Modifying the Mouse: Design and Desire View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992-05

AUTHORS

A Bradley, P Hasty, A Davis, R Ramirez-Solis

ABSTRACT

Genetic modification of endogenous genes in mice has become possible by applying gene targeting techniques to embryonic stem (ES) cells and using specific clones of cells to generate mice. Despite the experimental opportunities offered by the creation of organisms with specific genetic changes, there are considerable technical obstacles which can confound the routine implementation of this technology. This review addresses some recent advances in the ability to construct mice with a variety of genetic modifications. These include an increased understanding of the basic cell biology and in vitro growth characteristics of ES cells, which has facilitated germ line transmission of manipulated clones on a routine basis. The techniques that are used to isolate "targeted" clones of ES cells have been summarized, and the current status of strategies which have been successfully used to make very specific modifications of the genome are discussed. More... »

PAGES

534

References to SciGraph publications

  • 1985-09. Insertion of DNA sequences into the human chromosomal β-globin locus by homologous recombination in NATURE
  • 1981-07. Establishment in culture of pluripotential cells from mouse embryos in NATURE
  • 1989-03. Production of chimaeric mice containing embryonic stem (ES) cells carrying a homoeobox Hox 1.1 allele mutated by homologous recombination in NATURE
  • 1990-05. A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting in NATURE
  • 1991-04. Regionally restricted developmental defects resulting from targeted disruption of the mouse homeobox gene hox-1.5 in NATURE
  • 1984-05. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines in NATURE
  • 1989-11. Germ-line transmission of a disrupted β2microglobulin gene produced by homologous recombination in embryonic stem cells in NATURE
  • 1992-03. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours in NATURE
  • 1989-03. Production of a mutation in mouse En-2 gene by homologous recombination in embryonic stem cells in NATURE
  • 1990-08. Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development in NATURE
  • 1990-12. Consecutive inactivation of both alleles of the pim-1 proto-oncogene by homologous recombination in embryonic stem cells in NATURE
  • 1987-03. A potential animal model for Lesch–Nyhan syndrome through introduction of HPRT mutations into mice in NATURE
  • 1986-10. Germ-line transmission of genes introduced into cultured pluripotential cells by retroviral vector in NATURE
  • 1983-07. Embryonic lethal mutation in mice induced by retrovirus insertion into the α1(I) collagen gene in NATURE
  • 1991-03. Introduction of a subtle mutation into the Hox-2.6 locus in embryonic stem cells in NATURE
  • 1988-11. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes in NATURE
  • 1988-12. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells in NATURE
  • Journal

