Generation of catalytic RNAs by rolling transcription of synthetic DNA nanocircles View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1997-03

AUTHORS

S L Daubendiek, E T Kool

ABSTRACT

Small catalytic RNAs are commonly produced either by transcription of promoter-driven linear DNA templates or by stepwise chemical synthesis on solid supports. We describe a different approach, in which very small chemically synthesized circular DNAs serve as efficient templates for generation of catalytic RNAs in vitro. The circles are 83 nucleotides in size, are single stranded, and contain no canonical RNA polymerase promoters. Despite this, T7 and Escherichia coli RNA polymerases transcribe the circles by a rolling mechanism, producing long concatemeric RNAs (approximately 7,500 nt). During the transcription reaction, the repeating RNAs self-cleave, ultimately reaching monomer length. Despite having self-complementary sequences at their substrate-binding domains, these monomeric 83-nt RNAs are shown to be catalytically active ribozymes that sequence-specifically cleave RNA targets in trans. In addition, a circular vector encoding a repeating (non-self-processing) ribozyme is described; the resulting multimeric ribozyme, targeted to a sequence in the HIV-1 genome, is also catalytically active in trans. This novel approach to the synthesis of catalytic RNAs offers a number of differences and potential advantages over current approaches to RNA synthesis. More... »

PAGES

273

Journal

TITLE

Nature Biotechnology

ISSUE

3

VOLUME

15

Author Affiliations

Related Patents

  • Nucleic Acid Amplification Method
  • Method Of Amplification
  • Method Of Amplifying The Signal Of Target Nucleic Acid Sequence Analyte
  • Open Circle Probes With Intramolecular Stem Structures
  • Unimolecular Segment Amplification And Sequencing
  • Reverse Transcription And Amplification Of Rna With Simultaneous Degradation Of Dna
  • Amplification Of Nucleic Acids With Electronic Detection
  • Method For Generating Circularised Nucleic Acid
  • Sequence Determination Of Nucleic Acids Using Electronic Detection
  • Single-Molecule Real-Time Analysis Of Protein Synthesis
  • Highly Sensitive Multimeric Nucleic Acid Probes
  • Nucleic Acid Amplification Oligonucleotides With Molecular Energy Transfer Labels And Methods Based Thereon
  • Telomere-Encoding Synthetic Dna Nanocircles, And Their Use For The Elongation Of Telomere Repeats
  • Method For Generating A Circularised Nucleic Acid
  • Single-Molecule Real-Time Analysis Of Protein Synthesis
  • Circular Dna Vectors For Synthesis Of Rna And Dna
  • Rolling Circle Replication Reporter Systems
  • Nucleic Acid Amplification Oligonucleotides With Molecular Energy Transfer Labels And Methods Based Thereon
  • Circular Dna Vectors For Synthesis Of Rna And Dna
  • Circular Dna Vectors For Synthesis Of Rna And Dna
  • Universal Reagents For Rolling Circle Amplification And Methods Of Use
  • Target-Dependent Transcription Using Deletion Mutants Of N4 Rna Polymerase
  • Rolling Circle Replication Reporter Systems
  • Telomere-Encoding Synthetic Dna Nanocircles, And Their Use For The Elongation Of Telomere Repeats
  • Rolling Circle Amplification Of Rna
  • Use Of Photopolymerization For Amplification And Detection Of A Molecular Recognition Event
  • Nucleic Acid Amplification
  • Method For Activating A Nucleic Acid For A Polymerase Reaction
  • Signal Amplification With Lollipop Probes
  • Amplification Of Nucleic Acids With Electronic Detection
  • Circular Dna Vectors For Synthesis Of Rna And Dna
  • Unimolecular Segment Amplification And Sequencing
  • Materials And Methods For Colorectal Cancer Screening, Diagnosis And Therapy
  • Method Of Producing Rna From Circular Dna And Corresponding Template Dna
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nbt0397-273

