Pathway engineering for the production of aromatic compounds in Escherichia coli View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1996-05

AUTHORS

N Flores, J Xiao, A Berry, F Bolivar, F Valle

ABSTRACT

Glucose is the preferred substrate for certain fermentation processes. During its internalization and concomitant formation of glucose-6-phosphate through the glucose phosphotransferase system (PTS), one molecule of phosphoenolpyruvate (PEP) is consumed. Together with erythrose 4-phosphate (E4P), PEP is condensed to form 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP), the first intermediate of the common segment of the aromatic pathway. From this metabolic route, several commercially important aromatic compounds can be obtained. We have selected Escherichia coli mutants that can transport glucose efficiently by a non-PTS uptake system. In theory, this process should increase the availability of PEP for other biosynthetic reactions. Using these mutants, in a background where the DAHP synthase (the enzyme that catalyzes the condensation of PEP and E4P into DAHP) was amplified, we were able to show that at least some of the PEP saved during glucose transport, can be redirected into the aromatic pathway. This increased carbon commitment to the aromatic pathway was enhanced still further upon amplification of the E. coli tktA gene that encodes for a transketolase involved in the biosynthesis of E4P. More... »

PAGES

620

Journal

TITLE

Nature Biotechnology

ISSUE

5

VOLUME

14

Related Patents

  • Cell-Free Preparation Of Carbapenems
  • Manufacture Of Five-Carbon Sugars And Sugar Alcohols
  • Aldolases, Nucleic Acids Encoding Them And Methods For Making And Using Them
  • Products And Methods For In Vivo Secretion Of Monatin
  • Polypeptides And Biosynthetic Pathways For The Production Of Stereoisomers Of Monatin And Their Precursors
  • Methods For Identifying Bacterial Strains That Produce L-Tyrosine
  • Glucose Transport Mutants For Production Of Biomaterial
  • Methods And Compositions For Producing Solvents
  • Methods For Control Of Flux In Metabolic Pathways Through Enzyme Relocation
  • Methods For The Production Of Products In Host Cells
  • Polypeptides And Biosynthetic Pathways For The Production Of Monatin And Its Precursors
  • Production Of Muconic Acid From Genetically Engineered Microorganisms
  • Polypeptides And Biosynthetic Pathways For The Production Of Monatin And Its Precursors
  • Methods For Control Of Flux In Metabolic Pathways
  • Glucose Valve And Other Metabolite Valves
  • Polypeptides And Biosynthetic Pathways For The Production Of Stereoisomers Of Monatin And Their Precursors
  • Products And Methods For In Vivo Secretion Of Monatin
  • Process For Producing Glycerol In Recombinant Bacterial Host Cells
  • Recombinant Cellular Iysate System For Producing A Product Of Interest
  • Gene Encoding Phosphoglucoisomerase
  • Methods For Producing L-Amino Acids Using A Corynebacterium Glutamicum With A Disrupted Pgi Gene
  • Engineered Phosphoglucose Isomerase Proteins With A Protease Cleavage Site
  • Methods And Compositions For Producing Solvents
  • Polypeptides And Biosynthetic Pathways For The Production Of Monatin And Its Precursors
  • Gene Encoding Phosphoglucoisomerase
  • Cell-Free System For Converting Methane Into Fuel And Chemical Compounds
  • Glucose Transport Mutants For Production Of Biomaterial
  • Methods For Control Of Flux In Metabolic Pathways Through Protease Manipulation
  • Method Of Uncoupling The Catabolic Pathway Of Glycolysis From The Oxidative Membrane Bound Pathway Of Glucose Conversion
  • Methods For Control Of Flux In Metabolic Pathways Through Enzyme Relocation
  • Production Of Bacterial Strains
  • Production Of Monatin And Monatin Precursors
  • Polypeptides And Biosynthetic Pathways For The Production Of Stereoisomers Of Monatin And Their Precursors
  • Polypeptides And Biosynthetic Pathways For The Production Of Monatin And Its Precursors
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nbt0596-620

