Combinatorial Drug Discovery: Which Methods Will Produce the Greatest Value? View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1995-04-01

AUTHORS

David J. Ecker, Stanley T. Crooke

ABSTRACT

Combinatorial strategies are important new approaches to drug discovery, and it seems quite likely that they will result in the discovery of interesting potential pharmaceutical. However, it is less clear whether combinatorial approaches will result in quantum advances in therapeutics. Nor is there general agreement about the factors most important in defining how combinatorial strategies will provide value to the discovery of lead and therapeutic compounds. In this review, we propose criteria that define the value of combinatorial strategies and categorize the various approaches by: (a) the type of chemical space to be searched, (b) the tactics employed to synthesize and screen libraries, and (c) the structures of individual molecules in libraries. We evaluate the strengths and weaknesses of the various strategies and suggest milestones that can help to track their success. More... »

PAGES

351-360

Journal

TITLE

Bio/Technology

ISSUE

4

VOLUME

13

Related Patents

  • Surface Plasmon Resonance Approach To Monitor Protein-Ligand Interactions
  • Mass Spectrometric Methods For Biomolecular Screening
  • Determining Affinity Of A Binding Agent For A Biomolecular Target By Electrospray Ionization Of Nucleic Acids, Then Cleavage And Mass Spectrometry To Determine The Extent Of Interction And Location Between Ligand And Biomolecule
  • Nucleic Acid Molecules Encoding Transmembrane Serine Proteases, The Encoded Proteins And Methods Based Thereon
  • Sequential Protein Isolation And Purification Schemes By Affinity Chromatography
  • One Or More 13c And/Or 15n Atoms; Intermediates For Piperazineacetic Acids And Esters, Used For Multiplex Proteomic Analysis.
  • Sialyl Lewisx Mimetics Containing Phenyl Backbones
  • Using Mass Analysis To Monitor Concentration Of Analytes In Fluids; Electrophilic And Chromatographic Separation
  • For The Determination Of An Analyte Or Analytes Such As Proteins, Peptides, Nucleic Acids, Carbohydrates, Lipids, Steroids And Small Molecules By Mass Analysis
  • Sets And Compositions Pertaining To Analyte Determination
  • Such As Ammine (2-Amino-3-Picoline) Dichloroplatinum(Ii); Efficiency And Selectivity For Destroying Transformed Cells
  • Methods And Systems For Using Rfid In Biological Field
  • Intermediates Of Active Esters For Peptide Synthesis, Labeling, Analysis; Purity
  • Active Esters Of N-Substituted Piperazine Acetic Acids, Including Isotopically Enriched Versions Thereof
  • Methods For Generating And Screening Novel Metabolic Pathways
  • Discovery And Applications Of The Proteolytic Function Of N-Terminal Acetylation Of Cellular Proteins
  • Sialyl Lewis-X Mimetics Containing Naphthyl Backbones
  • Analysis Of Macromolecules, Ligands And Macromolecule-Ligand Complexes
  • Nucleic Acid Molecules Encoding A Transmembrane Serine Protease 7, The Encoded Polypeptides And Methods Based Thereon
  • Molecular Interaction Sites Of Interleukin-2 Rna And Methods Of Modulating The Same
  • Coordination Complexes, And Methods For Preparing By Combinatorial Methods, Assaying And Using The Same
  • Identification Of Modulators Of Serine Protease Inhibitor Kazal And Their Use As Anti-Cancer And Anti-Viral Agents
  • Assay For Inhibitors Of A 24 Kd Cytoplasmic Protease Which Activates Dna Fragmentation In Apoptosis
  • Kits Pertaining To Analyte Determination
  • Contacting A Polypeptide (Transmembrane Serin Protease 9) With A Substrate That Is Proteolytically Cleaved By The Polypeptide, Adding A Test Compound, Measuring The Amount Of Substrate Cleaved In The Presence Of Test Compound
  • Nucleic Acid Molecules Encoding Serine Protease Cvsp14, The Encoded Polypeptides And Methods Based Thereon
  • Mass Spectrometric Methods For Biomolecular Screening
  • Methods For Generating And Screening Novel Metabolic Pathways
  • Type Ii Transmembrane Serine Protease (Mtsp) As A Single Chain; Anticancer Agents
  • Methods For Generating And Screening Novel Metabolic Pathways
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nbt0495-351

