Pathway engineering for the production of aromatic compounds in Escherichia coli View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1996-05

AUTHORS

Noemí Floras, Jimmy Xiao, Alan Berry, Francisco Bolivar, Fernando Valle

ABSTRACT

Glucose is the preferred substrate for certain fermentation processes. During its internalization and concomitant formation of glucose-6-phosphate through the glucose phosphotransferase system (PTS), one molecule of phosphoenolpyruvate (PEP) is consumed. Together with erythrose 4-phosphate (E4P), PEP is condensed to form 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAMP), the first intermediate of the common segment of the aromatic pathway. From this metabolic route, several commercially important aromatic compounds can be obtained. We have selected Escherichia coli mutants that can transport glucose efficiently by a non-PTS uptake system. In theory, this process should increase the availability of PEP for other biosynthetic reactions. Using these mutants, in a background where the DAMP synthase (the enzyme that catalyzes the condensation of PEP and E4P into DAMP) was amplified, we were able to show that at least some of the PEP saved during glucose transport, can be redirected into the aromatic pathway. This increased carbon commitment to the aromatic pathway was enhanced still further upon amplification of the E. coli tktA gene that encodes for a transketolase involved in the biosynthesis of E4P. More... »

PAGES

620-623

Journal

TITLE

Nature Biotechnology

ISSUE

5

VOLUME

14

Related Patents

  • Cell-Free Preparation Of Carbapenems
  • Cell-Free Production Of Ribonucleic Acid
  • Polypeptides And Biosynthetic Pathways For The Production Of Stereoisomers Of Monatin And Their Precursors
  • Manufacture Of Five-Carbon Sugars And Sugar Alcohols
  • Methods And Compositions For Producing Solvents
  • Glucose Transport Mutants For Production Of Biomaterial
  • Methods For Identifying Bacterial Strains That Produce L-Tyrosine
  • Products And Methods For In Vivo Secretion Of Monatin
  • Aldolases, Nucleic Acids Encoding Them And Methods For Making And Using Them
  • Cell-Free Production Of Sugars
  • Improved Muconic Acid Production From Genetically Engineered Microorganisms
  • Generation Of Ascorbic Acid Intermediate In Recombinant Cell; Obtain Cells, Transform With Vector Containg Polypeptides, Recover Transformed Cells, Propagate, Expression Vector, Recover Polypeptide
  • Cell-Free Production Of Sugars
  • Contacting A Polypeptide With Tryptophan Or 2-Hydroxy 2-(Indol-3-Ylmethyl)-4-Keto Glutaric Acid To Facilitate A Conversion Of Tryptophan To Indole-3-Pyruvate, A Conversion Of 2-Hydroxy 2-(Indol-3-Ylmethyl)-4-Keto Glutaric Acid To 2-Hydroxy-2-(Indol-3-Ylmethyl)-4-Aminoglutaric Acid (Monatin)
  • Methods For Control Of Flux In Metabolic Pathways Through Enzyme Relocation
  • Methods And Compositions For Producing Solvents
  • Production Of Muconic Acid From Genetically Engineered Microorganisms
  • Production Of Muconic Acid From Genetically Engineered Microorganisms
  • Culturing Bacterial Cells With Increased Amounts Of Nadph To Produce L-Amino Acids; Mutation By Insertion, Deletion Or Substitution
  • Methods For Producing L-Amino Acids Using A Corynebacterium Glutamicum With A Disrupted Pgi Gene
  • Recombinant Cellular Iysate System For Producing A Product Of Interest
  • Products And Methods For In Vivo Secretion Of Monatin
  • Methods For Control Of Flux In Metabolic Pathways
  • Polypeptides And Biosynthetic Pathways For The Production Of Monatin And Its Precursors
  • Process For Producing Glycerol In Recombinant Bacterial Host Cells
  • Polypeptides And Biosynthetic Pathways For The Production Of Stereoisomers Of Monatin And Their Precursors
  • Glucose Valve And Other Metabolite Valves
  • Engineered Proteins With A Protease Cleavage Site
  • Cell-Free System For Converting Methane Into Fuel And Chemical Compounds
  • Nucleotide Sequences Coding Amino Acid For Use In Human Medicines And Nutrient Broths
  • Methods And Compositions For Nucleoside Triphosphate And Ribonucleic Acid Production
  • Contacting A Polypeptide With Tryptophan Or 2-Hydroxy 2-(Indol-3-Ylmethyl)-4-Keto Glutaric Acid To Facilitate A Conversion Of Tryptophan To Indole-3-Pyruvate, A Conversion Of 2-Hydroxy 2-(Indol-3-Ylmethyl)-4-Keto Glutaric Acid To 2-Hydroxy-2-(Indol-3-Ylmethyl)-4-Aminoglutaric Acid (Monatin)
  • Cell-Free Production Of Sugars
  • Engineered Phosphoglucose Isomerase Proteins With A Protease Cleavage Site
  • Glucose Transport Mutants For Production Of Biomaterial
  • Methods And Compositions For Producing Solvents
  • Cell-Free Production Of Ribonucleic Acid
  • Methods For Control Of Flux In Metabolic Pathways Through Protease Manipulation
  • Production Of Bacterial Strains
  • Methods For Control Of Flux In Metabolic Pathways Through Enzyme Relocation
  • Production Of Monatin And Monatin Precursors
  • Method Of Uncoupling The Catabolic Pathway Of Glycolysis From The Oxidative Membrane Bound Pathway Of Glucose Conversion
  • Reacting D-Tryptophan And One Or More D-Aminotransferases Chosen From A Bacillus Halodurans D-Aminotransferase, A Hybrid D-Aminotransferase, To Form Indole-3-Pyruvate, Indole-3-Pyruvate Is Converted To 2-Hydroxy-2-(Indoly-3-Ylmethyl)-4-Keto Glutaric Acid (Mp), And Mp Is Converted To Monatin
  • Polypeptides And Biosynthetic Pathways For The Production Of Monatin And Its Precursors
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nbt0596-620