    TITLE

    Bio/Technology

    ISSUE

    5

    VOLUME

    10

    Author Affiliations

    Related Patents

  • Mouse Mutant For Expression Of The Alpha6 Subunit Of The Nicotinic Acetylcholine Receptor
  • Histamine Receptor H3 Modified Transgenic Mice
  • Knockout Mouse For The Tumor Suppressor Gene Anx7
  • Point Mutant Mice With Hypersensitive Alpha 4 Nicotinic Receptors: Dopaminergic Pathology And Increased Anxiety
  • Transgenic Mice Containing Npy6-R Neuropeptide Receptor Gene Disruptions
  • Ingap Protein Involved In Pancreatic Islet Neogenesis
  • Universal Donor Cells
  • Bradykinin B2 Receptor Modified Transgenic Non-Human Animals
  • High Level Of Expression Of Ingap In Bacterial And Euraryotic Cells
  • Method Of Modulating Sost Binding To Lrp
  • Compositions And Methods For Increasing Bone Mineralization
  • Chicken Growth Differentiation Factor-8
  • Polynucleotide Encoding A Sclerostin-Binding Antibody
  • Nucleic Acid Sequences And Homologous Recombination Vectors For Distruption Of A Fel D I Gene
  • Human Embryonic Stem Cells Genetically Modified To Contain A Nucleic Acid And Cultured With Fibroblast Growth Factor
  • Isolated Nucleic Acid Molecules Encoding P57kip2 And Uses Of Same
  • Specific Fusion Nucleic Acids And Proteins Present In Human T(2;5) Lymphoma, Methods Of Detection And Uses Thereof
  • A Non-Human Mammal Deficient In The Tiar Gene
  • Vitamin D Receptor Ablated Mice
  • Vectors For Making Genomic Modifications
  • Primate Pluripotent Stem Cell Expansion Without Feeder Cells And In The Presence Of Fgf And Matrigel Or Engelbreth-Holm-Swarm Tumor Cell Preparation
  • Compositions And Methods For Increasing Bone Mineralization
  • Transgenic Mice Containing Dez Orphan Receptor Gene Disruptions
  • Method For Inhibiting Bone Resorption
  • Antibody To Sost Peptides
  • Method For Inhibiting Bone Resorption
  • Methods For The Treatment Of Bone Resorption Disorders, Including Osteoporosis
  • Kit For Detecting The Level Of Cyclin-Dependent Kinase Inhibitor P16 Gene Expression
  • Method For Inhibiting Bone Resorption
  • Use Of Ligands For Treatment Of Diseases Responsive To Retinoids
  • P27-Deficient Mouse Exhibiting Tissue Hypertrophy
  • Knockout Mouse For The Tumor Suppressor Gene Anx7
  • Immunogenic Peptides Derived From Sclerostin
  • Sclerostin-Binding Antibodies
  • Compositions And Methods For Increasing Bone Mineralization
  • Wise/Sost Nucleic Acid Sequences And Amino Acid Sequences
  • Antibodies Specific For Sclerostin And Methods For Increasing Bone Mineralization
  • Tetracycline-Regulated Transcriptional Activator Fusion Proteins
  • Pluripotential Embryonic Stem Cells And Methods Of Making Same
  • Production Of Biofilaments In Transgenic Animals
  • Cell-Cycle Regulatory Proteins, And Uses Related Thereto
  • Cdna Libraries Reflecting Gene Expression During Growth And Differentiation Of Human Pluripotent Stem Cells
  • Methods For Regulating Gene Expression
  • Vectors For Gene Mutagenesis And Gene Discovery
  • Modified Cre Recombinase Gene For Mammals