    DOI

    http://dx.doi.org/10.1038/nbt0495-351

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1013016033

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/9634776


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0305", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Organic Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chemistry, Pharmaceutical", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Drug Design", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Macromolecular Substances", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Peptide Library", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Structure-Activity Relationship", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Isis Pharmaceuticals, 2292 Faraday Avenue, 92008, Carlsbad, CA", 
              "id": "http://www.grid.ac/institutes/grid.282569.2", 
              "name": [
                "Isis Pharmaceuticals, 2292 Faraday Avenue, 92008, Carlsbad, CA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ecker", 
            "givenName": "David J.", 
            "id": "sg:person.01033136540.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033136540.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Isis Pharmaceuticals, 2292 Faraday Avenue, 92008, Carlsbad, CA", 
              "id": "http://www.grid.ac/institutes/grid.282569.2", 
              "name": [
                "Isis Pharmaceuticals, 2292 Faraday Avenue, 92008, Carlsbad, CA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Crooke", 
            "givenName": "Stanley T.", 
            "id": "sg:person.0606301613.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606301613.46"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/344467a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030624025", 
              "https://doi.org/10.1038/344467a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/352624a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021945431", 
              "https://doi.org/10.1038/352624a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/355564a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000063370", 
              "https://doi.org/10.1038/355564a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/scientificamerican1292-90", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056645246", 
              "https://doi.org/10.1038/scientificamerican1292-90"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/335452a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006723562", 
              "https://doi.org/10.1038/335452a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/354084a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024306705", 
              "https://doi.org/10.1038/354084a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/355850a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028093454", 
              "https://doi.org/10.1038/355850a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/365566a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004328835", 
              "https://doi.org/10.1038/365566a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/346818a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053479478", 
              "https://doi.org/10.1038/346818a0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1995-04-01", 
        "datePublishedReg": "1995-04-01", 
        "description": "Combinatorial strategies are important new approaches to drug discovery, and it seems quite likely that they will result in the discovery of interesting potential pharmaceutical. However, it is less clear whether combinatorial approaches will result in quantum advances in therapeutics. Nor is there general agreement about the factors most important in defining how combinatorial strategies will provide value to the discovery of lead and therapeutic compounds. In this review, we propose criteria that define the value of combinatorial strategies and categorize the various approaches by: (a) the type of chemical space to be searched, (b) the tactics employed to synthesize and screen libraries, and (c) the structures of individual molecules in libraries. We evaluate the strengths and weaknesses of the various strategies and suggest milestones that can help to track their success.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nbt0495-351", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1094195", 
            "issn": [
              "0733-222X"
            ], 
            "name": "Bio/Technology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "13"
          }
        ], 
        "keywords": [
          "discovery of leads", 
          "chemical space", 
          "individual molecules", 
          "potential pharmaceuticals", 
          "combinatorial strategies", 
          "drug discovery", 
          "screen libraries", 
          "therapeutic compounds", 
          "combinatorial approach", 
          "important new approach", 
          "compounds", 
          "molecules", 
          "pharmaceuticals", 
          "quantum advance", 
          "discovery", 
          "therapeutics", 
          "structure", 
          "review", 
          "strategies", 
          "great value", 
          "factors", 
          "lead", 
          "criteria", 
          "new approach", 
          "weakness", 
          "values", 
          "library", 
          "advances", 
          "general agreement", 
          "milestones", 
          "strength", 
          "method", 
          "agreement", 
          "types", 
          "success", 
          "approach", 
          "tactics", 
          "space"
        ], 
        "name": "Combinatorial Drug Discovery: Which Methods Will Produce the Greatest Value?", 
        "pagination": "351-360", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1013016033"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nbt0495-351"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "9634776"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nbt0495-351", 
          "https://app.dimensions.ai/details/publication/pub.1013016033"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:49", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_291.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nbt0495-351"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nbt0495-351'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nbt0495-351'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nbt0495-351'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nbt0495-351'


     

    This table displays all metadata directly associated to this object as RDF triples.