    DOI

    http://dx.doi.org/10.1038/nbt0596-620

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1034507677

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/9630954


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "3-Deoxy-7-Phosphoheptulonate Synthase", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biological Transport, Active", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Escherichia coli", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genes, Bacterial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Glucose", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hydrocarbons, Aromatic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mutation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phenotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phosphoenolpyruvate", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phosphoenolpyruvate Sugar Phosphotransferase System", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Plasmids", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sugar Phosphates", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transketolase", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute de Biotecnolog\u00eda, Universidad National Aut\u00f3noma de M\u00e9xico, Apdo. Postal 510\u20133, 62250, Cuernavaca, Morelos, M\u00e9xico", 
              "id": "http://www.grid.ac/institutes/grid.9486.3", 
              "name": [
                "Institute de Biotecnolog\u00eda, Universidad National Aut\u00f3noma de M\u00e9xico, Apdo. Postal 510\u20133, 62250, Cuernavaca, Morelos, M\u00e9xico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Floras", 
            "givenName": "Noem\u00ed", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Genencor International Inc., 180 Kimball Way, 94080, South San Francisco, CA", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Genencor International Inc., 180 Kimball Way, 94080, South San Francisco, CA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xiao", 
            "givenName": "Jimmy", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Genencor International Inc., 180 Kimball Way, 94080, South San Francisco, CA", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Genencor International Inc., 180 Kimball Way, 94080, South San Francisco, CA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Berry", 
            "givenName": "Alan", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute de Biotecnolog\u00eda, Universidad National Aut\u00f3noma de M\u00e9xico, Apdo. Postal 510\u20133, 62250, Cuernavaca, Morelos, M\u00e9xico", 
              "id": "http://www.grid.ac/institutes/grid.9486.3", 
              "name": [
                "Institute de Biotecnolog\u00eda, Universidad National Aut\u00f3noma de M\u00e9xico, Apdo. Postal 510\u20133, 62250, Cuernavaca, Morelos, M\u00e9xico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bolivar", 
            "givenName": "Francisco", 
            "id": "sg:person.01025503676.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025503676.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute de Biotecnolog\u00eda, Universidad National Aut\u00f3noma de M\u00e9xico, Apdo. Postal 510\u20133, 62250, Cuernavaca, Morelos, M\u00e9xico", 
              "id": "http://www.grid.ac/institutes/grid.9486.3", 
              "name": [
                "Institute de Biotecnolog\u00eda, Universidad National Aut\u00f3noma de M\u00e9xico, Apdo. Postal 510\u20133, 62250, Cuernavaca, Morelos, M\u00e9xico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Valle", 
            "givenName": "Fernando", 
            "id": "sg:person.01017375141.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017375141.03"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nbt0393-381", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025120594", 
              "https://doi.org/10.1038/nbt0393-381"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1996-05", 
        "datePublishedReg": "1996-05-01", 
        "description": "Glucose is the preferred substrate for certain fermentation processes. During its internalization and concomitant formation of glucose-6-phosphate through the glucose phosphotransferase system (PTS), one molecule of phosphoenolpyruvate (PEP) is consumed. Together with erythrose 4-phosphate (E4P), PEP is condensed to form 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAMP), the first intermediate of the common segment of the aromatic pathway. From this metabolic route, several commercially important aromatic compounds can be obtained. We have selected Escherichia coli mutants that can transport glucose efficiently by a non-PTS uptake system. In theory, this process should increase the availability of PEP for other biosynthetic reactions. Using these mutants, in a background where the DAMP synthase (the enzyme that catalyzes the condensation of PEP and E4P into DAMP) was amplified, we were able to show that at least some of the PEP saved during glucose transport, can be redirected into the aromatic pathway. This increased carbon commitment to the aromatic pathway was enhanced still further upon amplification of the E. coli tktA gene that encodes for a transketolase involved in the biosynthesis of E4P.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nbt0596-620", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1115214", 
            "issn": [
              "1087-0156", 
              "1546-1696"
            ], 
            "name": "Nature Biotechnology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "14"
          }
        ], 
        "keywords": [
          "phosphotransferase system", 
          "aromatic pathway", 
          "non-PTS uptake system", 
          "certain fermentation processes", 
          "Escherichia coli mutants", 
          "glucose phosphotransferase system", 
          "availability of phosphoenolpyruvate", 
          "tktA gene", 
          "coli mutants", 
          "biosynthetic reactions", 
          "preferred substrate", 
          "uptake system", 
          "phosphoenolpyruvate", 
          "Escherichia coli", 
          "glucose transport", 
          "metabolic routes", 
          "mutants", 
          "pathway", 
          "fermentation process", 
          "first intermediate", 
          "molecules of phosphoenolpyruvate", 
          "important aromatic compounds", 
          "aromatic compounds", 
          "heptulosonate", 
          "biosynthesis", 
          "E4P.", 
          "genes", 
          "carbon commitment", 
          "common segment", 
          "coli", 
          "synthase", 
          "transketolase", 
          "internalization", 
          "concomitant formation", 
          "erythrose", 
          "amplification", 
          "glucose", 
          "molecules", 
          "intermediates", 
          "substrate", 
          "availability", 
          "production", 
          "compounds", 
          "transport", 
          "formation", 
          "process", 
          "segments", 
          "system", 
          "background", 
          "reaction", 
          "route", 
          "commitment", 
          "theory"
        ], 
        "name": "Pathway engineering for the production of aromatic compounds in Escherichia coli", 
        "pagination": "620-623", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1034507677"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nbt0596-620"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "9630954"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nbt0596-620", 
          "https://app.dimensions.ai/details/publication/pub.1034507677"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_278.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nbt0596-620"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nbt0596-620'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nbt0596-620'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nbt0596-620'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nbt0596-620'