    DOI

    http://dx.doi.org/10.1038/nbt0397-273

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1056449397

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/9062929


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Circular", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Recombinant", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Vectors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nucleic Acid Conformation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Catalytic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transcription, Genetic", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Rochester", 
              "id": "https://www.grid.ac/institutes/grid.16416.34", 
              "name": [
                "Department of Chemistry, University of Rochester, NY 14627, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Daubendiek", 
            "givenName": "S L", 
            "id": "sg:person.0605016073.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605016073.32"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Kool", 
            "givenName": "E T", 
            "id": "sg:person.01121565344.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121565344.38"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/340730a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000993479", 
              "https://doi.org/10.1038/340730a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/228227a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001641086", 
              "https://doi.org/10.1038/228227a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/19.19.5125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020185541"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(88)90129-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024072513"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(88)90129-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024072513"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/328596a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026204192", 
              "https://doi.org/10.1038/328596a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/9.23.6527", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028483866"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.91.9.3892", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028641501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/15.21.8783", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030547335"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/14.9.3627", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041230141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/23.17.3547", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043169544"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/364593a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046336833", 
              "https://doi.org/10.1038/364593a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.86.13.4823", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050581798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.90.23.11302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052567310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/19.14.3875", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052737280"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja00134a032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055708905"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1280856", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062471976"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.2107573", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062522378"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1080153590", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082133719", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082687077", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1096/fasebj.7.1.8422971", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1082800693"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1997-03", 
        "datePublishedReg": "1997-03-01", 
        "description": "Small catalytic RNAs are commonly produced either by transcription of promoter-driven linear DNA templates or by stepwise chemical synthesis on solid supports. We describe a different approach, in which very small chemically synthesized circular DNAs serve as efficient templates for generation of catalytic RNAs in vitro. The circles are 83 nucleotides in size, are single stranded, and contain no canonical RNA polymerase promoters. Despite this, T7 and Escherichia coli RNA polymerases transcribe the circles by a rolling mechanism, producing long concatemeric RNAs (approximately 7,500 nt). During the transcription reaction, the repeating RNAs self-cleave, ultimately reaching monomer length. Despite having self-complementary sequences at their substrate-binding domains, these monomeric 83-nt RNAs are shown to be catalytically active ribozymes that sequence-specifically cleave RNA targets in trans. In addition, a circular vector encoding a repeating (non-self-processing) ribozyme is described; the resulting multimeric ribozyme, targeted to a sequence in the HIV-1 genome, is also catalytically active in trans. This novel approach to the synthesis of catalytic RNAs offers a number of differences and potential advantages over current approaches to RNA synthesis.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nbt0397-273", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1115214", 
            "issn": [
              "1087-0156", 
              "1546-1696"
            ], 
            "name": "Nature Biotechnology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "15"
          }
        ], 
        "name": "Generation of catalytic RNAs by rolling transcription of synthetic DNA nanocircles", 
        "pagination": "273", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "fd71da2fe225506b6bbe475ef70019a59506f96db80bd1abcb53154e0728febf"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "9062929"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9604648"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nbt0397-273"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1056449397"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nbt0397-273", 
          "https://app.dimensions.ai/details/publication/pub.1056449397"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T15:40", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000442.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nbt0397-273"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nbt0397-273'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nbt0397-273'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nbt0397-273'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nbt0397-273'


     

    This table displays all metadata directly associated to this object as RDF triples.