  • Dopamine Transporter Knockout Mice
  • Sulfonylurea Receptor Trangenic Rodents
  • Thrombin Receptor Deficient Transgenic Mice
  • Growth Differentiation Factor-8 Nucleic Acid And Polypeptide From Aquatic Species, And Transgenic Aquatic Species
  • Melanocortin-3 Receptor Deficient Cells, Non-Human Transgenic Animals And Methods Of Selecting Compounds Which Regulate Body Weight
  • Ingap Protein Involved In Pancreatic Islet Neogenesis
  • Bacterial Cell Component-Unresponsive Model Mouse
  • Sclerostin Binding Antibodies
  • Methods For Assessing The Role Of Calcineurin Immunosuppression And Neurotoxicity
  • Transgenic Organisms Having Tetracycline-Regulated Transcriptional Regulatory Systems
  • Disruption Of The Mammalian Rad51 Protein And Disruption Of Proteins That Associate With Mammalian Rad51 For Hindering Cell Proliferation And/Or Viability Of Proliferating Cells
  • Antibodies Associated With Alterations In Bone Density
  • Screening Methods For Human Embryonic Stem Cells
  • Antibody That Binds Murine Wise Protein
  • Antibodies That Specifcally Bind Sost And Wise Peptides
  • Antibodies Specific For Sclerostin And Methods For Increasing Bone Mineralization
  • Transgenic Mouse For Targeted Recombination Mediated By Modified Cre-Er
  • Thrombin Receptor Modified Transgenic Animals
  • Transgenic Mammals Lacking Expression Of Amylin
  • Pluripotential Embryonic Cells And Methods Of Making Same
  • Mice Which Are +/− Or −/− For The Elastin Gene As Models For Vascular Disease
  • Sca2 Knockout Animal And Methods Of Use
  • Yeast-Bacteria Shuttle Vector
  • Transgenic Mice Containing Stefin Homolog Protease Inhibitor Gene Disruptions
  • Transgenic Animals For Studying Regulation Of Genes
  • Kits For Detecting Chromosomal Rearrangements
  • Growth Differentiation Factor-8 Nucleic Acid And Polypeptides From Aquatic Species And Non-Human Transgenic Aquatic Species
  • Transgenic Mice Containing Intestinal Alkaline Phosphatase Gene Disruptions
  • Method Of Detecting Prions In A Sample And Transgenic Animal Used For Same
  • Production Of Somatic Mosaicism In Mammals Using A Recombinatorial Substrate
  • Trangenic Mice With A Disruption In The Tiar Gene
  • Process For Detecting Potential Carcinogens
  • Antibodies Specific For Sclerostin
  • Antibodies Specific For Sclerostin And Methods For Increasing Bone Mineralization
  • Epitopes
  • Association Of Polymorphisms In The Sost Gene Region With Bone Mineral Density
  • Antibodies That Specifically Bind Sost Peptides
  • Ku Deficient Cells And Non-Human Transgenic Animals
  • Defective Platelet Activation In Gαq Deficient Mice
  • Mice And Cells With A Homozygous Disruption In The Rnase L Gene And Methods Therefore
  • Mice With Targeted Tyrosine Kinase, Lyn, Disruption
  • Glucose-6-Phosphate Dehydrogenase Deficient Mice And Methods Of Using Same
  • Screening Methods For Compounds Useful In The Regulation Of Body Weight
  • Hematopoietic Differentiation Of Human Pluripotent Embryonic Stem Cells
  • High Concentration Antibody Formulations
  • Ingap Protein Involved In Pancreatic Islet Neogenesis
