170 schema:familyName Armstrong
    171 schema:givenName Charles
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010736140.00
    173 rdf:type schema:Person
    174 sg:person.01024510117.29 schema:affiliation grid-institutes:None
    175 schema:familyName Morrish
    176 schema:givenName Fionnuala
    177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024510117.29
    178 rdf:type schema:Person
    179 sg:person.01136051207.03 schema:affiliation grid-institutes:None
    180 schema:familyName Fromm
    181 schema:givenName Michael E.
    182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136051207.03
    183 rdf:type schema:Person
    184 sg:person.011410766752.54 schema:affiliation grid-institutes:grid.416832.a
    185 schema:familyName Klein
    186 schema:givenName Theodore M.
    187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011410766752.54
    188 rdf:type schema:Person
    189 sg:pub.10.1007/bf00017445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031405531
    190 https://doi.org/10.1007/bf00017445
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/bf00018566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021417508
    193 https://doi.org/10.1007/bf00018566
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/bf00025315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032564059
    196 https://doi.org/10.1007/bf00025315
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/bf00025321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050821669
    199 https://doi.org/10.1007/bf00025321
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/bf00039024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007714524
    202 https://doi.org/10.1007/bf00039024
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/bf00269041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041737222
    205 https://doi.org/10.1007/bf00269041
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1007/bf00330603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035447644
    208 https://doi.org/10.1007/bf00330603
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1007/bf00337755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017108452
    211 https://doi.org/10.1007/bf00337755
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1007/bf00396083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029032788
    214 https://doi.org/10.1007/bf00396083
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1007/bf02464898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044109523
    217 https://doi.org/10.1007/bf02464898
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1007/bf02669627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020098192
    220 https://doi.org/10.1007/bf02669627
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/319791a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045509134
    223 https://doi.org/10.1038/319791a0
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1038/338274a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040743981
    226 https://doi.org/10.1038/338274a0
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1038/342837a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032700314
    229 https://doi.org/10.1038/342837a0
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1038/343027a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020567502
    232 https://doi.org/10.1038/343027a0
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1038/nbt0188-56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031587290
    235 https://doi.org/10.1038/nbt0188-56
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1038/nbt0190-33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003218999
    238 https://doi.org/10.1038/nbt0190-33
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1038/nbt0386-219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041984300
    241 https://doi.org/10.1038/nbt0386-219
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1038/nbt0488-397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016543324
    244 https://doi.org/10.1038/nbt0488-397
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1038/nbt0588-559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011531876
    247 https://doi.org/10.1038/nbt0588-559
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1038/nbt0689-581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051237377
    250 https://doi.org/10.1038/nbt0689-581
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1038/nbt0689-589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048182616
    253 https://doi.org/10.1038/nbt0689-589
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1038/nbt0690-535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044542044
    256 https://doi.org/10.1038/nbt0690-535
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1038/nbt0888-923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002791856
    259 https://doi.org/10.1038/nbt0888-923
    260 rdf:type schema:CreativeWork
    261 grid-institutes:None schema:alternateName Plant Gene Expression Genter, USDA/UG Berkeley, 800 Buchanan St., 94710, Albany, CA
    262 Plant Sciences, Monsanto Gompany, 700 Chesterfield Village Pkwy, 63198, St. Louis, MO
    263 schema:name Plant Gene Expression Genter, USDA/UG Berkeley, 800 Buchanan St., 94710, Albany, CA
    264 Plant Sciences, Monsanto Gompany, 700 Chesterfield Village Pkwy, 63198, St. Louis, MO
    265 rdf:type schema:Organization
    266 grid-institutes:grid.416832.a schema:alternateName E. I. DuPont, Medical Products Division, Lab 102, B-100 Box 122, 19702, Glasgow, DE
    267 schema:name E. I. DuPont, Medical Products Division, Lab 102, B-100 Box 122, 19702, Glasgow, DE
    268 Plant Gene Expression Genter, USDA/UG Berkeley, 800 Buchanan St., 94710, Albany, CA
    269 rdf:type schema:Organization
    270 grid-institutes:grid.418554.9 schema:alternateName Plant Sciences, Monsanto Company, 700 Chesterfield Village Pkwy, 63198, St. Louis, MO
    271 schema:name Plant Sciences, Monsanto Company, 700 Chesterfield Village Pkwy, 63198, St. Louis, MO
    272 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...