Pathway engineering for the production of aromatic compounds in Escherichia coli View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1996-05

AUTHORS

Noemí Floras, Jimmy Xiao, Alan Berry, Francisco Bolivar, Fernando Valle

ABSTRACT

Glucose is the preferred substrate for certain fermentation processes. During its internalization and concomitant formation of glucose-6-phosphate through the glucose phosphotransferase system (PTS), one molecule of phosphoenolpyruvate (PEP) is consumed. Together with erythrose 4-phosphate (E4P), PEP is condensed to form 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAMP), the first intermediate of the common segment of the aromatic pathway. From this metabolic route, several commercially important aromatic compounds can be obtained. We have selected Escherichia coli mutants that can transport glucose efficiently by a non-PTS uptake system. In theory, this process should increase the availability of PEP for other biosynthetic reactions. Using these mutants, in a background where the DAMP synthase (the enzyme that catalyzes the condensation of PEP and E4P into DAMP) was amplified, we were able to show that at least some of the PEP saved during glucose transport, can be redirected into the aromatic pathway. This increased carbon commitment to the aromatic pathway was enhanced still further upon amplification of the E. coli tktA gene that encodes for a transketolase involved in the biosynthesis of E4P. More... »

PAGES

620-623

Journal

TITLE

Nature Biotechnology

ISSUE

5

VOLUME

14

Related Patents

  • Products And Methods For In Vivo Secretion Of Monatin
  • Glucose Transport Mutants For Production Of Biomaterial
  • Methods For Identifying Bacterial Strains That Produce L-Tyrosine
  • Manufacture Of Five-Carbon Sugars And Sugar Alcohols
  • Methods And Compositions For Producing Solvents
  • Aldolases, Nucleic Acids Encoding Them And Methods For Making And Using Them
  • Cell-Free Production Of Ribonucleic Acid
  • Cell-Free Preparation Of Carbapenems
  • Polypeptides And Biosynthetic Pathways For The Production Of Stereoisomers Of Monatin And Their Precursors
  • Cell-Free Production Of Sugars
  • Improved Muconic Acid Production From Genetically Engineered Microorganisms
  • Generation Of Ascorbic Acid Intermediate In Recombinant Cell; Obtain Cells, Transform With Vector Containg Polypeptides, Recover Transformed Cells, Propagate, Expression Vector, Recover Polypeptide
  • Cell-Free Production Of Sugars
  • Contacting A Polypeptide With Tryptophan Or 2-Hydroxy 2-(Indol-3-Ylmethyl)-4-Keto Glutaric Acid To Facilitate A Conversion Of Tryptophan To Indole-3-Pyruvate, A Conversion Of 2-Hydroxy 2-(Indol-3-Ylmethyl)-4-Keto Glutaric Acid To 2-Hydroxy-2-(Indol-3-Ylmethyl)-4-Aminoglutaric Acid (Monatin)
  • Methods For Control Of Flux In Metabolic Pathways Through Enzyme Relocation
  • Methods And Compositions For Producing Solvents
  • Production Of Muconic Acid From Genetically Engineered Microorganisms
  • Methods For Control Of Flux In Metabolic Pathways
  • Polypeptides And Biosynthetic Pathways For The Production Of Monatin And Its Precursors
  • Culturing Bacterial Cells With Increased Amounts Of Nadph To Produce L-Amino Acids; Mutation By Insertion, Deletion Or Substitution
  • Recombinant Cellular Iysate System For Producing A Product Of Interest
  • Methods For Producing L-Amino Acids Using A Corynebacterium Glutamicum With A Disrupted Pgi Gene
  • Products And Methods For In Vivo Secretion Of Monatin
  • Process For Producing Glycerol In Recombinant Bacterial Host Cells
  • Production Of Muconic Acid From Genetically Engineered Microorganisms
  • Polypeptides And Biosynthetic Pathways For The Production Of Stereoisomers Of Monatin And Their Precursors
  • Glucose Valve And Other Metabolite Valves
  • Engineered Proteins With A Protease Cleavage Site
  • Cell-Free System For Converting Methane Into Fuel And Chemical Compounds
  • Nucleotide Sequences Coding Amino Acid For Use In Human Medicines And Nutrient Broths
  • Methods And Compositions For Nucleoside Triphosphate And Ribonucleic Acid Production
  • Contacting A Polypeptide With Tryptophan Or 2-Hydroxy 2-(Indol-3-Ylmethyl)-4-Keto Glutaric Acid To Facilitate A Conversion Of Tryptophan To Indole-3-Pyruvate, A Conversion Of 2-Hydroxy 2-(Indol-3-Ylmethyl)-4-Keto Glutaric Acid To 2-Hydroxy-2-(Indol-3-Ylmethyl)-4-Aminoglutaric Acid (Monatin)
  • Cell-Free Production Of Sugars
  • Engineered Phosphoglucose Isomerase Proteins With A Protease Cleavage Site
  • Glucose Transport Mutants For Production Of Biomaterial
  • Methods And Compositions For Producing Solvents
  • Cell-Free Production Of Ribonucleic Acid
  • Methods For Control Of Flux In Metabolic Pathways Through Protease Manipulation
  • Production Of Bacterial Strains
  • Methods For Control Of Flux In Metabolic Pathways Through Enzyme Relocation
  • Production Of Monatin And Monatin Precursors
  • Method Of Uncoupling The Catabolic Pathway Of Glycolysis From The Oxidative Membrane Bound Pathway Of Glucose Conversion
  • Reacting D-Tryptophan And One Or More D-Aminotransferases Chosen From A Bacillus Halodurans D-Aminotransferase, A Hybrid D-Aminotransferase, To Form Indole-3-Pyruvate, Indole-3-Pyruvate Is Converted To 2-Hydroxy-2-(Indoly-3-Ylmethyl)-4-Keto Glutaric Acid (Mp), And Mp Is Converted To Monatin
  • Polypeptides And Biosynthetic Pathways For The Production Of Monatin And Its Precursors
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nbt0596-620