    DOI

    http://dx.doi.org/10.1038/nbt0596-620

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1034507677

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/9630954


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "3-Deoxy-7-Phosphoheptulonate Synthase", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biological Transport, Active", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Escherichia coli", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genes, Bacterial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Glucose", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hydrocarbons, Aromatic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mutation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phenotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phosphoenolpyruvate", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phosphoenolpyruvate Sugar Phosphotransferase System", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Plasmids", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sugar Phosphates", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transketolase", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National Autonomous University of Mexico", 
              "id": "https://www.grid.ac/institutes/grid.9486.3", 
              "name": [
                "Instituto de Biotecnolog\u00eda, Universidad Nacional Aut\u00f3noma de M\u00e9xico, Cuernavaca, Morelos, M\u00e9xico."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Flores", 
            "givenName": "N", 
            "id": "sg:person.01163350514.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163350514.55"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Xiao", 
            "givenName": "J", 
            "type": "Person"
          }, 
          {
            "familyName": "Berry", 
            "givenName": "A", 
            "type": "Person"
          }, 
          {
            "familyName": "Bolivar", 
            "givenName": "F", 
            "id": "sg:person.01025503676.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025503676.75"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Valle", 
            "givenName": "F", 
            "id": "sg:person.01017375141.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017375141.03"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/b978-0-12-152828-7.50004-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002966164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2958.1995.tb02339.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004129611"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(85)90120-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017120147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(85)90120-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017120147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bit.260460409", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023265401"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0393-381", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025120594", 
              "https://doi.org/10.1038/nbt0393-381"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(90)90110-d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026444897"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(90)90110-d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026444897"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja00036a050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055701025"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1099/00221287-137-8-1775", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060368106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.177.19.5719-5722.1995", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062724187"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1075910273", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077678141", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079624627", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1080446672", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082599153", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1996-05", 
        "datePublishedReg": "1996-05-01", 
        "description": "Glucose is the preferred substrate for certain fermentation processes. During its internalization and concomitant formation of glucose-6-phosphate through the glucose phosphotransferase system (PTS), one molecule of phosphoenolpyruvate (PEP) is consumed. Together with erythrose 4-phosphate (E4P), PEP is condensed to form 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP), the first intermediate of the common segment of the aromatic pathway. From this metabolic route, several commercially important aromatic compounds can be obtained. We have selected Escherichia coli mutants that can transport glucose efficiently by a non-PTS uptake system. In theory, this process should increase the availability of PEP for other biosynthetic reactions. Using these mutants, in a background where the DAHP synthase (the enzyme that catalyzes the condensation of PEP and E4P into DAHP) was amplified, we were able to show that at least some of the PEP saved during glucose transport, can be redirected into the aromatic pathway. This increased carbon commitment to the aromatic pathway was enhanced still further upon amplification of the E. coli tktA gene that encodes for a transketolase involved in the biosynthesis of E4P.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nbt0596-620", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1115214", 
            "issn": [
              "1087-0156", 
              "1546-1696"
            ], 
            "name": "Nature Biotechnology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "14"
          }
        ], 
        "name": "Pathway engineering for the production of aromatic compounds in Escherichia coli", 
        "pagination": "620", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a4620474d1d40250e3120289468020a530a96d3cc153351867a1845da16bd7cf"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "9630954"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9604648"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nbt0596-620"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1034507677"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nbt0596-620", 
          "https://app.dimensions.ai/details/publication/pub.1034507677"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T00:05", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000442.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nbt0596-620"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nbt0596-620'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nbt0596-620'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nbt0596-620'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nbt0596-620'


     

    This table displays all metadata directly associated to this object as RDF triples.