  • Modulation Of Memory, Learning And/Or Anxiety States
  • Prion Protein Standard And Method Of Making The Same
  • Transgenic Mice Containing Bmp Gene Disruptions
  • Drug Screens For Regulators Of The Expression Of The Obese Gene
  • Procedure For Specific Replacement Of A Copy Of A Gene Present In The Recipient Genome By The Integration Of A Gene Different From That Where The Integration Is Made
  • Universal Stem Cells
  • Ingap Protein Involved In Pancreatic Islet Neogenesis
  • Method Of Making A Virus Using Duck Embryonic Derived Stem Cell Lines
  • Antibodies To The Cell Cycle Regulatory Protein P16
  • Ungulate Preblastocyst Derived Embryonic Stem Cells And Use Thereof To Produce Cloned Transgenic And Chimeric Ungulates
  • Generation Of Duck Cell Lines
  • Feeder-Free Culture Method For Embryonic Stem Cells Or Primate Primordial Stem Cells
  • Endothelial Nos Transgenic Animals And Methods Of Use
  • Ingap Protein Involved In Pancreatic Islet Neogenesis
  • Melanocortin-3 Receptor Deficient Cells, Non-Human Trangenic Animals And Methods Of Selecting Compounds Which Regulate Body Weight
  • Method For Inhibiting Bone Resorption
  • Method Of Making An Avian Cell Line
  • Mice Which Are +/− Or −/− For The Elastin Gene As Models For Vascular Disease
  • Cardiotrophin-1 Compositions And Methods For The Treatment Of Tumor
  • Culture System For Rapid Expansion Of Human Embryonic Stem Cells
  • Antibodies Specific For Sclerostin And Methods For Increasing Bone Mineralization
  • Antibody To Sost Peptide
  • Nik-Knockout Mice
  • Antibodies For Recognition Of Alk Protein Tyrosine/Kinase Receptor
  • Methods And Materials For The Growth Of Primate-Derived Primordial Stem Cells In Feeder-Free Culture
  • Transgenic Mice Containing Magnesium-Dependent Protein Phosphatase Gene Disruptions
  • Cardiotrophin-1 Defective Mouse
  • Transgenic Mice Expressing Apc Resistant Factor V
  • Disruption Of The Mammalian Rad51 Protein And Disruption Of Proteins That Associate With Mammalian Rad51 For Hindering Cell Proliferation
  • Methods Relating To Modulation Of Cartilage Cell Growth And/Or Differentiation By Modulation Of Nfatp Activity
  • Neurological Disease Model
  • Genetically Engineered Mice Containing Alterations In The Genes Encoding Retinoic Acid Receptor Proteins
  • Transgenic Organisms Having Tetracycline-Regulated Transcriptional Regulatory Systems
  • Jak Kinases And Regulations Of Cytokine Signal Transduction
  • Method Of Detecting A Chromosomal Rearrangement Involving A Breakpoint In The Alk Or Npm Gene
  • Compositions And Methods For Treating Kidney Disease
  • Micro-Carrier Culture System For Rapid Expansion Of Human Embryonic Stem Cells
  • Human Embryonic Stem Cells Having Genetic Modifications
  • Peptides And Compositions Which Modulate Apoptosis
  • 7b2 Knockout Transgenic Animals As Models Of Endocrine Disease
  • Endothelial Nos Knockout Mice And Methods Of Use
  • High Level Of Expression Of Ingap In Bacterial And Eukaryotic Cells
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nbt0592-534