    DOI

    http://dx.doi.org/10.1038/nbt0596-620

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1034507677

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/9630954


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "3-Deoxy-7-Phosphoheptulonate Synthase", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biological Transport, Active", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Escherichia coli", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genes, Bacterial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Glucose", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hydrocarbons, Aromatic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mutation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phenotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phosphoenolpyruvate", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phosphoenolpyruvate Sugar Phosphotransferase System", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Plasmids", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sugar Phosphates", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transketolase", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute de Biotecnolog\u00eda, Universidad National Aut\u00f3noma de M\u00e9xico, Apdo. Postal 510\u20133, 62250, Cuernavaca, Morelos, M\u00e9xico", 
              "id": "http://www.grid.ac/institutes/grid.9486.3", 
              "name": [
                "Institute de Biotecnolog\u00eda, Universidad National Aut\u00f3noma de M\u00e9xico, Apdo. Postal 510\u20133, 62250, Cuernavaca, Morelos, M\u00e9xico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Floras", 
            "givenName": "Noem\u00ed", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Genencor International Inc., 180 Kimball Way, 94080, South San Francisco, CA", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Genencor International Inc., 180 Kimball Way, 94080, South San Francisco, CA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xiao", 
            "givenName": "Jimmy", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Genencor International Inc., 180 Kimball Way, 94080, South San Francisco, CA", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Genencor International Inc., 180 Kimball Way, 94080, South San Francisco, CA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Berry", 
            "givenName": "Alan", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute de Biotecnolog\u00eda, Universidad National Aut\u00f3noma de M\u00e9xico, Apdo. Postal 510\u20133, 62250, Cuernavaca, Morelos, M\u00e9xico", 
              "id": "http://www.grid.ac/institutes/grid.9486.3", 
              "name": [
                "Institute de Biotecnolog\u00eda, Universidad National Aut\u00f3noma de M\u00e9xico, Apdo. Postal 510\u20133, 62250, Cuernavaca, Morelos, M\u00e9xico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bolivar", 
            "givenName": "Francisco", 
            "id": "sg:person.01025503676.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025503676.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute de Biotecnolog\u00eda, Universidad National Aut\u00f3noma de M\u00e9xico, Apdo. Postal 510\u20133, 62250, Cuernavaca, Morelos, M\u00e9xico", 
              "id": "http://www.grid.ac/institutes/grid.9486.3", 
              "name": [
                "Institute de Biotecnolog\u00eda, Universidad National Aut\u00f3noma de M\u00e9xico, Apdo. Postal 510\u20133, 62250, Cuernavaca, Morelos, M\u00e9xico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Valle", 
            "givenName": "Fernando", 
            "id": "sg:person.01017375141.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017375141.03"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nbt0393-381", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025120594", 
              "https://doi.org/10.1038/nbt0393-381"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1996-05", 
        "datePublishedReg": "1996-05-01", 
        "description": "Glucose is the preferred substrate for certain fermentation processes. During its internalization and concomitant formation of glucose-6-phosphate through the glucose phosphotransferase system (PTS), one molecule of phosphoenolpyruvate (PEP) is consumed. Together with erythrose 4-phosphate (E4P), PEP is condensed to form 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAMP), the first intermediate of the common segment of the aromatic pathway. From this metabolic route, several commercially important aromatic compounds can be obtained. We have selected Escherichia coli mutants that can transport glucose efficiently by a non-PTS uptake system. In theory, this process should increase the availability of PEP for other biosynthetic reactions. Using these mutants, in a background where the DAMP synthase (the enzyme that catalyzes the condensation of PEP and E4P into DAMP) was amplified, we were able to show that at least some of the PEP saved during glucose transport, can be redirected into the aromatic pathway. This increased carbon commitment to the aromatic pathway was enhanced still further upon amplification of the E. coli tktA gene that encodes for a transketolase involved in the biosynthesis of E4P.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nbt0596-620", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1115214", 
            "issn": [
              "1087-0156", 
              "1546-1696"
            ], 
            "name": "Nature Biotechnology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "14"
          }
        ], 
        "keywords": [
          "phosphotransferase system", 
          "aromatic pathway", 
          "non-PTS uptake system", 
          "certain fermentation processes", 
          "Escherichia coli mutants", 
          "glucose phosphotransferase system", 
          "availability of phosphoenolpyruvate", 
          "tktA gene", 
          "coli mutants", 
          "biosynthetic reactions", 
          "preferred substrate", 
          "uptake system", 
          "phosphoenolpyruvate", 
          "Escherichia coli", 
          "glucose transport", 
          "metabolic routes", 
          "mutants", 
          "pathway", 
          "fermentation process", 
          "first intermediate", 
          "molecules of phosphoenolpyruvate", 
          "important aromatic compounds", 
          "aromatic compounds", 
          "heptulosonate", 
          "biosynthesis", 
          "E4P.", 
          "genes", 
          "carbon commitment", 
          "common segment", 
          "coli", 
          "synthase", 
          "transketolase", 
          "internalization", 
          "concomitant formation", 
          "erythrose", 
          "amplification", 
          "glucose", 
          "molecules", 
          "intermediates", 
          "substrate", 
          "availability", 
          "production", 
          "compounds", 
          "transport", 
          "formation", 
          "process", 
          "segments", 
          "system", 
          "background", 
          "reaction", 
          "route", 
          "commitment", 
          "theory"
        ], 
        "name": "Pathway engineering for the production of aromatic compounds in Escherichia coli", 
        "pagination": "620-623", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1034507677"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nbt0596-620"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "9630954"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nbt0596-620", 
          "https://app.dimensions.ai/details/publication/pub.1034507677"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_278.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nbt0596-620"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nbt0596-620'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nbt0596-620'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nbt0596-620'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nbt0596-620'