    189 TRIPLES      21 PREDICATES      58 URIs      36 LITERALS      24 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nbt0596-620 schema:about N190f47170fbf45f2a416f757a5bdfa26
    2 N27a49a2f697a466d8bddb5f8fc98dd50
    3 N292d09ac690445d9ae6efc3fb81404d2
    4 N4240ca21fcaa4d11909a2650136ef9eb
    5 N43fc4d991f1147febbe9b05b092494a7
    6 N5bafc2fdbfcd40f99f2a790d7a77061c
    7 N65ac3b840e804575a32cbcbe30ef5199
    8 N73119b5064774e64bc90406c631470bb
    9 N795d27f28aaa4078876ee01a044d3b1c
    10 N7c6075cf8d294d9f9e4cc7a40357d6cd
    11 N81c5e0647f5f4228882d7dd669298bdb
    12 Na3091d905a954449861947cf60f0329f
    13 Nb2c0e3e88af74d469cff11c5119a8aea
    14 Ncc1cb9e20c1e4a529bbf9e0590d3824e
    15 Nebe29ef17d1441d5a093ccb8d642cb39
    16 anzsrc-for:06
    17 anzsrc-for:0601
    18 schema:author N341e589bb5334d1e931b59cb5c885a37
    19 schema:citation sg:pub.10.1038/nbt0393-381
    20 https://app.dimensions.ai/details/publication/pub.1075910273
    21 https://app.dimensions.ai/details/publication/pub.1077678141
    22 https://app.dimensions.ai/details/publication/pub.1079624627
    23 https://app.dimensions.ai/details/publication/pub.1080446672
    24 https://app.dimensions.ai/details/publication/pub.1082599153
    25 https://doi.org/10.1002/bit.260460409
    26 https://doi.org/10.1016/0378-1119(85)90120-9
    27 https://doi.org/10.1016/0378-1119(90)90110-d
    28 https://doi.org/10.1016/b978-0-12-152828-7.50004-4
    29 https://doi.org/10.1021/ja00036a050
    30 https://doi.org/10.1099/00221287-137-8-1775
    31 https://doi.org/10.1111/j.1365-2958.1995.tb02339.x
    32 https://doi.org/10.1128/jb.177.19.5719-5722.1995
    33 schema:datePublished 1996-05
    34 schema:datePublishedReg 1996-05-01
    35 schema:description Glucose is the preferred substrate for certain fermentation processes. During its internalization and concomitant formation of glucose-6-phosphate through the glucose phosphotransferase system (PTS), one molecule of phosphoenolpyruvate (PEP) is consumed. Together with erythrose 4-phosphate (E4P), PEP is condensed to form 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP), the first intermediate of the common segment of the aromatic pathway. From this metabolic route, several commercially important aromatic compounds can be obtained. We have selected Escherichia coli mutants that can transport glucose efficiently by a non-PTS uptake system. In theory, this process should increase the availability of PEP for other biosynthetic reactions. Using these mutants, in a background where the DAHP synthase (the enzyme that catalyzes the condensation of PEP and E4P into DAHP) was amplified, we were able to show that at least some of the PEP saved during glucose transport, can be redirected into the aromatic pathway. This increased carbon commitment to the aromatic pathway was enhanced still further upon amplification of the E. coli tktA gene that encodes for a transketolase involved in the biosynthesis of E4P.
    36 schema:genre research_article
    37 schema:inLanguage en
    38 schema:isAccessibleForFree false
    39 schema:isPartOf N56d3ec89644e45af966546bf66bfb13f
    40 N96ca8e3a7ba34da2b6fe3f10e52c81ca
    41 sg:journal.1115214
    42 schema:name Pathway engineering for the production of aromatic compounds in Escherichia coli
    43 schema:pagination 620
    44 schema:productId N0dc7bd229d194610b9947625b50f6e8c
    45 N2fbc62785ad04eb2848cee1c7c9f002e
    46 N5ffbed1425844e86bb166b07795ba313
    47 Nab2b6a3336e34ed49062bfd5c96af177
    48 Nb09a0b6cda824e96ae52cc65084ef396
    49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034507677
    50 https://doi.org/10.1038/nbt0596-620
    51 schema:sdDatePublished 2019-04-11T00:05
    52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    53 schema:sdPublisher N6609066ff0dd41d9a323307522d7fb6c
