High Level Escherichia coli Expression and Production of a Bivalent Humanized Antibody Fragment View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992-02

AUTHORS

Paul Carter, Robert F. Kelley, Maria L. Rodrigues, Brad Snedecor, Michael Covarrubias, Mark D. Velligan, Wai Lee T. Wong, Ann M. Rowland, Claire E. Kotts, Monique E. Carver, Maria Yang, James H. Bourell, H. Michael Shepard, Dennis Henner

ABSTRACT

Many clinical uses of antibodies will require large quantities of fragments which are bivalent and humanized. We therefore attempted to generate humanized F(ab')2 fragments by secretion from E. coli. Titers of 1-2 g l-1 of soluble and functional Fab' fragments have been routinely achieved as judged by antigen-binding ELISA. Surprisingly, this high expression level of Fab' in the periplasmic space of E. coli does not drive dimerization. However, we have developed a protocol to directly and efficiently recover Fab' with the single hinge cysteine in the free thiol state, allowing F(ab')2 formation by chemically-directed coupling in vitro. The E. coli derived humanized F(ab')2 fragment is indistinguishable from F(ab')2 derived from limited proteolysis of intact antibody in its binding affinity for the antigen, p185HER2, and anti-proliferative activity against the human breast tumor cell line, SK-BR-3, which over-expresses p185HER2. This system makes E. coli expression of bivalent antibody fragments for human therapy (or other uses) practical. More... »