     

    This table displays all metadata directly associated to this object as RDF triples.

    206 TRIPLES      21 PREDICATES      95 URIs      86 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nbt0596-620 schema:about N08e327735295469992b106a80b96e6f2
    2 N1f39a50eaafb4ab681bb0b81e2c35ece
    3 N23b64c10d03c42e5bed2b8203d6b0e08
    4 N4abd71f0c7954f3fb082f87b47b90e73
    5 N5c87ea4409064cc6b7161253a90e280e
    6 N606430d7c0b04dbca7b71b1a84ba31d8
    7 N98b72017df6b47f7b5b5278dcfc1f5ee
    8 Naf5be2f0efd346b3b5aca1a11f1cb911
    9 Nc4531660c97f4cc4a68bfb85cd0d0b78
    10 Nc818989a02c84f3eb9d89146a3a29efc
    11 Ncc42b807fdf644b8acd8cb6ae2100620
    12 Nd88f18622f504a3888e6c92cee24e50b
    13 Nda1c9f7970b74e19ae68cdc96f0881a8
    14 Nf48b4a0b122d47a1a1a6ea6e28af7ecc
    15 Nff5da747f29a42ab968d7ee409aff3ea
    16 anzsrc-for:06
    17 anzsrc-for:0601
    18 schema:author Nc677ec8fcfdf413ba97a3cce3ceab165
    19 schema:citation sg:pub.10.1038/nbt0393-381
    20 schema:datePublished 1996-05
    21 schema:datePublishedReg 1996-05-01
    22 schema:description Glucose is the preferred substrate for certain fermentation processes. During its internalization and concomitant formation of glucose-6-phosphate through the glucose phosphotransferase system (PTS), one molecule of phosphoenolpyruvate (PEP) is consumed. Together with erythrose 4-phosphate (E4P), PEP is condensed to form 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAMP), the first intermediate of the common segment of the aromatic pathway. From this metabolic route, several commercially important aromatic compounds can be obtained. We have selected Escherichia coli mutants that can transport glucose efficiently by a non-PTS uptake system. In theory, this process should increase the availability of PEP for other biosynthetic reactions. Using these mutants, in a background where the DAMP synthase (the enzyme that catalyzes the condensation of PEP and E4P into DAMP) was amplified, we were able to show that at least some of the PEP saved during glucose transport, can be redirected into the aromatic pathway. This increased carbon commitment to the aromatic pathway was enhanced still further upon amplification of the E. coli tktA gene that encodes for a transketolase involved in the biosynthesis of E4P.
    23 schema:genre article
    24 schema:isAccessibleForFree false
    25 schema:isPartOf N7c4d16d26fb4488da7afbdf85542cbd9
    26 Nd4ec5e91302143a28a6c633b273da3dc
    27 sg:journal.1115214
    28 schema:keywords E4P.
    29 Escherichia coli
    30 Escherichia coli mutants
    31 amplification
    32 aromatic compounds
    33 aromatic pathway
    34 availability
    35 availability of phosphoenolpyruvate
    36 background
    37 biosynthesis
    38 biosynthetic reactions
    39 carbon commitment
    40 certain fermentation processes
    41 coli
    42 coli mutants
    43 commitment
    44 common segment
    45 compounds
    46 concomitant formation
    47 erythrose
    48 fermentation process
    49 first intermediate
    50 formation
    51 genes
    52 glucose
    53 glucose phosphotransferase system
    54 glucose transport
    55 heptulosonate
    56 important aromatic compounds
    57 intermediates
    58 internalization
    59 metabolic routes
    60 molecules
    61 molecules of phosphoenolpyruvate
    62 mutants
    63 non-PTS uptake system
    64 pathway
    65 phosphoenolpyruvate
    66 phosphotransferase system
    67 preferred substrate
    68 process