    54 schema:url https://www.nature.com/articles/nbt0596-620
    55 sgo:license sg:explorer/license/
    56 sgo:sdDataset articles
    57 rdf:type schema:ScholarlyArticle
    58 N0dc7bd229d194610b9947625b50f6e8c schema:name nlm_unique_id
    59 schema:value 9604648
    60 rdf:type schema:PropertyValue
    61 N190f47170fbf45f2a416f757a5bdfa26 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    62 schema:name Mutation
    63 rdf:type schema:DefinedTerm
    64 N27a49a2f697a466d8bddb5f8fc98dd50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    65 schema:name 3-Deoxy-7-Phosphoheptulonate Synthase
    66 rdf:type schema:DefinedTerm
    67 N292d09ac690445d9ae6efc3fb81404d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    68 schema:name Plasmids
    69 rdf:type schema:DefinedTerm
    70 N2fbc62785ad04eb2848cee1c7c9f002e schema:name doi
    71 schema:value 10.1038/nbt0596-620
    72 rdf:type schema:PropertyValue
    73 N341e589bb5334d1e931b59cb5c885a37 rdf:first sg:person.01163350514.55
    74 rdf:rest Ne8f45bebbec14a349a42d441c6fd1f1d
    75 N4240ca21fcaa4d11909a2650136ef9eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    76 schema:name Phosphoenolpyruvate
    77 rdf:type schema:DefinedTerm
    78 N43fc4d991f1147febbe9b05b092494a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    79 schema:name Genes, Bacterial
    80 rdf:type schema:DefinedTerm
    81 N56d3ec89644e45af966546bf66bfb13f schema:volumeNumber 14
    82 rdf:type schema:PublicationVolume
    83 N5bafc2fdbfcd40f99f2a790d7a77061c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    84 schema:name Genetic Engineering
    85 rdf:type schema:DefinedTerm
    86 N5ffbed1425844e86bb166b07795ba313 schema:name pubmed_id
    87 schema:value 9630954
    88 rdf:type schema:PropertyValue
    89 N65ac3b840e804575a32cbcbe30ef5199 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    90 schema:name Phosphoenolpyruvate Sugar Phosphotransferase System
    91 rdf:type schema:DefinedTerm
    92 N6609066ff0dd41d9a323307522d7fb6c schema:name Springer Nature - SN SciGraph project
    93 rdf:type schema:Organization
    94 N6f5af8c247aa4060ac5c6842d969e974 rdf:first sg:person.01017375141.03
    95 rdf:rest rdf:nil
    96 N73119b5064774e64bc90406c631470bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    97 schema:name Sugar Phosphates
    98 rdf:type schema:DefinedTerm
    99 N795d27f28aaa4078876ee01a044d3b1c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    100 schema:name Transketolase
    101 rdf:type schema:DefinedTerm
    102 N7c6075cf8d294d9f9e4cc7a40357d6cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Phenotype
    104 rdf:type schema:DefinedTerm
    105 N81c5e0647f5f4228882d7dd669298bdb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    106 schema:name Glucose
    107 rdf:type schema:DefinedTerm
    108 N96ca8e3a7ba34da2b6fe3f10e52c81ca schema:issueNumber 5
    109 rdf:type schema:PublicationIssue
    110 Na3091d905a954449861947cf60f0329f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Hydrocarbons, Aromatic
    112 rdf:type schema:DefinedTerm
    113 Nab2b6a3336e34ed49062bfd5c96af177 schema:name dimensions_id
    114 schema:value pub.1034507677
    115 rdf:type schema:PropertyValue
    116 Naecdf3adc75d4a6fb2de4ebfc8aafd74 schema:familyName Berry
    117 schema:givenName A
    118 rdf:type schema:Person
    119 Nb09a0b6cda824e96ae52cc65084ef396 schema:name readcube_id
    120 schema:value a4620474d1d40250e3120289468020a530a96d3cc153351867a1845da16bd7cf
    121 rdf:type schema:PropertyValue
    122 Nb2c0e3e88af74d469cff11c5119a8aea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name Biotechnology
    124 rdf:type schema:DefinedTerm
    125 Nbaaafde3aaf4435a8d51f47f326dff11 schema:familyName Xiao
    126 schema:givenName J