PAGES

163

Journal

TITLE

Bio/Technology

ISSUE

2

VOLUME

10

Related Patents

  • Super Humanized Antibodies
  • Process For Bacterial Production Of Polypeptides
  • Cd16a Binding Proteins And Use For The Treatment Of Immune Disorders
  • Ubiquitin Or Gamma-Crystalline Conjugates For Use In Therapy, Diagnosis And Chromatography
  • Antibodies Directed Against Amyloid-Beta Peptide And Methods Using Same
  • Compositions And Methods For The Therapy And Diagnosis Of Influenza
  • Compositions And Methods For The Therapy And Diagnosis Of Influenza
  • Humanized Antibodies Specific For Von Willebrand Factor
  • Ephb3-Specific Antibody And Uses Thereof
  • Compositions And Methods For The Therapy And Diagnosis Of Influenza
  • Antibodies Directed Against Amyloid-Beta Peptide And Methods Using Same
  • Caninised Tumour Necrosis Factor Antibodies And Methods Of Using The Same
  • Human Rhinovirus (Hrv) Antibodies
  • Methods For Treating Progressive Multiple Sclerosis
  • Protein Inhibitors To Complement And Vegf Pathways And Methods Of Use Thereof
  • Antibody Fragments
  • Modulators Of Expression And Function Of Lrp In Alzheimer's Disease
  • Anti-Ige Antibodies And Method Of Improving Polypeptides
  • Modular Assembly Of Antibody Genes, Antibodies Prepared Thereby And Use
  • Modular Assembly Of Antibody Genes, Antibodies Prepared Thereby And Use
  • Anti-Hepcidin Antibodies And Uses Thereof
  • Cell-Permeable Probes For Identification And Imaging Of Sialidases
  • Rm2 Antigens And Use Thereof
  • Extracellular Matrix Metalloproteinase Inducer (Emmprin) Peptides And Binding Antibodies
  • Single-Chain Antibodies And Other Heteromultimers
  • Anti-Hepcidin Antibodies And Uses Thereof
  • Materials And Methods For Assay Of Anti-Hepatitis C Virus (Hcv) Antibodies
  • Anti-Vegf Antibodies
  • Method For Making Humanized Antibodies
  • Altered April Binding Antibodies
  • Antibodies To Carcinoembryonic Antigen-Related Cell Adhesion Molecule (Ceacam)
  • Anti-Vegf Antibodies
  • Humanised Antibodies To Toll-Like Receptor 2 And Uses Thereof
  • Methods For Producing Humanized Antibodies And Improving Yield Of Antibodies Or Antigen Binding Fragments In Cell Culture
  • Beta-Sheet Proteins With Specific Binding Properties
  • Use Of Blocking-Reagents For Reducing Unspecific T Cell-Activation
  • Method For Rapidly Screening Microbial Hosts To Identify Certain Strains With Improved Yield And/Or Quality In The Expression Of Heterologous Proteins
  • Generation Of Artificial Binding Proteins On The Basis Of Ubiquitin Proteins
  • Method For Making Humanized Antibodies
  • Method For Treating Ige-Mediated Disorders
  • Method For Making Multispecific Antibodies Having Heteromultimeric And Common Components
  • Multianalyte Assay
  • Methods And Assays For Measuring P95 And/Or P95 Complexes In A Sample And Antibodies Specific For P95
  • Anti-Fgfr3 Antibodies And Methods Using Same
  • Production Of Proteins In Glutamine-Free Cell Culture Media
  • Stimulus Responsive Polymers For The Purification Of Biomolecules
  • Method For Making Humanized Antibodies
  • Antibodies That Bind Il-4 And/Or Il-13 And Their Uses
  • Neuropilin Antagonists
  • Antibodies To Lymphotoxin-Alpha
  • Compositions And Methods For The Treatment And Prevention Of Hyperproliferative Diseases
  • Anti-Vegf Antibodies
  • Antibodies Directed Against Amyloid-Beta Peptide And Nucleic Acids Encoding Same
  • Antibodies To Lymphotoxin-Alpha
  • Process For Improved Protein Expression By Strain Engineering
  • Methods Of Determining Patient Response By Measurement Of Her-3
  • Neuropilin Antagonists
  • Human Antibodies Specific For Gastrin Materials And Methods
  • Compositions And Methods For Binding Lysophosphatidic Acid
  • Anti-Fgfr3 Antibodies And Methods Using Same
  • Rationally Designed Antibodies
  • Human Inkt Cell Activation Using Glycolipids With Altered Glycosyl Groups
  • Methods For Modifying Human Antibodies By Glycan Engineering
  • Expression Of Mammalian Proteins In Pseudomonas Fluorescens
  • Optimized Variants Of Anti-Vegf Antibodies And Methods Of Treatment Thereof By Reducing Or Inhibiting Angiogenesis
  • Antibodies To Ticagrelor And Methods Of Use
  • Method For Expressing Recombinant Genes In Bacteria In Absence Of Antibiotic Selection
  • Methods For Assessing And Identifying Or Evolving Conditionally Active Therapeutic Proteins
  • Human Cdr-Grafted Antibody And Antibody Fragment Thereof
  • Pidilizumab Monoclonal Antibody Therapy Following Stem Cell Transplantation
  • Antibodies That Bind Il-4 And/Or Il-13 And Their Uses
  • Antibodies To The Human Prolactin Receptor
  • Generation Of Artificial Binding Proteins On The Basis Of Ubiquitin-Proteins
  • Method For Using Boc/Cdo To Modulate Hedgehog Signaling
  • Therapeutic Compositions Comprising Anti-Ige Antibodies And Immunosuppressive Agent
  • Protein Recovery
  • Anti-Cd26 Antibodies And Methods Of Use Thereof
  • Artificial Binding Proteins Based On A Modified Alpha Helical Region Of Ubiquitin
  • Humanized Antibodies And Methods For Making Them