    69 production
    70 reaction
    71 route
    72 segments
    73 substrate
    74 synthase
    75 system
    76 theory
    77 tktA gene
    78 transketolase
    79 transport
    80 uptake system
    81 schema:name Pathway engineering for the production of aromatic compounds in Escherichia coli
    82 schema:pagination 620-623
    83 schema:productId N3b216f8d72a84662ad425151773ff5e4
    84 N3e5814a7e99744c681575529d578cc47
    85 Na215cc38406346648b56a3cd6a290c73
    86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034507677
    87 https://doi.org/10.1038/nbt0596-620
    88 schema:sdDatePublished 2022-10-01T06:30
    89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    90 schema:sdPublisher N7c45e7086582438daee699c37e25e351
    91 schema:url https://doi.org/10.1038/nbt0596-620
    92 sgo:license sg:explorer/license/
    93 sgo:sdDataset articles
    94 rdf:type schema:ScholarlyArticle
    95 N02365a3c84ca4656966821b532473693 rdf:first sg:person.01017375141.03
    96 rdf:rest rdf:nil
    97 N08e327735295469992b106a80b96e6f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    98 schema:name Phenotype
    99 rdf:type schema:DefinedTerm
    100 N0f01827b1ba9454b93d3c0c4e71bb568 rdf:first sg:person.01025503676.75
    101 rdf:rest N02365a3c84ca4656966821b532473693
    102 N1f39a50eaafb4ab681bb0b81e2c35ece schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Phosphoenolpyruvate
    104 rdf:type schema:DefinedTerm
    105 N23b64c10d03c42e5bed2b8203d6b0e08 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    106 schema:name Hydrocarbons, Aromatic
    107 rdf:type schema:DefinedTerm
    108 N2880f18b62b840ce815e546b6abde259 rdf:first N8247683c31d14dc096604d450724cfba
    109 rdf:rest N0f01827b1ba9454b93d3c0c4e71bb568
    110 N3b216f8d72a84662ad425151773ff5e4 schema:name dimensions_id
    111 schema:value pub.1034507677
    112 rdf:type schema:PropertyValue
    113 N3e5814a7e99744c681575529d578cc47 schema:name pubmed_id
    114 schema:value 9630954
    115 rdf:type schema:PropertyValue
    116 N43e05739307341eca950923be69ca611 schema:affiliation grid-institutes:None
    117 schema:familyName Xiao
    118 schema:givenName Jimmy
    119 rdf:type schema:Person
    120 N4abd71f0c7954f3fb082f87b47b90e73 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Phosphoenolpyruvate Sugar Phosphotransferase System
    122 rdf:type schema:DefinedTerm
    123 N545ee08e61f04716a7a12b08f6b8296b schema:affiliation grid-institutes:grid.9486.3
    124 schema:familyName Floras
    125 schema:givenName Noemí
    126 rdf:type schema:Person
    127 N5c87ea4409064cc6b7161253a90e280e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Sugar Phosphates
    129 rdf:type schema:DefinedTerm
    130 N606430d7c0b04dbca7b71b1a84ba31d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Biotechnology
    132 rdf:type schema:DefinedTerm
    133 N7c45e7086582438daee699c37e25e351 schema:name Springer Nature - SN SciGraph project
    134 rdf:type schema:Organization
    135 N7c4d16d26fb4488da7afbdf85542cbd9 schema:issueNumber 5
    136 rdf:type schema:PublicationIssue
    137 N8247683c31d14dc096604d450724cfba schema:affiliation grid-institutes:None
    138 schema:familyName Berry
    139 schema:givenName Alan
    140 rdf:type schema:Person
    141 N98b72017df6b47f7b5b5278dcfc1f5ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Genetic Engineering
    143 rdf:type schema:DefinedTerm
    144 Na215cc38406346648b56a3cd6a290c73 schema:name doi