    165 TRIPLES      21 PREDICATES      78 URIs      61 LITERALS      13 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nbt0495-351 schema:about N1a459ad8db1f44ae890d44a67643e107
    2 N32c91dac0212479ba09c87e73c3cacba
    3 N5bf0741351b44474b78aa39222c377f0
    4 N95020f8edda14cefbfca6311c9691f32
    5 Ne6a7271808114c34a840a6c8abed1a25
    6 Nea710412173d440597a513a73eaebd91
    7 anzsrc-for:03
    8 anzsrc-for:0305
    9 schema:author N226ca5274a904a1487b4a83cd5348f73
    10 schema:citation sg:pub.10.1038/335452a0
    11 sg:pub.10.1038/344467a0
    12 sg:pub.10.1038/346818a0
    13 sg:pub.10.1038/352624a0
    14 sg:pub.10.1038/354084a0
    15 sg:pub.10.1038/355564a0
    16 sg:pub.10.1038/355850a0
    17 sg:pub.10.1038/365566a0
    18 sg:pub.10.1038/scientificamerican1292-90
    19 schema:datePublished 1995-04-01
    20 schema:datePublishedReg 1995-04-01
    21 schema:description Combinatorial strategies are important new approaches to drug discovery, and it seems quite likely that they will result in the discovery of interesting potential pharmaceutical. However, it is less clear whether combinatorial approaches will result in quantum advances in therapeutics. Nor is there general agreement about the factors most important in defining how combinatorial strategies will provide value to the discovery of lead and therapeutic compounds. In this review, we propose criteria that define the value of combinatorial strategies and categorize the various approaches by: (a) the type of chemical space to be searched, (b) the tactics employed to synthesize and screen libraries, and (c) the structures of individual molecules in libraries. We evaluate the strengths and weaknesses of the various strategies and suggest milestones that can help to track their success.
    22 schema:genre article
    23 schema:isAccessibleForFree false
    24 schema:isPartOf N54f37111b9f54a828c53cea0f7af8bb3
    25 N939e4a2bd912485093ea82303b9b9e43
    26 sg:journal.1094195
    27 schema:keywords advances
    28 agreement
    29 approach
    30 chemical space
    31 combinatorial approach
    32 combinatorial strategies
    33 compounds
    34 criteria
    35 discovery
    36 discovery of leads
    37 drug discovery
    38 factors
    39 general agreement
    40 great value
    41 important new approach
    42 individual molecules
    43 lead
    44 library
    45 method
    46 milestones
    47 molecules
    48 new approach
    49 pharmaceuticals
    50 potential pharmaceuticals
    51 quantum advance
    52 review
    53 screen libraries
    54 space
    55 strategies
    56 strength
    57 structure
    58 success
    59 tactics
    60 therapeutic compounds
    61 therapeutics
    62 types
    63 values
    64 weakness
    65 schema:name Combinatorial Drug Discovery: Which Methods Will Produce the Greatest Value?
    66 schema:pagination 351-360
    67 schema:productId N455e4367195d4a058d75b3d663c87426
    68 Na70f4f6f4c6446e3a8cdc6d698f0fec3
    69 Nc12875f15c5441268e9b6f821574a2e1
    70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013016033
    71 https://doi.org/10.1038/nbt0495-351
    72 schema:sdDatePublished 2022-11-24T20:49
    73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    74 schema:sdPublisher N6fde0e77a4664789bd07eb97eae8dddf
    75 schema:url https://doi.org/10.1038/nbt0495-351
    76 sgo:license sg:explorer/license/
    77 sgo:sdDataset articles
    78 rdf:type schema:ScholarlyArticle
    79 N1a459ad8db1f44ae890d44a67643e107 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    80 schema:name Chemistry, Pharmaceutical
    81 rdf:type schema:DefinedTerm
    82 N226ca5274a904a1487b4a83cd5348f73 rdf:first sg:person.01033136540.69
    83 rdf:rest N8584c9192c8f4b58839c1424d387f1d0
    84 N32c91dac0212479ba09c87e73c3cacba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    85 schema:name Macromolecular Substances
    86 rdf:type schema:DefinedTerm
    87 N455e4367195d4a058d75b3d663c87426 schema:name pubmed_id
    88 schema:value 9634776
    89 rdf:type schema:PropertyValue