    DOI

    http://dx.doi.org/10.1038/nbt0592-534

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1016342065

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/1368233


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Alleles", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Line", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Clone Cells", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice, Transgenic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Recombination, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Stem Cells", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transfection", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Baylor College of Medicine", 
              "id": "https://www.grid.ac/institutes/grid.39382.33", 
              "name": [
                "Institute for Molecular Genetics, Baylor College of Medicine, Houston, TX 77030."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bradley", 
            "givenName": "A", 
            "id": "sg:person.01241363521.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241363521.63"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Hasty", 
            "givenName": "P", 
            "id": "sg:person.0711463147.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711463147.14"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Davis", 
            "givenName": "A", 
            "id": "sg:person.0717335774.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717335774.21"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Ramirez-Solis", 
            "givenName": "R", 
            "id": "sg:person.01110054413.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110054413.50"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/350473a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000427753", 
              "https://doi.org/10.1038/350473a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0092-8674(91)90011-m", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002324347"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/350243a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002569490", 
              "https://doi.org/10.1038/350243a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.87.19.7688", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004223191"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0955-0674(90)90150-d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004253904"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/338153a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004411576", 
              "https://doi.org/10.1038/338153a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/317230a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005647127", 
              "https://doi.org/10.1038/317230a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0092-8674(90)90385-r", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005958333"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0168-9525(86)90247-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009694039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/mcb.10.8.4163", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010701802"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.87.12.4712", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010939785"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/mcb.11.9.4509", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012315307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/mcb.11.3.1402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014754329"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.ge.20.120186.002341", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016764856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/292154a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017487986", 
              "https://doi.org/10.1038/292154a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/mcb.10.12.6755", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017729690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.88.10.4294", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017740352"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0014-4827(90)90187-f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018766355"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/338150a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019082387", 
              "https://doi.org/10.1038/338150a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/mcb.11.11.5586", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021671685"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0093-691x(90)90558-b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022552357"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0093-691x(90)90558-b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022552357"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/336348a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024391427", 
              "https://doi.org/10.1038/336348a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0092-8674(91)90499-o", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025258894"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/346847a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027532470", 
              "https://doi.org/10.1038/346847a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/356215a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027559823", 
              "https://doi.org/10.1038/356215a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/326295a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030310246", 
              "https://doi.org/10.1038/326295a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/304315a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031665101", 
              "https://doi.org/10.1038/304315a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gad.5.9.1513", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032127500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/345078a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033319950", 
              "https://doi.org/10.1038/345078a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/348649a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035885698", 
              "https://doi.org/10.1038/348649a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/336684a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038677733", 
              "https://doi.org/10.1038/336684a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/336684a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038677733", 
              "https://doi.org/10.1038/336684a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/342435a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038924064", 
              "https://doi.org/10.1038/342435a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0092-8674(87)90646-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039136966"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.87.8.3210", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039570148"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/309255a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040988478", 
              "https://doi.org/10.1038/309255a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0092-8674(87)90584-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041471577"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/mcb.10.4.1799", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043089326"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0092-8674(89)90905-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044991720"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/323445a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047908913", 
              "https://doi.org/10.1038/323445a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0012-1606(87)90132-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051881908"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0003-2697(92)90347-a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052914698"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1672471", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062499447"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.2554496", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062543710"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078483890", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1992-05", 
        "datePublishedReg": "1992-05-01", 
        "description": "Genetic modification of endogenous genes in mice has become possible by applying gene targeting techniques to embryonic stem (ES) cells and using specific clones of cells to generate mice. Despite the experimental opportunities offered by the creation of organisms with specific genetic changes, there are considerable technical obstacles which can confound the routine implementation of this technology. This review addresses some recent advances in the ability to construct mice with a variety of genetic modifications. These include an increased understanding of the basic cell biology and in vitro growth characteristics of ES cells, which has facilitated germ line transmission of manipulated clones on a routine basis. The techniques that are used to isolate \"targeted\" clones of ES cells have been summarized, and the current status of strategies which have been successfully used to make very specific modifications of the genome are discussed.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nbt0592-534", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1094195", 
            "issn": [
              "0733-222X"
            ], 
            "name": "Bio/Technology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "name": "Modifying the Mouse: Design and Desire", 
        "pagination": "534", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "4ddd7b167717a8481cf957b3a5ea16c00395f192c1eed2d2f969bc27429f39d6"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "1368233"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "8309273"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nbt0592-534"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1016342065"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nbt0592-534", 
          "https://app.dimensions.ai/details/publication/pub.1016342065"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T01:48", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000442.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nbt0592-534"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nbt0592-534'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nbt0592-534'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nbt0592-534'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nbt0592-534'


     

    This table displays all metadata directly associated to this object as RDF triples.