    163 TRIPLES      21 PREDICATES      56 URIs      27 LITERALS      15 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nbt0397-273 schema:about N7343d275eba6473981752cbba8d41de4
    2 N8e21d65c87544fa6b482a6e881cfbeb7
    3 N8eb31b4fec524f89b1001195e6c7804d
    4 Na4cc4132c7b34304b90b1c7a72632711
    5 Nb94f5cf2f10945179dcd62d4166caa0e
    6 Ncde96058eee44be5a30546f57b2c5bdc
    7 anzsrc-for:03
    8 anzsrc-for:0306
    9 schema:author Nf9d3cfb9a3574bd9ad64866a4dd62d2a
    10 schema:citation sg:pub.10.1038/228227a0
    11 sg:pub.10.1038/328596a0
    12 sg:pub.10.1038/340730a0
    13 sg:pub.10.1038/364593a0
    14 https://app.dimensions.ai/details/publication/pub.1080153590
    15 https://app.dimensions.ai/details/publication/pub.1082133719
    16 https://app.dimensions.ai/details/publication/pub.1082687077
    17 https://doi.org/10.1016/0378-1119(88)90129-1
    18 https://doi.org/10.1021/ja00134a032
    19 https://doi.org/10.1073/pnas.86.13.4823
    20 https://doi.org/10.1073/pnas.90.23.11302
    21 https://doi.org/10.1073/pnas.91.9.3892
    22 https://doi.org/10.1093/nar/14.9.3627
    23 https://doi.org/10.1093/nar/15.21.8783
    24 https://doi.org/10.1093/nar/19.14.3875
    25 https://doi.org/10.1093/nar/19.19.5125
    26 https://doi.org/10.1093/nar/23.17.3547
    27 https://doi.org/10.1093/nar/9.23.6527
    28 https://doi.org/10.1096/fasebj.7.1.8422971
    29 https://doi.org/10.1126/science.1280856
    30 https://doi.org/10.1126/science.2107573
    31 schema:datePublished 1997-03
    32 schema:datePublishedReg 1997-03-01
    33 schema:description Small catalytic RNAs are commonly produced either by transcription of promoter-driven linear DNA templates or by stepwise chemical synthesis on solid supports. We describe a different approach, in which very small chemically synthesized circular DNAs serve as efficient templates for generation of catalytic RNAs in vitro. The circles are 83 nucleotides in size, are single stranded, and contain no canonical RNA polymerase promoters. Despite this, T7 and Escherichia coli RNA polymerases transcribe the circles by a rolling mechanism, producing long concatemeric RNAs (approximately 7,500 nt). During the transcription reaction, the repeating RNAs self-cleave, ultimately reaching monomer length. Despite having self-complementary sequences at their substrate-binding domains, these monomeric 83-nt RNAs are shown to be catalytically active ribozymes that sequence-specifically cleave RNA targets in trans. In addition, a circular vector encoding a repeating (non-self-processing) ribozyme is described; the resulting multimeric ribozyme, targeted to a sequence in the HIV-1 genome, is also catalytically active in trans. This novel approach to the synthesis of catalytic RNAs offers a number of differences and potential advantages over current approaches to RNA synthesis.
    34 schema:genre research_article
    35 schema:inLanguage en
    36 schema:isAccessibleForFree true
    37 schema:isPartOf N290ce4388ce34674aa77b4af7e91375e
    38 Nfb6fec59918b43be85d5474edcdc272c
    39 sg:journal.1115214
    40 schema:name Generation of catalytic RNAs by rolling transcription of synthetic DNA nanocircles
    41 schema:pagination 273
    42 schema:productId Nb15a9639b9c14deeb9effca25558597f
    43 Nb9fb84a0cc6244e9adf48dd39db17833
    44 Nc8a76b6633cd4c9e9c2e599e3e11d00d
    45 Nc9b9df9b43f248df8aff0a8fb8b69880
    46 Ne60bec06507147a6ba7df8472364f08c
    47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056449397
    48 https://doi.org/10.1038/nbt0397-273
    49 schema:sdDatePublished 2019-04-10T15:40
    50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    51 schema:sdPublisher Ne697b90993654e5386367ffdbb4aec43
    52 schema:url https://www.nature.com/articles/nbt0397-273
    53 sgo:license sg:explorer/license/
    54 sgo:sdDataset articles
    55 rdf:type schema:ScholarlyArticle
    56 N290ce4388ce34674aa77b4af7e91375e schema:volumeNumber 15
    57 rdf:type schema:PublicationVolume
    58 N3dd3402511d94b6cbe23ef39eb1f4252 rdf:first sg:person.01121565344.38
    59 rdf:rest rdf:nil
    60 N7343d275eba6473981752cbba8d41de4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    61 schema:name DNA, Circular
    62 rdf:type schema:DefinedTerm
    63 N8e21d65c87544fa6b482a6e881cfbeb7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    64 schema:name RNA, Catalytic
    65 rdf:type schema:DefinedTerm
    66 N8eb31b4fec524f89b1001195e6c7804d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    67 schema:name DNA, Recombinant
    68 rdf:type schema:DefinedTerm
    69 Na4cc4132c7b34304b90b1c7a72632711 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    70 schema:name Genetic Vectors
    71 rdf:type schema:DefinedTerm
    72 Nb15a9639b9c14deeb9effca25558597f schema:name pubmed_id
    73 schema:value 9062929
    74 rdf:type schema:PropertyValue
    75 Nb94f5cf2f10945179dcd62d4166caa0e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    76 schema:name Transcription, Genetic
    77 rdf:type schema:DefinedTerm