  • Intraoperative, Intravascular, And Endoscopic Tumor And Lesion Detection, Biopsy And Therapy
  • Anti-Ige Antibodies And Methods Of Improving Polypeptides
  • Modular Assembly Of Antibody Genes, Antibodies Prepared Thereby And Use
  • Intraoperative, Intravascular And Endoscopic Tumor And Lesion Detection, Biopsy And Therapy
  • Anti-Nerve Growth Factor Antibodies And Methods Of Preparing And Using The Same
  • Method For Making Humanized Antibodies
  • Cd16a Binding Proteins And Use For The Treatment Of Immune Disorders
  • Humanized Anti-Cmet Antibodies
  • Compositions And Methods For The Therapy And Diagnosis Of Cytomegalovirus Infections
  • Humanized Anti-Cxcr5 Antibodies, Derivatives Thereof And Their Use
  • Anti-Htra1 Antibodies And Methods Of Use
  • Reactive Labelling Compounds And Uses Thereof
  • Ferroportin Antibodies And Methods Of Use
  • Humanized Anti-Cxcr5 Antibodies, Derivatives Thereof And Their Use
  • Humanized Anti-Cxcr5 Antibodies, Derivatives Thereof And Their Use
  • Anti-Vegf Antibodies
  • Method For Engineering Immunoglobulins
  • Method Of Overcoming Therapeutic Limitations Of Nonuniform Distribution Of Radiopharmaceuticals And Chemotherapy Drugs
  • Method For Making Multispecific Antibodies Having Heteromultimeric And Common Components
  • Decreasing Lactate Level And Increasing Polypeptide Production By Downregulating The Expression Of Lactate Dehydrogenase And Pyruvate Dehydrogenase Kinase
  • Humanized Anti-Cxcr5 Antibodies, Derivatives Thereof And Their Use
  • Compositions And Methods For The Therapy And Diagnosis Of Influenza
  • M-Csf-Specific Monoclonal Antibody And Uses Thereof
  • Anti-Baff Antibodies
  • Compositions And Methods For The Therapy And Diagnosis Of Cytomegalovirus
  • Cd16a Binding Proteins And Use For The Treatment Of Immune Disorders
  • Immuno-Pet Imaging Of Antibodies And Immunoconjugates And Uses Therefor
  • Multianalyte Assay
  • Anti-Fgfr3 Antibodies And Methods Using Same
  • Anti-Ige Antibodies And Method Of Improving Polypeptides
  • Isolated Nucleic Acid Encoding, And Methods For Preparing, Antibody Fragments
  • Coiled Coil And/Or Tether Containing Protein Complexes And Uses Thereof
  • Methods Of Improving Vaccine Immunogenicity
  • Anti-Ox40 Antibodies And Methods Of Use
  • Antibody Formulations
  • Methods For Decreasing Immune Response And Treating Immune Conditions
  • Screening Method
  • Anti-Factor B Antibodies And Their Uses
  • Anti-Cd26 Antibodies And Methods Of Use Thereof
  • Humanized Anti-Amyloid Antibody
  • Generation Of Artificial Binding Proteins On The Basis Of Ubiquitin-Proteins
  • Method For Making Multispecific Antibodies Having Heteromultimeric And Common Components
  • Anti-Vegf Antibodies
  • Ephb3-Specific Antibody And Uses Thereof
  • Bv8 Nucleic Acids And Polypeptides With Mitogenic Activity
  • Antibody Purification
  • Preparation Of Stable Formulations Of Lipid-Nucleic Acid Complexes For Efficient In Vivo Delivery
  • Intraoperative, Intravascular And Endoscopic Tumor And Lesion Detection, Biopsy And Therapy
  • Ultrapurified Dsba And Dsbc And Methods Of Making And Using The Same
  • Polynucleotides Encoding Antibodies Directed Against Amyloid-Beta Peptide
  • Methods For Treating Progressive Multiple Sclerosis
  • Granulocyte-Macrophage Colony-Stimulating Factor (Gm-Csf) Neutralizing Antibodies
  • Anti-Nerve Growth Factor Antibodies And Methods Of Preparing And Using The Same
  • Anti-Bv8 Antibodies And Uses Thereof
  • Methods And Compositions For Modulating Hepsin Activation Of Macrophage-Stimulating Protein
  • Anti-Vegf Antibodies
  • Compositions And Methods For The Therapy And Diagnosis Of Influenza
  • Expression Of Functional Antibody Fragments
  • High Copy Number Self-Replicating Plasmids In Pseudomonas
  • Human Inkt Cell Activation Using Glycolipids
  • Method Of Identifying Fetal Antigens Or Cell Surface Markers Using Phage Display Technology
  • Treatment With Anti-Alpha2 Integrin Antibodies
  • System For Antibody Expression And Assembly
  • Anti-C-Met-Antibody Formulations
  • Antibodies To Lymphotoxin-Α
  • Prlr-Specific Antibody And Uses Thereof
  • Anti-Neuropilin Antibodies And Methods Of Use
  • Modified Hepatitis C Virus Proteins
  • Humanised Antibodies To Toll-Like Receptor 2 And Uses Thereof
  • Method For Making Multispecific Antibodies Having Heteromultimeric And Common Components
  • Method For Enzymatic Production Of Decarboxylated Polyketides And Fatty Acids
  • Compositions And Methods For Detecting And Quantifying Host Cells Protein In Cell Lines And Recombinant Polypeptide Products
  • Modular Assembly Of Antibody Genes, Antibodies Prepared Thereby And Use
  • Humanized Antibody Or Fragment Thereof Specific For Cd45r0
  • Methods And Compositions Comprising Purified Recombinant Polypeptides
  • Compositions And Methods For The Therapy And Diagnosis Of Cytomegalovirus
  • Super Humanized Antibodies
  • Anti-Vegf Antibodies
  • Methods Of Making Antibody Heavy And Light Chains Having Specificity For A Desired Antigen
  • Humanised Antibodies To Toll-Like Receptor 2 And Uses Thereof
  • Humanized Anti-Tgf-Beta Antibodies