    90 N54f37111b9f54a828c53cea0f7af8bb3 schema:issueNumber 4
    91 rdf:type schema:PublicationIssue
    92 N5bf0741351b44474b78aa39222c377f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    93 schema:name Peptide Library
    94 rdf:type schema:DefinedTerm
    95 N6fde0e77a4664789bd07eb97eae8dddf schema:name Springer Nature - SN SciGraph project
    96 rdf:type schema:Organization
    97 N8584c9192c8f4b58839c1424d387f1d0 rdf:first sg:person.0606301613.46
    98 rdf:rest rdf:nil
    99 N939e4a2bd912485093ea82303b9b9e43 schema:volumeNumber 13
    100 rdf:type schema:PublicationVolume
    101 N95020f8edda14cefbfca6311c9691f32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    102 schema:name Structure-Activity Relationship
    103 rdf:type schema:DefinedTerm
    104 Na70f4f6f4c6446e3a8cdc6d698f0fec3 schema:name dimensions_id
    105 schema:value pub.1013016033
    106 rdf:type schema:PropertyValue
    107 Nc12875f15c5441268e9b6f821574a2e1 schema:name doi
    108 schema:value 10.1038/nbt0495-351
    109 rdf:type schema:PropertyValue
    110 Ne6a7271808114c34a840a6c8abed1a25 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Biotechnology
    112 rdf:type schema:DefinedTerm
    113 Nea710412173d440597a513a73eaebd91 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Drug Design
    115 rdf:type schema:DefinedTerm
    116 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    117 schema:name Chemical Sciences
    118 rdf:type schema:DefinedTerm
    119 anzsrc-for:0305 schema:inDefinedTermSet anzsrc-for:
    120 schema:name Organic Chemistry
    121 rdf:type schema:DefinedTerm
    122 sg:journal.1094195 schema:issn 0733-222X
    123 schema:name Bio/Technology
    124 schema:publisher Springer Nature
    125 rdf:type schema:Periodical
    126 sg:person.01033136540.69 schema:affiliation grid-institutes:grid.282569.2
    127 schema:familyName Ecker
    128 schema:givenName David J.
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033136540.69
    130 rdf:type schema:Person
    131 sg:person.0606301613.46 schema:affiliation grid-institutes:grid.282569.2
    132 schema:familyName Crooke
    133 schema:givenName Stanley T.
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606301613.46
    135 rdf:type schema:Person
    136 sg:pub.10.1038/335452a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006723562
    137 https://doi.org/10.1038/335452a0
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1038/344467a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030624025
    140 https://doi.org/10.1038/344467a0
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1038/346818a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053479478
    143 https://doi.org/10.1038/346818a0
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1038/352624a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021945431
    146 https://doi.org/10.1038/352624a0
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1038/354084a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024306705
    149 https://doi.org/10.1038/354084a0
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1038/355564a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000063370
    152 https://doi.org/10.1038/355564a0
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1038/355850a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028093454
    155 https://doi.org/10.1038/355850a0
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1038/365566a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004328835
    158 https://doi.org/10.1038/365566a0
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1038/scientificamerican1292-90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056645246
    161 https://doi.org/10.1038/scientificamerican1292-90
    162 rdf:type schema:CreativeWork
    163 grid-institutes:grid.282569.2 schema:alternateName Isis Pharmaceuticals, 2292 Faraday Avenue, 92008, Carlsbad, CA
    164 schema:name Isis Pharmaceuticals, 2292 Faraday Avenue, 92008, Carlsbad, CA
    165 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...