    270 TRIPLES      21 PREDICATES      82 URIs      30 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nbt0592-534 schema:about N5536bbbfb09d4c0aacb1dd7d17253b50
    2 N728d56d5822b485a99c8f1ef3c4945e1
    3 N88b39034f4b14bbcb51bd4275eaa2cfa
    4 N88f4c616ff4e44f3b42591e34ad63f6d
    5 Na76e56bc90234f7b9e8369a7cc00b4f4
    6 Nbbd91a90a41046a49d1e7a46269ac665
    7 Nbefb6ac42ce24f15b9ba3efa7fa9125a
    8 Nc793b37574f0474cb3dc76facd546db3
    9 Ne47d40ccbf8f4beabf138c64317ab42b
    10 anzsrc-for:06
    11 anzsrc-for:0604
    12 schema:author N5da850b8386542e0bd41ba20803c91d4
    13 schema:citation sg:pub.10.1038/292154a0
    14 sg:pub.10.1038/304315a0
    15 sg:pub.10.1038/309255a0
    16 sg:pub.10.1038/317230a0
    17 sg:pub.10.1038/323445a0
    18 sg:pub.10.1038/326295a0
    19 sg:pub.10.1038/336348a0
    20 sg:pub.10.1038/336684a0
    21 sg:pub.10.1038/338150a0
    22 sg:pub.10.1038/338153a0
    23 sg:pub.10.1038/342435a0
    24 sg:pub.10.1038/345078a0
    25 sg:pub.10.1038/346847a0
    26 sg:pub.10.1038/348649a0
    27 sg:pub.10.1038/350243a0
    28 sg:pub.10.1038/350473a0
    29 sg:pub.10.1038/356215a0
    30 https://app.dimensions.ai/details/publication/pub.1078483890
    31 https://doi.org/10.1016/0003-2697(92)90347-a
    32 https://doi.org/10.1016/0012-1606(87)90132-1
    33 https://doi.org/10.1016/0014-4827(90)90187-f
    34 https://doi.org/10.1016/0092-8674(87)90584-8
    35 https://doi.org/10.1016/0092-8674(87)90646-5
    36 https://doi.org/10.1016/0092-8674(89)90905-7
    37 https://doi.org/10.1016/0092-8674(90)90385-r
    38 https://doi.org/10.1016/0092-8674(91)90011-m
    39 https://doi.org/10.1016/0092-8674(91)90499-o
    40 https://doi.org/10.1016/0093-691x(90)90558-b
    41 https://doi.org/10.1016/0168-9525(86)90247-7
    42 https://doi.org/10.1016/0955-0674(90)90150-d
    43 https://doi.org/10.1073/pnas.87.12.4712
    44 https://doi.org/10.1073/pnas.87.19.7688
    45 https://doi.org/10.1073/pnas.87.8.3210
    46 https://doi.org/10.1073/pnas.88.10.4294
    47 https://doi.org/10.1101/gad.5.9.1513
    48 https://doi.org/10.1126/science.1672471
    49 https://doi.org/10.1126/science.2554496
    50 https://doi.org/10.1128/mcb.10.12.6755
    51 https://doi.org/10.1128/mcb.10.4.1799
    52 https://doi.org/10.1128/mcb.10.8.4163
    53 https://doi.org/10.1128/mcb.11.11.5586
    54 https://doi.org/10.1128/mcb.11.3.1402
    55 https://doi.org/10.1128/mcb.11.9.4509
    56 https://doi.org/10.1146/annurev.ge.20.120186.002341
    57 schema:datePublished 1992-05
    58 schema:datePublishedReg 1992-05-01
    59 schema:description Genetic modification of endogenous genes in mice has become possible by applying gene targeting techniques to embryonic stem (ES) cells and using specific clones of cells to generate mice. Despite the experimental opportunities offered by the creation of organisms with specific genetic changes, there are considerable technical obstacles which can confound the routine implementation of this technology. This review addresses some recent advances in the ability to construct mice with a variety of genetic modifications. These include an increased understanding of the basic cell biology and in vitro growth characteristics of ES cells, which has facilitated germ line transmission of manipulated clones on a routine basis. The techniques that are used to isolate "targeted" clones of ES cells have been summarized, and the current status of strategies which have been successfully used to make very specific modifications of the genome are discussed.
    60 schema:genre research_article
    61 schema:inLanguage en
    62 schema:isAccessibleForFree false
    63 schema:isPartOf N1f7e661f47674aeab9ce502ae5320c7c
    64 Na8e987a557784d269830ee6a882d62d5
    65 sg:journal.1094195
    66 schema:name Modifying the Mouse: Design and Desire
    67 schema:pagination 534
    68 schema:productId N1aa448ee2eac4622b5ee2bbba76589e9
    69 N3477475bc9df40a19724ce10f4c1f47b
    70 Nc1f68a5cb0994b2081ef2001f382d2fb
    71 Ncddd4086dcae47caa94c10ce01336eee
    72 Ne3a6ab6bac5b4232aa5835b261c3cd67
    73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016342065
    74 https://doi.org/10.1038/nbt0592-534
    75 schema:sdDatePublished 2019-04-11T01:48
    76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    77 schema:sdPublisher Nbc9bdf0e7a5b48af9c62c55dba44ae52
    78 schema:url https://www.nature.com/articles/nbt0592-534
    79 sgo:license sg:explorer/license/
    80 sgo:sdDataset articles
    81 rdf:type schema:ScholarlyArticle
    82 N1aa448ee2eac4622b5ee2bbba76589e9 schema:name doi
    83 schema:value 10.1038/nbt0592-534
    84 rdf:type schema:PropertyValue
    85 N1f7e661f47674aeab9ce502ae5320c7c schema:issueNumber 5
    86 rdf:type schema:PublicationIssue
    87 N2fe5afdcd22b465ebd3a2c19d07665d7 rdf:first sg:person.01110054413.50
    88 rdf:rest rdf:nil
    89 N3477475bc9df40a19724ce10f4c1f47b schema:name readcube_id
    90 schema:value 4ddd7b167717a8481cf957b3a5ea16c00395f192c1eed2d2f969bc27429f39d6
    91 rdf:type schema:PropertyValue
    92 N4e3e1242d59a4ec58e3835823992140b rdf:first sg:person.0717335774.21