  • Process For Bacterial Production Of Polypeptides
  • Methods Of Forming Protein-Linked Lipidic Microparticles, And Compositions Thereof
  • Protein Expression System
  • Process For Bacterial Production Of Polypeptides
  • Vectors With Pectate Lyase Signal Sequence
  • Immunoglobulin Variants
  • Synthetic Immunoglobulin Domains With Binding Properties Engineered In Regions Of The Molecule Different From The Complementarity Determining Regions
  • Anti-Ige Antibodies
  • Anti-Nerve Growth Factor Antibodies And Methods Of Preparing And Using The Same
  • Antibodies To Lymphotoxin-Α
  • Methods For Attaching Proteins To Lipidic Microparticles With High Efficiency
  • Lipidic Microparticles Linked To Multiple Proteins
  • Modulators Of Expression And Function Of Lrp In Alzheimer's Disease
  • Compositions And Methods Relating To Universal Glycoforms For Enhanced Antibody Efficacy
  • Anti-Her2 Glycoantibodies And Uses Thereof
  • Anti-Fgfr3 Antibodies And Methods Using Same
  • Decreasing Lactate Level And Increasing Polypeptide Production By Downregulating The Expression Of Lactate Dehydrogenase And Pyruvate Dehydrogenase Kinase
  • Protein Recovery
  • Artificial Binding Proteins Based On Ubiquitin
  • Anti-Fgfr3 Antibodies And Methods Using Same
  • Non-Affinity Purification Of Proteins
  • Anti-Angiogenic Compounds
  • Anti-Amyloid Antibodies And Uses Thereof
  • Neuropilin Antagonists
  • Protein Formulation
  • Antibody Constructs For Cdh19 And Cd3
  • Cytotoxic Immunoglobulin
  • Pectate Lyase Signal Sequence
  • Zanamivir Phosphonate Congeners With Anti-Influenza Activity And Determining Oseltamivir Susceptibility Of Influenza Viruses
  • Display Of Binding Agents
  • Therapeutic Composition For Treatment Of Glioblastoma
  • Stable Igg4 Based Binding Agent Formulations
  • Haptens Of Aripiprazole
  • Her-3 Antibodies And Methods Of Use
  • Ionic Strength-Mediated Ph Gradient Ion Exchange Chromatography
  • Super Humanized Antibodies
  • Humanized Anti-Cxcr5 Antibodies, Derivatives Thereof And Their Uses
  • Alkynyl Sugar Analogs For Labeling And Visualization Of Glycoconjugates In Cells
  • Bv8 Nucleic Acids And Polypeptides With Mitogenic Activity
  • Anti-Vegf Antibodies
  • Cancerous Disease Modifying Antibodies
  • Ferroportin Antibodies And Methods Of Use
  • Methods And Assays For Measuring P95 And/Or P95 Complexes In A Sample And Antibodies Specific For P95
  • Stirred Tank Bioreactor
  • Antibodies For Cancer Therapy And Diagnosis
  • Separate-Cistron Contructs For Secretion Of Aglycosylated Antibodies From Prokaryotes
  • Zanamivir Phosphonate Congeners With Anti-Influenza Activity And Determining Oseltamivir Susceptibility Of Influenza Viruses
  • Methods For Diagnosing And Treating Inflammatory Bowel Disease
  • Methods Of Producing Two Chain Proteins In Bacteria
  • Glycan Conjugates And Use Thereof
  • Compositions And Methods For Treatment And Detection Of Cancers
  • Cell Culture Compositions With Antioxidants And Methods For Polypeptide Production
  • Anti-Sortilin Antibodies And Methods Of Use Thereof
  • Compositions And Methods For Treatment And Detection Of Cancers
  • Detection Of High-Risk Intraductal Papillary Mucinous Neoplasm And Pancreatic Adenocarcinoma
  • Cell Culture Media And Methods Of Antibody Production
  • Antibodies That Bind Il-4 And/Or Il-13 And Their Uses
  • Ice-Cleaved Alpha-Synuclein As A Biomarker
  • Benzocyclooctyne Compounds And Uses Thereof
  • Anti-Hemagglutinin Antibody Compositions And Methods Of Use Thereof
  • Enhanced Protein Purification Through A Modified Protein A Elution
  • Use Of Anti-Cd83 Agonist Antibodies For Treating Autoimmune Diseases
  • Neuropilin Antagonists
  • Anti-Ige Antibodies
  • Compositions And Methods For Identifying And Testing Therapeutics Against Hsv Infection
  • Kits For Forming Protein-Linked Lipidic Microparticles
  • Method For Detecting Prions
  • Human Immune System Associated Molecules
  • Protein Recovery
  • Low Ph Hydrophobic Interaction Chromatography For Antibody Purification
  • Antibodies Directed Against Amyloid-Beta Peptide
  • Bv8 Nucleic Acids And Polypeptides With Mitogenic Activity
  • Antibody Compositions
  • Method Of Humanizing Antibodies By Matching Canonical Structure Types Cdrs
  • Anti-Vegf Antibodies
  • Methods Of Determining Patient Response By Measurement Of Her-3 And P95
  • Methods And Compositions For Increasing Antibody Production
  • Anti-Vegf Antibodies
  • Anti-Siglec-8 Antibodies And Methods Of Use Thereof
  • Process For Improved Protein Expression By Strain Engineering
  • Humanized Immunomodulatory Monoclonal Antibodies For The Treatment Of Immunodeficiency
  • Production Of Proteins In Glutamine-Free Cell Culture Media
  • Humanized Anti-Tgf-Beta Antibodies
  • Human Immunomodulatory Monoclonal Antibodies For The Treatment Of Cancer
  • Anti-Bv8 Antibodies And Uses Thereof
  • Rationally Designed Antibodies
  • Expression Of Functional Antibody Fragments
  • Anti-Vegf Antibodies
  • Anti-Vegf Antibodies
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nbt0292-163