    145 schema:value 10.1038/nbt0596-620
    146 rdf:type schema:PropertyValue
    147 Naf5be2f0efd346b3b5aca1a11f1cb911 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Genes, Bacterial
    149 rdf:type schema:DefinedTerm
    150 Nc4531660c97f4cc4a68bfb85cd0d0b78 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Escherichia coli
    152 rdf:type schema:DefinedTerm
    153 Nc677ec8fcfdf413ba97a3cce3ceab165 rdf:first N545ee08e61f04716a7a12b08f6b8296b
    154 rdf:rest Ndee2b263887a496087f70d52e09605c4
    155 Nc818989a02c84f3eb9d89146a3a29efc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Glucose
    157 rdf:type schema:DefinedTerm
    158 Ncc42b807fdf644b8acd8cb6ae2100620 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Mutation
    160 rdf:type schema:DefinedTerm
    161 Nd4ec5e91302143a28a6c633b273da3dc schema:volumeNumber 14
    162 rdf:type schema:PublicationVolume
    163 Nd88f18622f504a3888e6c92cee24e50b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name 3-Deoxy-7-Phosphoheptulonate Synthase
    165 rdf:type schema:DefinedTerm
    166 Nda1c9f7970b74e19ae68cdc96f0881a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    167 schema:name Transketolase
    168 rdf:type schema:DefinedTerm
    169 Ndee2b263887a496087f70d52e09605c4 rdf:first N43e05739307341eca950923be69ca611
    170 rdf:rest N2880f18b62b840ce815e546b6abde259
    171 Nf48b4a0b122d47a1a1a6ea6e28af7ecc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    172 schema:name Biological Transport, Active
    173 rdf:type schema:DefinedTerm
    174 Nff5da747f29a42ab968d7ee409aff3ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    175 schema:name Plasmids
    176 rdf:type schema:DefinedTerm
    177 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    178 schema:name Biological Sciences
    179 rdf:type schema:DefinedTerm
    180 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    181 schema:name Biochemistry and Cell Biology
    182 rdf:type schema:DefinedTerm
    183 sg:journal.1115214 schema:issn 1087-0156
    184 1546-1696
    185 schema:name Nature Biotechnology
    186 schema:publisher Springer Nature
    187 rdf:type schema:Periodical
    188 sg:person.01017375141.03 schema:affiliation grid-institutes:grid.9486.3
    189 schema:familyName Valle
    190 schema:givenName Fernando
    191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017375141.03
    192 rdf:type schema:Person
    193 sg:person.01025503676.75 schema:affiliation grid-institutes:grid.9486.3
    194 schema:familyName Bolivar
    195 schema:givenName Francisco
    196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025503676.75
    197 rdf:type schema:Person
    198 sg:pub.10.1038/nbt0393-381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025120594
    199 https://doi.org/10.1038/nbt0393-381
    200 rdf:type schema:CreativeWork
    201 grid-institutes:None schema:alternateName Genencor International Inc., 180 Kimball Way, 94080, South San Francisco, CA
    202 schema:name Genencor International Inc., 180 Kimball Way, 94080, South San Francisco, CA
    203 rdf:type schema:Organization
    204 grid-institutes:grid.9486.3 schema:alternateName Institute de Biotecnología, Universidad National Autónoma de México, Apdo. Postal 510–3, 62250, Cuernavaca, Morelos, México
    205 schema:name Institute de Biotecnología, Universidad National Autónoma de México, Apdo. Postal 510–3, 62250, Cuernavaca, Morelos, México
    206 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...