    93 rdf:rest N2fe5afdcd22b465ebd3a2c19d07665d7
    94 N5536bbbfb09d4c0aacb1dd7d17253b50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    95 schema:name Mice
    96 rdf:type schema:DefinedTerm
    97 N5da850b8386542e0bd41ba20803c91d4 rdf:first sg:person.01241363521.63
    98 rdf:rest Nb1440984107b49cc8c9a41057040d387
    99 N728d56d5822b485a99c8f1ef3c4945e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    100 schema:name Animals
    101 rdf:type schema:DefinedTerm
    102 N88b39034f4b14bbcb51bd4275eaa2cfa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Transfection
    104 rdf:type schema:DefinedTerm
    105 N88f4c616ff4e44f3b42591e34ad63f6d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    106 schema:name Stem Cells
    107 rdf:type schema:DefinedTerm
    108 Na76e56bc90234f7b9e8369a7cc00b4f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name Mice, Transgenic
    110 rdf:type schema:DefinedTerm
    111 Na8e987a557784d269830ee6a882d62d5 schema:volumeNumber 10
    112 rdf:type schema:PublicationVolume
    113 Nb1440984107b49cc8c9a41057040d387 rdf:first sg:person.0711463147.14
    114 rdf:rest N4e3e1242d59a4ec58e3835823992140b
    115 Nbbd91a90a41046a49d1e7a46269ac665 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Recombination, Genetic
    117 rdf:type schema:DefinedTerm
    118 Nbc9bdf0e7a5b48af9c62c55dba44ae52 schema:name Springer Nature - SN SciGraph project
    119 rdf:type schema:Organization
    120 Nbefb6ac42ce24f15b9ba3efa7fa9125a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Cell Line
    122 rdf:type schema:DefinedTerm
    123 Nc1f68a5cb0994b2081ef2001f382d2fb schema:name nlm_unique_id
    124 schema:value 8309273
    125 rdf:type schema:PropertyValue
    126 Nc793b37574f0474cb3dc76facd546db3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Alleles
    128 rdf:type schema:DefinedTerm
    129 Ncddd4086dcae47caa94c10ce01336eee schema:name dimensions_id
    130 schema:value pub.1016342065
    131 rdf:type schema:PropertyValue
    132 Ne3a6ab6bac5b4232aa5835b261c3cd67 schema:name pubmed_id
    133 schema:value 1368233
    134 rdf:type schema:PropertyValue
    135 Ne47d40ccbf8f4beabf138c64317ab42b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Clone Cells
    137 rdf:type schema:DefinedTerm
    138 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    139 schema:name Biological Sciences
    140 rdf:type schema:DefinedTerm
    141 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    142 schema:name Genetics
    143 rdf:type schema:DefinedTerm
    144 sg:journal.1094195 schema:issn 0733-222X
    145 schema:name Bio/Technology
    146 rdf:type schema:Periodical
    147 sg:person.01110054413.50 schema:familyName Ramirez-Solis
    148 schema:givenName R
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110054413.50
    150 rdf:type schema:Person
    151 sg:person.01241363521.63 schema:affiliation https://www.grid.ac/institutes/grid.39382.33
    152 schema:familyName Bradley
    153 schema:givenName A
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241363521.63
    155 rdf:type schema:Person
    156 sg:person.0711463147.14 schema:familyName Hasty
    157 schema:givenName P
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711463147.14
    159 rdf:type schema:Person
    160 sg:person.0717335774.21 schema:familyName Davis
    161 schema:givenName A
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717335774.21
    163 rdf:type schema:Person
    164 sg:pub.10.1038/292154a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017487986
    165 https://doi.org/10.1038/292154a0
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1038/304315a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031665101
    168 https://doi.org/10.1038/304315a0
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1038/309255a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040988478
    171 https://doi.org/10.1038/309255a0
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1038/317230a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005647127
    174 https://doi.org/10.1038/317230a0
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1038/323445a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047908913
    177 https://doi.org/10.1038/323445a0
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1038/326295a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030310246
    180 https://doi.org/10.1038/326295a0
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1038/336348a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024391427
    183 https://doi.org/10.1038/336348a0
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/336684a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038677733
    186 https://doi.org/10.1038/336684a0
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/338150a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019082387
    189 https://doi.org/10.1038/338150a0
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/338153a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004411576
    192 https://doi.org/10.1038/338153a0