    DOI

    http://dx.doi.org/10.1038/nbt0292-163

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1048787453

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/1368228


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Amino Acid Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Base Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Electrophoresis, Polyacrylamide Gel", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Escherichia coli", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gas Chromatography-Mass Spectrometry", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Vectors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Immunoglobulin Fab Fragments", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Sequence Data", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Plasmids", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Recombinant Proteins", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "familyName": "Carter", 
            "givenName": "Paul", 
            "id": "sg:person.0627776505.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627776505.35"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Kelley", 
            "givenName": "Robert F.", 
            "id": "sg:person.01126614110.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126614110.05"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Rodrigues", 
            "givenName": "Maria L.", 
            "id": "sg:person.01364740630.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364740630.65"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Snedecor", 
            "givenName": "Brad", 
            "id": "sg:person.01254275503.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254275503.47"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Covarrubias", 
            "givenName": "Michael", 
            "id": "sg:person.01242621100.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242621100.85"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Velligan", 
            "givenName": "Mark D.", 
            "type": "Person"
          }, 
          {
            "familyName": "Wong", 
            "givenName": "Wai Lee T.", 
            "id": "sg:person.01220370767.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220370767.12"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Rowland", 
            "givenName": "Ann M.", 
            "id": "sg:person.01236625754.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236625754.03"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Kotts", 
            "givenName": "Claire E.", 
            "id": "sg:person.012525314214.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012525314214.75"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Carver", 
            "givenName": "Monique E.", 
            "id": "sg:person.01353054354.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353054354.73"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Yang", 
            "givenName": "Maria", 
            "id": "sg:person.0615444751.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615444751.38"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Bourell", 
            "givenName": "James H.", 
            "id": "sg:person.0612470052.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612470052.95"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Shepard", 
            "givenName": "H. Michael", 
            "id": "sg:person.01326564377.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326564377.05"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Henner", 
            "givenName": "Dennis", 
            "id": "sg:person.01152476661.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152476661.00"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/321522a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007617918", 
              "https://doi.org/10.1038/321522a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/10.13.4071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009759590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(77)90074-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010881255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(77)90074-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010881255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0691-545", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014209564", 
              "https://doi.org/10.1038/nbt0691-545"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/332323a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016704652", 
              "https://doi.org/10.1038/332323a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-2836(80)90302-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019777404"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-2836(87)90412-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021276801"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(85)90140-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022837132"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(85)90140-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022837132"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/bchm2.1975.356.1.167", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024116943"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/bchm2.1975.356.1.167", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024116943"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0003-2697(90)90448-i", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024470618"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0003-9861(59)90090-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025255654"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.74.12.5463", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025360556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-2836(74)90188-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027426104"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0076-6879(86)21064-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027653257"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.89.10.4285", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035465241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0076-6879(87)53044-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037768034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.86.11.4220", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039572903"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0169-409x(90)90024-m", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040349837"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0140-6736(88)90588-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044153349"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/15.7.3185", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047033528"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0019-2791(72)90097-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049392724"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0019-2791(72)90097-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049392724"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-2836(86)90073-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049974695"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/mcb.9.3.1165", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050252970"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(86)90050-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050859290"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(86)90050-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050859290"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/bi00517a043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055179106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/bi00807a003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055189112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.2451287", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062538390"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.2470152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062539373"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.3285470", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062604296"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.3285471", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062604297"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.3299704", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062604927"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.3798106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062621480"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.3925553", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062622550"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077279988", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079477094", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079575716", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079850094", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1081695180", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/bk-1990-0427.ch011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089368884"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1992-02", 
        "datePublishedReg": "1992-02-01", 
        "description": "Many clinical uses of antibodies will require large quantities of fragments which are bivalent and humanized. We therefore attempted to generate humanized F(ab')2 fragments by secretion from E. coli. Titers of 1-2 g l-1 of soluble and functional Fab' fragments have been routinely achieved as judged by antigen-binding ELISA. Surprisingly, this high expression level of Fab' in the periplasmic space of E. coli does not drive dimerization. However, we have developed a protocol to directly and efficiently recover Fab' with the single hinge cysteine in the free thiol state, allowing F(ab')2 formation by chemically-directed coupling in vitro. The E. coli derived humanized F(ab')2 fragment is indistinguishable from F(ab')2 derived from limited proteolysis of intact antibody in its binding affinity for the antigen, p185HER2, and anti-proliferative activity against the human breast tumor cell line, SK-BR-3, which over-expresses p185HER2. This system makes E. coli expression of bivalent antibody fragments for human therapy (or other uses) practical.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nbt0292-163", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1094195", 
            "issn": [
              "0733-222X"
            ], 
            "name": "Bio/Technology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "name": "High Level Escherichia coli Expression and Production of a Bivalent Humanized Antibody Fragment", 
        "pagination": "163", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "e86a1747aff1d7f0c687367c304fcb98c31076ce061e65444a7b6379fe3ef383"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "1368228"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "8309273"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nbt0292-163"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1048787453"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nbt0292-163", 
          "https://app.dimensions.ai/details/publication/pub.1048787453"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T13:57", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000442.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nbt0292-163"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nbt0292-163'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nbt0292-163'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nbt0292-163'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nbt0292-163'


     

    This table displays all metadata directly associated to this object as RDF triples.