     

    This table displays all metadata directly associated to this object as RDF triples.

    206 TRIPLES      21 PREDICATES      95 URIs      86 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nbt0596-620 schema:about N011809cc8c6147809388c8b25c2293f6
    2 N11e549a68bed4f6da2f26e791009c3b3
    3 N3ba5b7088a8248cba77723cf4c9e5947
    4 N597d580efdb84da2837d391bfb211536
    5 N633706c166b94aa9865e0964c9b60d84
    6 N6aad00ba0e1c4f7db2e6fa334fac5e16
    7 N77e70a1b7b7c40d5944247c4723b8f80
    8 N8e7c5ade8e2d47e3bdc33a45cc943762
    9 Na0f32314f2bb4520b438e616b2f57b57
    10 Naac6284f3f094cc7b9f2d26577c295aa
    11 Nb260ad83fc9d40038bbf875ac275bd0a
    12 Nbc77c5167eb840ee9f48cee40d14f940
    13 Neeeecba7645f42b6b9b5cfe1e84b2c9a
    14 Nf6a205a2cfe74442b5b0f03fd5993363
    15 Nfb3ea7d337ff43deb8ef8f65a9654bec
    16 anzsrc-for:06
    17 anzsrc-for:0601
    18 schema:author N527f989a8c3647a98a847155488a4dc8
    19 schema:citation sg:pub.10.1038/nbt0393-381
    20 schema:datePublished 1996-05
    21 schema:datePublishedReg 1996-05-01
    22 schema:description Glucose is the preferred substrate for certain fermentation processes. During its internalization and concomitant formation of glucose-6-phosphate through the glucose phosphotransferase system (PTS), one molecule of phosphoenolpyruvate (PEP) is consumed. Together with erythrose 4-phosphate (E4P), PEP is condensed to form 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAMP), the first intermediate of the common segment of the aromatic pathway. From this metabolic route, several commercially important aromatic compounds can be obtained. We have selected Escherichia coli mutants that can transport glucose efficiently by a non-PTS uptake system. In theory, this process should increase the availability of PEP for other biosynthetic reactions. Using these mutants, in a background where the DAMP synthase (the enzyme that catalyzes the condensation of PEP and E4P into DAMP) was amplified, we were able to show that at least some of the PEP saved during glucose transport, can be redirected into the aromatic pathway. This increased carbon commitment to the aromatic pathway was enhanced still further upon amplification of the E. coli tktA gene that encodes for a transketolase involved in the biosynthesis of E4P.
    23 schema:genre article
    24 schema:isAccessibleForFree false
    25 schema:isPartOf N5d194eb13bb84319a4ddc96472cd8fa6
    26 N5fb86078eb28486e8a14bcad87467f70
    27 sg:journal.1115214
    28 schema:keywords E4P.
    29 Escherichia coli
    30 Escherichia coli mutants
    31 amplification
    32 aromatic compounds
    33 aromatic pathway
    34 availability
    35 availability of phosphoenolpyruvate
    36 background
    37 biosynthesis
    38 biosynthetic reactions
    39 carbon commitment
    40 certain fermentation processes
    41 coli
    42 coli mutants
    43 commitment
    44 common segment
    45 compounds
    46 concomitant formation
    47 erythrose
    48 fermentation process
    49 first intermediate
    50 formation
    51 genes
    52 glucose
    53 glucose phosphotransferase system
    54 glucose transport
    55 heptulosonate
    56 important aromatic compounds
    57 intermediates
    58 internalization
    59 metabolic routes
    60 molecules
    61 molecules of phosphoenolpyruvate
    62 mutants
    63 non-PTS uptake system
    64 pathway
    65 phosphoenolpyruvate
    66 phosphotransferase system
    67 preferred substrate
    68 process
    69 production