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/342435a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038924064
    195 https://doi.org/10.1038/342435a0
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/345078a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033319950
    198 https://doi.org/10.1038/345078a0
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1038/346847a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027532470
    201 https://doi.org/10.1038/346847a0
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/348649a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035885698
    204 https://doi.org/10.1038/348649a0
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/350243a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002569490
    207 https://doi.org/10.1038/350243a0
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/350473a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000427753
    210 https://doi.org/10.1038/350473a0
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/356215a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027559823
    213 https://doi.org/10.1038/356215a0
    214 rdf:type schema:CreativeWork
    215 https://app.dimensions.ai/details/publication/pub.1078483890 schema:CreativeWork
    216 https://doi.org/10.1016/0003-2697(92)90347-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1052914698
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1016/0012-1606(87)90132-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051881908
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1016/0014-4827(90)90187-f schema:sameAs https://app.dimensions.ai/details/publication/pub.1018766355
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1016/0092-8674(87)90584-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041471577
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1016/0092-8674(87)90646-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039136966
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1016/0092-8674(89)90905-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044991720
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1016/0092-8674(90)90385-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1005958333
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1016/0092-8674(91)90011-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1002324347
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1016/0092-8674(91)90499-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1025258894
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1016/0093-691x(90)90558-b schema:sameAs https://app.dimensions.ai/details/publication/pub.1022552357
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1016/0168-9525(86)90247-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009694039
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1016/0955-0674(90)90150-d schema:sameAs https://app.dimensions.ai/details/publication/pub.1004253904
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1073/pnas.87.12.4712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010939785
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1073/pnas.87.19.7688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004223191
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1073/pnas.87.8.3210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039570148
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1073/pnas.88.10.4294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017740352
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1101/gad.5.9.1513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032127500
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1126/science.1672471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062499447
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1126/science.2554496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062543710
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1128/mcb.10.12.6755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017729690
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1128/mcb.10.4.1799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043089326
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1128/mcb.10.8.4163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010701802
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1128/mcb.11.11.5586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021671685
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1128/mcb.11.3.1402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014754329
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1128/mcb.11.9.4509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012315307
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1146/annurev.ge.20.120186.002341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016764856
    267 rdf:type schema:CreativeWork
    268 https://www.grid.ac/institutes/grid.39382.33 schema:alternateName Baylor College of Medicine
    269 schema:name Institute for Molecular Genetics, Baylor College of Medicine, Houston, TX 77030.
    270 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...