    304 TRIPLES      21 PREDICATES      80 URIs      33 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nbt0292-163 schema:about N23456e827daf4a36b3dc4f076ac5a4df
    2 N2be9a8a6d7464604bafcacbf46e653a7
    3 N47b94f0b47a34ecd89ea6911e895bb96
    4 N4d2a5bc570a74b9ca65faea0dbd2882f
    5 N53f6c9d6cb9c4c18bfd9d718fa217fee
    6 N721de125b10d4706a87fe9045e8276d5
    7 N7a3818fff10440159da784057d7b8ca3
    8 N9fa5e183f8bb479e8ec4263b155a43a6
    9 Na31fd26364304e51839f2dfee167e9f4
    10 Nba7d75786d914021aa4991a872de878d
    11 Nde7834f73b224a2daf4701c23159f8f8
    12 Ne1500acc8e174acfb5795113bcaade66
    13 anzsrc-for:11
    14 anzsrc-for:1103
    15 schema:author N7ae1deae97714d9cb4fe65a72fe24dc9
    16 schema:citation sg:pub.10.1038/321522a0
    17 sg:pub.10.1038/332323a0
    18 sg:pub.10.1038/nbt0691-545
    19 https://app.dimensions.ai/details/publication/pub.1077279988
    20 https://app.dimensions.ai/details/publication/pub.1079477094
    21 https://app.dimensions.ai/details/publication/pub.1079575716
    22 https://app.dimensions.ai/details/publication/pub.1079850094
    23 https://app.dimensions.ai/details/publication/pub.1081695180
    24 https://doi.org/10.1016/0003-2697(90)90448-i
    25 https://doi.org/10.1016/0003-9861(59)90090-6
    26 https://doi.org/10.1016/0019-2791(72)90097-3
    27 https://doi.org/10.1016/0022-2836(74)90188-0
    28 https://doi.org/10.1016/0022-2836(80)90302-2
    29 https://doi.org/10.1016/0022-2836(86)90073-2
    30 https://doi.org/10.1016/0022-2836(87)90412-8
    31 https://doi.org/10.1016/0076-6879(86)21064-2
    32 https://doi.org/10.1016/0076-6879(87)53044-0
    33 https://doi.org/10.1016/0169-409x(90)90024-m
    34 https://doi.org/10.1016/0378-1119(77)90074-9
    35 https://doi.org/10.1016/0378-1119(85)90140-4
    36 https://doi.org/10.1016/0378-1119(86)90050-8
    37 https://doi.org/10.1016/s0140-6736(88)90588-0
    38 https://doi.org/10.1021/bi00517a043
    39 https://doi.org/10.1021/bi00807a003
    40 https://doi.org/10.1021/bk-1990-0427.ch011
    41 https://doi.org/10.1073/pnas.74.12.5463
    42 https://doi.org/10.1073/pnas.86.11.4220
    43 https://doi.org/10.1073/pnas.89.10.4285
    44 https://doi.org/10.1093/nar/10.13.4071
    45 https://doi.org/10.1093/nar/15.7.3185
    46 https://doi.org/10.1126/science.2451287
    47 https://doi.org/10.1126/science.2470152
    48 https://doi.org/10.1126/science.3285470
    49 https://doi.org/10.1126/science.3285471
    50 https://doi.org/10.1126/science.3299704
    51 https://doi.org/10.1126/science.3798106
    52 https://doi.org/10.1126/science.3925553
    53 https://doi.org/10.1128/mcb.9.3.1165
    54 https://doi.org/10.1515/bchm2.1975.356.1.167
    55 schema:datePublished 1992-02
    56 schema:datePublishedReg 1992-02-01
    57 schema:description Many clinical uses of antibodies will require large quantities of fragments which are bivalent and humanized. We therefore attempted to generate humanized F(ab')2 fragments by secretion from E. coli. Titers of 1-2 g l-1 of soluble and functional Fab' fragments have been routinely achieved as judged by antigen-binding ELISA. Surprisingly, this high expression level of Fab' in the periplasmic space of E. coli does not drive dimerization. However, we have developed a protocol to directly and efficiently recover Fab' with the single hinge cysteine in the free thiol state, allowing F(ab')2 formation by chemically-directed coupling in vitro. The E. coli derived humanized F(ab')2 fragment is indistinguishable from F(ab')2 derived from limited proteolysis of intact antibody in its binding affinity for the antigen, p185HER2, and anti-proliferative activity against the human breast tumor cell line, SK-BR-3, which over-expresses p185HER2. This system makes E. coli expression of bivalent antibody fragments for human therapy (or other uses) practical.
    58 schema:genre research_article
    59 schema:inLanguage en
    60 schema:isAccessibleForFree false
    61 schema:isPartOf N84f67359834d4202b8d7ddb59d594849
    62 Ndaff302f61514983aa88bdd923e2c408
    63 sg:journal.1094195
    64 schema:name High Level Escherichia coli Expression and Production of a Bivalent Humanized Antibody Fragment
    65 schema:pagination 163
    66 schema:productId N03b22561695b481eb2c17259c5a6d34e
    67 N569555f4f60a436dbd38f69a6bed1039
    68 N5913c9eb8e7e43febe6337013d81151c
    69 N5cd67be90368411dad38beff3fef3ed1
    70 Nd176416646ab4b86b6d3d70e9c1b0776
    71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048787453
    72 https://doi.org/10.1038/nbt0292-163
    73 schema:sdDatePublished 2019-04-10T13:57
    74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    75 schema:sdPublisher N36b8e5106b9b43efa0c135804e23d5e2
    76 schema:url https://www.nature.com/articles/nbt0292-163
    77 sgo:license sg:explorer/license/
    78 sgo:sdDataset articles
    79 rdf:type schema:ScholarlyArticle
    80 N03b22561695b481eb2c17259c5a6d34e schema:name pubmed_id
    81 schema:value 1368228
    82 rdf:type schema:PropertyValue
    83 N0cc2eef401c541b8b6fc0aac6ccb680b schema:familyName Velligan
    84 schema:givenName Mark D.
    85 rdf:type schema:Person
    86 N14c1825873d644aaa4053f6685f67e26 rdf:first sg:person.01220370767.12
    87 rdf:rest N55bdf6d1b7bf422db37fc1c2f914dfbb
    88 N1a37d0d20133489c8d83e0cbe6ac68fa rdf:first sg:person.01152476661.00
    89 rdf:rest rdf:nil
    90 N1be951aeafc5412a8c135a45cfecb9f9 rdf:first sg:person.012525314214.75
    91 rdf:rest Ndde8eefb44d64ec5b6958739490f70db
    92 N23456e827daf4a36b3dc4f076ac5a4df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    93 schema:name Escherichia coli
    94 rdf:type schema:DefinedTerm
    95 N2be9a8a6d7464604bafcacbf46e653a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    96 schema:name Electrophoresis, Polyacrylamide Gel
    97 rdf:type schema:DefinedTerm
    98 N36b8e5106b9b43efa0c135804e23d5e2 schema:name Springer Nature - SN SciGraph project
    99 rdf:type schema:Organization
    100 N36d14c1914234a6aa070e37d72a5da3a rdf:first sg:person.01364740630.65