    127 rdf:type schema:Person
    128 Nbea0e1b71cf04bca965a84f38d5f530a rdf:first sg:person.01025503676.75
    129 rdf:rest N6f5af8c247aa4060ac5c6842d969e974
    130 Ncc1cb9e20c1e4a529bbf9e0590d3824e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Escherichia coli
    132 rdf:type schema:DefinedTerm
    133 Ne8f45bebbec14a349a42d441c6fd1f1d rdf:first Nbaaafde3aaf4435a8d51f47f326dff11
    134 rdf:rest Nff4d903ada564e73a4a519e7d8d51356
    135 Nebe29ef17d1441d5a093ccb8d642cb39 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Biological Transport, Active
    137 rdf:type schema:DefinedTerm
    138 Nff4d903ada564e73a4a519e7d8d51356 rdf:first Naecdf3adc75d4a6fb2de4ebfc8aafd74
    139 rdf:rest Nbea0e1b71cf04bca965a84f38d5f530a
    140 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    141 schema:name Biological Sciences
    142 rdf:type schema:DefinedTerm
    143 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    144 schema:name Biochemistry and Cell Biology
    145 rdf:type schema:DefinedTerm
    146 sg:journal.1115214 schema:issn 1087-0156
    147 1546-1696
    148 schema:name Nature Biotechnology
    149 rdf:type schema:Periodical
    150 sg:person.01017375141.03 schema:familyName Valle
    151 schema:givenName F
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017375141.03
    153 rdf:type schema:Person
    154 sg:person.01025503676.75 schema:familyName Bolivar
    155 schema:givenName F
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025503676.75
    157 rdf:type schema:Person
    158 sg:person.01163350514.55 schema:affiliation https://www.grid.ac/institutes/grid.9486.3
    159 schema:familyName Flores
    160 schema:givenName N
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163350514.55
    162 rdf:type schema:Person
    163 sg:pub.10.1038/nbt0393-381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025120594
    164 https://doi.org/10.1038/nbt0393-381
    165 rdf:type schema:CreativeWork
    166 https://app.dimensions.ai/details/publication/pub.1075910273 schema:CreativeWork
    167 https://app.dimensions.ai/details/publication/pub.1077678141 schema:CreativeWork
    168 https://app.dimensions.ai/details/publication/pub.1079624627 schema:CreativeWork
    169 https://app.dimensions.ai/details/publication/pub.1080446672 schema:CreativeWork
    170 https://app.dimensions.ai/details/publication/pub.1082599153 schema:CreativeWork
    171 https://doi.org/10.1002/bit.260460409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023265401
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1016/0378-1119(85)90120-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017120147
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1016/0378-1119(90)90110-d schema:sameAs https://app.dimensions.ai/details/publication/pub.1026444897
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1016/b978-0-12-152828-7.50004-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002966164
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1021/ja00036a050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055701025
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1099/00221287-137-8-1775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060368106
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1111/j.1365-2958.1995.tb02339.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004129611
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1128/jb.177.19.5719-5722.1995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062724187
    186 rdf:type schema:CreativeWork
    187 https://www.grid.ac/institutes/grid.9486.3 schema:alternateName National Autonomous University of Mexico
    188 schema:name Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.
    189 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...