    78 Nb9fb84a0cc6244e9adf48dd39db17833 schema:name dimensions_id
    79 schema:value pub.1056449397
    80 rdf:type schema:PropertyValue
    81 Nc8a76b6633cd4c9e9c2e599e3e11d00d schema:name nlm_unique_id
    82 schema:value 9604648
    83 rdf:type schema:PropertyValue
    84 Nc9b9df9b43f248df8aff0a8fb8b69880 schema:name readcube_id
    85 schema:value fd71da2fe225506b6bbe475ef70019a59506f96db80bd1abcb53154e0728febf
    86 rdf:type schema:PropertyValue
    87 Ncde96058eee44be5a30546f57b2c5bdc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    88 schema:name Nucleic Acid Conformation
    89 rdf:type schema:DefinedTerm
    90 Ne60bec06507147a6ba7df8472364f08c schema:name doi
    91 schema:value 10.1038/nbt0397-273
    92 rdf:type schema:PropertyValue
    93 Ne697b90993654e5386367ffdbb4aec43 schema:name Springer Nature - SN SciGraph project
    94 rdf:type schema:Organization
    95 Nf9d3cfb9a3574bd9ad64866a4dd62d2a rdf:first sg:person.0605016073.32
    96 rdf:rest N3dd3402511d94b6cbe23ef39eb1f4252
    97 Nfb6fec59918b43be85d5474edcdc272c schema:issueNumber 3
    98 rdf:type schema:PublicationIssue
    99 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    100 schema:name Chemical Sciences
    101 rdf:type schema:DefinedTerm
    102 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    103 schema:name Physical Chemistry (incl. Structural)
    104 rdf:type schema:DefinedTerm
    105 sg:journal.1115214 schema:issn 1087-0156
    106 1546-1696
    107 schema:name Nature Biotechnology
    108 rdf:type schema:Periodical
    109 sg:person.01121565344.38 schema:familyName Kool
    110 schema:givenName E T
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121565344.38
    112 rdf:type schema:Person
    113 sg:person.0605016073.32 schema:affiliation https://www.grid.ac/institutes/grid.16416.34
    114 schema:familyName Daubendiek
    115 schema:givenName S L
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605016073.32
    117 rdf:type schema:Person
    118 sg:pub.10.1038/228227a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001641086
    119 https://doi.org/10.1038/228227a0
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1038/328596a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026204192
    122 https://doi.org/10.1038/328596a0
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1038/340730a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000993479
    125 https://doi.org/10.1038/340730a0
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1038/364593a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046336833
    128 https://doi.org/10.1038/364593a0
    129 rdf:type schema:CreativeWork
    130 https://app.dimensions.ai/details/publication/pub.1080153590 schema:CreativeWork
    131 https://app.dimensions.ai/details/publication/pub.1082133719 schema:CreativeWork
    132 https://app.dimensions.ai/details/publication/pub.1082687077 schema:CreativeWork
    133 https://doi.org/10.1016/0378-1119(88)90129-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024072513
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1021/ja00134a032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055708905
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1073/pnas.86.13.4823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050581798
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1073/pnas.90.23.11302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052567310
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1073/pnas.91.9.3892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028641501
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1093/nar/14.9.3627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041230141
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1093/nar/15.21.8783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030547335
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1093/nar/19.14.3875 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052737280
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1093/nar/19.19.5125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020185541
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1093/nar/23.17.3547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043169544
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1093/nar/9.23.6527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028483866
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1096/fasebj.7.1.8422971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082800693
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1126/science.1280856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062471976
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1126/science.2107573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062522378
    160 rdf:type schema:CreativeWork
    161 https://www.grid.ac/institutes/grid.16416.34 schema:alternateName University of Rochester
    162 schema:name Department of Chemistry, University of Rochester, NY 14627, USA.
    163 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...