    70 reaction
    71 route
    72 segments
    73 substrate
    74 synthase
    75 system
    76 theory
    77 tktA gene
    78 transketolase
    79 transport
    80 uptake system
    81 schema:name Pathway engineering for the production of aromatic compounds in Escherichia coli
    82 schema:pagination 620-623
    83 schema:productId N2e59109844474ad187de1df630cdd80f
    84 N46af88c2935f4fc6bd487a6ee2695015
    85 N9a10db3ab945443abb64d7257984f717
    86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034507677
    87 https://doi.org/10.1038/nbt0596-620
    88 schema:sdDatePublished 2022-10-01T06:30
    89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    90 schema:sdPublisher Nfcaf727d8d234d47b43aab12281818dd
    91 schema:url https://doi.org/10.1038/nbt0596-620
    92 sgo:license sg:explorer/license/
    93 sgo:sdDataset articles
    94 rdf:type schema:ScholarlyArticle
    95 N011809cc8c6147809388c8b25c2293f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    96 schema:name Hydrocarbons, Aromatic
    97 rdf:type schema:DefinedTerm
    98 N11e549a68bed4f6da2f26e791009c3b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    99 schema:name Transketolase
    100 rdf:type schema:DefinedTerm
    101 N2e59109844474ad187de1df630cdd80f schema:name pubmed_id
    102 schema:value 9630954
    103 rdf:type schema:PropertyValue
    104 N3ba5b7088a8248cba77723cf4c9e5947 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    105 schema:name Phosphoenolpyruvate
    106 rdf:type schema:DefinedTerm
    107 N46af88c2935f4fc6bd487a6ee2695015 schema:name dimensions_id
    108 schema:value pub.1034507677
    109 rdf:type schema:PropertyValue
    110 N527f989a8c3647a98a847155488a4dc8 rdf:first Ne389b89bbb4f4dac84e1ac3420132f51
    111 rdf:rest Nbc6e39e7079442bf83ebe2b4d2ad9185
    112 N597d580efdb84da2837d391bfb211536 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Glucose
    114 rdf:type schema:DefinedTerm
    115 N5d194eb13bb84319a4ddc96472cd8fa6 schema:volumeNumber 14
    116 rdf:type schema:PublicationVolume
    117 N5fb86078eb28486e8a14bcad87467f70 schema:issueNumber 5
    118 rdf:type schema:PublicationIssue
    119 N633706c166b94aa9865e0964c9b60d84 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    120 schema:name Phenotype
    121 rdf:type schema:DefinedTerm
    122 N6aad00ba0e1c4f7db2e6fa334fac5e16 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name Biotechnology
    124 rdf:type schema:DefinedTerm
    125 N6c50dc9c263f439b8cccbd2fb30c167d rdf:first sg:person.01025503676.75
    126 rdf:rest N8a9dc723df1b46748d2d0937a3051b12
    127 N73b2fb8b2a0d4130be0e7de0d4c905ec schema:affiliation grid-institutes:None
    128 schema:familyName Berry
    129 schema:givenName Alan
    130 rdf:type schema:Person
    131 N77e70a1b7b7c40d5944247c4723b8f80 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Biological Transport, Active
    133 rdf:type schema:DefinedTerm
    134 N82ffec5df4414a3fafc37187a50fe000 schema:affiliation grid-institutes:None
    135 schema:familyName Xiao
    136 schema:givenName Jimmy
    137 rdf:type schema:Person
    138 N8a9dc723df1b46748d2d0937a3051b12 rdf:first sg:person.01017375141.03
    139 rdf:rest rdf:nil
    140 N8e7c5ade8e2d47e3bdc33a45cc943762 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Escherichia coli
    142 rdf:type schema:DefinedTerm
    143 N9a10db3ab945443abb64d7257984f717 schema:name doi
    144 schema:value 10.1038/nbt0596-620
    145 rdf:type schema:PropertyValue