    101 rdf:rest Nf6e435ae7a4a4df7951eb4ffc06c8375
    102 N38fdf8cf944c434da4fe8fd875d6e207 rdf:first N0cc2eef401c541b8b6fc0aac6ccb680b
    103 rdf:rest N14c1825873d644aaa4053f6685f67e26
    104 N47b94f0b47a34ecd89ea6911e895bb96 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    105 schema:name Immunoglobulin Fab Fragments
    106 rdf:type schema:DefinedTerm
    107 N4d2a5bc570a74b9ca65faea0dbd2882f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    108 schema:name Molecular Sequence Data
    109 rdf:type schema:DefinedTerm
    110 N53f6c9d6cb9c4c18bfd9d718fa217fee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Humans
    112 rdf:type schema:DefinedTerm
    113 N55bdf6d1b7bf422db37fc1c2f914dfbb rdf:first sg:person.01236625754.03
    114 rdf:rest N1be951aeafc5412a8c135a45cfecb9f9
    115 N569555f4f60a436dbd38f69a6bed1039 schema:name dimensions_id
    116 schema:value pub.1048787453
    117 rdf:type schema:PropertyValue
    118 N5913c9eb8e7e43febe6337013d81151c schema:name doi
    119 schema:value 10.1038/nbt0292-163
    120 rdf:type schema:PropertyValue
    121 N5cd67be90368411dad38beff3fef3ed1 schema:name nlm_unique_id
    122 schema:value 8309273
    123 rdf:type schema:PropertyValue
    124 N721de125b10d4706a87fe9045e8276d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Recombinant Proteins
    126 rdf:type schema:DefinedTerm
    127 N78646e279b534f7dae7fc8132f497ea5 rdf:first sg:person.0612470052.95
    128 rdf:rest Nfd613f95ae854ac98f17bcc080ab8dd7
    129 N7a3818fff10440159da784057d7b8ca3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Gene Expression
    131 rdf:type schema:DefinedTerm
    132 N7ae1deae97714d9cb4fe65a72fe24dc9 rdf:first sg:person.0627776505.35
    133 rdf:rest Nfe3c8c805e9a40f7868b6c9ffacd5ff9
    134 N84f67359834d4202b8d7ddb59d594849 schema:issueNumber 2
    135 rdf:type schema:PublicationIssue
    136 N9fa5e183f8bb479e8ec4263b155a43a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Plasmids
    138 rdf:type schema:DefinedTerm
    139 Na0ed27b8a5004fc3980bc85444ece934 rdf:first sg:person.01242621100.85
    140 rdf:rest N38fdf8cf944c434da4fe8fd875d6e207
    141 Na197ae866917424da9677098a0f812cb rdf:first sg:person.0615444751.38
    142 rdf:rest N78646e279b534f7dae7fc8132f497ea5
    143 Na31fd26364304e51839f2dfee167e9f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Gas Chromatography-Mass Spectrometry
    145 rdf:type schema:DefinedTerm
    146 Nba7d75786d914021aa4991a872de878d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Base Sequence
    148 rdf:type schema:DefinedTerm
    149 Nd176416646ab4b86b6d3d70e9c1b0776 schema:name readcube_id
    150 schema:value e86a1747aff1d7f0c687367c304fcb98c31076ce061e65444a7b6379fe3ef383
    151 rdf:type schema:PropertyValue
    152 Ndaff302f61514983aa88bdd923e2c408 schema:volumeNumber 10
    153 rdf:type schema:PublicationVolume
    154 Ndde8eefb44d64ec5b6958739490f70db rdf:first sg:person.01353054354.73
    155 rdf:rest Na197ae866917424da9677098a0f812cb
    156 Nde7834f73b224a2daf4701c23159f8f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Amino Acid Sequence
    158 rdf:type schema:DefinedTerm
    159 Ne1500acc8e174acfb5795113bcaade66 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    160 schema:name Genetic Vectors
    161 rdf:type schema:DefinedTerm
    162 Nf6e435ae7a4a4df7951eb4ffc06c8375 rdf:first sg:person.01254275503.47
    163 rdf:rest Na0ed27b8a5004fc3980bc85444ece934
    164 Nfd613f95ae854ac98f17bcc080ab8dd7 rdf:first sg:person.01326564377.05
    165 rdf:rest N1a37d0d20133489c8d83e0cbe6ac68fa
    166 Nfe3c8c805e9a40f7868b6c9ffacd5ff9 rdf:first sg:person.01126614110.05
    167 rdf:rest N36d14c1914234a6aa070e37d72a5da3a
    168 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    169 schema:name Medical and Health Sciences
    170 rdf:type schema:DefinedTerm
    171 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    172 schema:name Clinical Sciences
    173 rdf:type schema:DefinedTerm
    174 sg:journal.1094195 schema:issn 0733-222X
    175 schema:name Bio/Technology
    176 rdf:type schema:Periodical
    177 sg:person.01126614110.05 schema:familyName Kelley
    178 schema:givenName Robert F.
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126614110.05
    180 rdf:type schema:Person
    181 sg:person.01152476661.00 schema:familyName Henner
    182 schema:givenName Dennis
    183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152476661.00
    184 rdf:type schema:Person
    185 sg:person.01220370767.12 schema:familyName Wong
    186 schema:givenName Wai Lee T.
    187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220370767.12
    188 rdf:type schema:Person
    189 sg:person.01236625754.03 schema:familyName Rowland
    190 schema:givenName Ann M.
    191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236625754.03
    192 rdf:type schema:Person
    193 sg:person.01242621100.85 schema:familyName Covarrubias
    194 schema:givenName Michael
    195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242621100.85
    196 rdf:type schema:Person
    197 sg:person.012525314214.75 schema:familyName Kotts
    198 schema:givenName Claire E.
    199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012525314214.75
    200 rdf:type schema:Person
    201 sg:person.01254275503.47 schema:familyName Snedecor
    202 schema:givenName Brad
    203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254275503.47
    204 rdf:type schema:Person
    205 sg:person.01326564377.05 schema:familyName Shepard
    206 schema:givenName H. Michael
    207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326564377.05
    208 rdf:type schema:Person
    209 sg:person.01353054354.73 schema:familyName Carver
    210 schema:givenName Monique E.
    211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353054354.73
    212 rdf:type schema:Person
    213 sg:person.01364740630.65 schema:familyName Rodrigues
    214 schema:givenName Maria L.