    146 Na0f32314f2bb4520b438e616b2f57b57 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Sugar Phosphates
    148 rdf:type schema:DefinedTerm
    149 Naac6284f3f094cc7b9f2d26577c295aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Genetic Engineering
    151 rdf:type schema:DefinedTerm
    152 Nb17cb8d1af624a62ab84cf3f57eb1dfd rdf:first N73b2fb8b2a0d4130be0e7de0d4c905ec
    153 rdf:rest N6c50dc9c263f439b8cccbd2fb30c167d
    154 Nb260ad83fc9d40038bbf875ac275bd0a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    155 schema:name Mutation
    156 rdf:type schema:DefinedTerm
    157 Nbc6e39e7079442bf83ebe2b4d2ad9185 rdf:first N82ffec5df4414a3fafc37187a50fe000
    158 rdf:rest Nb17cb8d1af624a62ab84cf3f57eb1dfd
    159 Nbc77c5167eb840ee9f48cee40d14f940 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    160 schema:name Genes, Bacterial
    161 rdf:type schema:DefinedTerm
    162 Ne389b89bbb4f4dac84e1ac3420132f51 schema:affiliation grid-institutes:grid.9486.3
    163 schema:familyName Floras
    164 schema:givenName Noemí
    165 rdf:type schema:Person
    166 Neeeecba7645f42b6b9b5cfe1e84b2c9a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    167 schema:name Phosphoenolpyruvate Sugar Phosphotransferase System
    168 rdf:type schema:DefinedTerm
    169 Nf6a205a2cfe74442b5b0f03fd5993363 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name 3-Deoxy-7-Phosphoheptulonate Synthase
    171 rdf:type schema:DefinedTerm
    172 Nfb3ea7d337ff43deb8ef8f65a9654bec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    173 schema:name Plasmids
    174 rdf:type schema:DefinedTerm
    175 Nfcaf727d8d234d47b43aab12281818dd schema:name Springer Nature - SN SciGraph project
    176 rdf:type schema:Organization
    177 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    178 schema:name Biological Sciences
    179 rdf:type schema:DefinedTerm
    180 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    181 schema:name Biochemistry and Cell Biology
    182 rdf:type schema:DefinedTerm
    183 sg:journal.1115214 schema:issn 1087-0156
    184 1546-1696
    185 schema:name Nature Biotechnology
    186 schema:publisher Springer Nature
    187 rdf:type schema:Periodical
    188 sg:person.01017375141.03 schema:affiliation grid-institutes:grid.9486.3
    189 schema:familyName Valle
    190 schema:givenName Fernando
    191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017375141.03
    192 rdf:type schema:Person
    193 sg:person.01025503676.75 schema:affiliation grid-institutes:grid.9486.3
    194 schema:familyName Bolivar
    195 schema:givenName Francisco
    196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025503676.75
    197 rdf:type schema:Person
    198 sg:pub.10.1038/nbt0393-381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025120594
    199 https://doi.org/10.1038/nbt0393-381
    200 rdf:type schema:CreativeWork
    201 grid-institutes:None schema:alternateName Genencor International Inc., 180 Kimball Way, 94080, South San Francisco, CA
    202 schema:name Genencor International Inc., 180 Kimball Way, 94080, South San Francisco, CA
    203 rdf:type schema:Organization
    204 grid-institutes:grid.9486.3 schema:alternateName Institute de Biotecnología, Universidad National Autónoma de México, Apdo. Postal 510–3, 62250, Cuernavaca, Morelos, México
    205 schema:name Institute de Biotecnología, Universidad National Autónoma de México, Apdo. Postal 510–3, 62250, Cuernavaca, Morelos, México
    206 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...