    215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364740630.65
    216 rdf:type schema:Person
    217 sg:person.0612470052.95 schema:familyName Bourell
    218 schema:givenName James H.
    219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612470052.95
    220 rdf:type schema:Person
    221 sg:person.0615444751.38 schema:familyName Yang
    222 schema:givenName Maria
    223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615444751.38
    224 rdf:type schema:Person
    225 sg:person.0627776505.35 schema:familyName Carter
    226 schema:givenName Paul
    227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627776505.35
    228 rdf:type schema:Person
    229 sg:pub.10.1038/321522a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007617918
    230 https://doi.org/10.1038/321522a0
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1038/332323a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016704652
    233 https://doi.org/10.1038/332323a0
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1038/nbt0691-545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014209564
    236 https://doi.org/10.1038/nbt0691-545
    237 rdf:type schema:CreativeWork
    238 https://app.dimensions.ai/details/publication/pub.1077279988 schema:CreativeWork
    239 https://app.dimensions.ai/details/publication/pub.1079477094 schema:CreativeWork
    240 https://app.dimensions.ai/details/publication/pub.1079575716 schema:CreativeWork
    241 https://app.dimensions.ai/details/publication/pub.1079850094 schema:CreativeWork
    242 https://app.dimensions.ai/details/publication/pub.1081695180 schema:CreativeWork
    243 https://doi.org/10.1016/0003-2697(90)90448-i schema:sameAs https://app.dimensions.ai/details/publication/pub.1024470618
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1016/0003-9861(59)90090-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025255654
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1016/0019-2791(72)90097-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049392724
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1016/0022-2836(74)90188-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027426104
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1016/0022-2836(80)90302-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019777404
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1016/0022-2836(86)90073-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049974695
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1016/0022-2836(87)90412-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021276801
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1016/0076-6879(86)21064-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027653257
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1016/0076-6879(87)53044-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037768034
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1016/0169-409x(90)90024-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1040349837
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1016/0378-1119(77)90074-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010881255
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1016/0378-1119(85)90140-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022837132
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1016/0378-1119(86)90050-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050859290
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1016/s0140-6736(88)90588-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044153349
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1021/bi00517a043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055179106
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1021/bi00807a003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055189112
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1021/bk-1990-0427.ch011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089368884
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1073/pnas.74.12.5463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025360556
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1073/pnas.86.11.4220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039572903
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1073/pnas.89.10.4285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035465241
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1093/nar/10.13.4071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009759590
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1093/nar/15.7.3185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047033528
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1126/science.2451287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062538390
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.1126/science.2470152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062539373
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.1126/science.3285470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062604296
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.1126/science.3285471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062604297
    294 rdf:type schema:CreativeWork
    295 https://doi.org/10.1126/science.3299704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062604927
    296 rdf:type schema:CreativeWork
    297 https://doi.org/10.1126/science.3798106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062621480
    298 rdf:type schema:CreativeWork
    299 https://doi.org/10.1126/science.3925553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062622550
    300 rdf:type schema:CreativeWork
    301 https://doi.org/10.1128/mcb.9.3.1165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050252970
    302 rdf:type schema:CreativeWork
    303 https://doi.org/10.1515/bchm2.1975.356.1.167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024116943
    304 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...