Ontology type: schema:ScholarlyArticle
2002-02
AUTHORS ABSTRACTProteomic studies require efficient, robust, and practical methods of characterizing proteins present in biological samples. Here we describe an integrated strategy for systematic proteome analysis based on differential guanidination of C-terminal lysine residues on tryptic peptides followed by capillary liquid chromatography–electrospray tandem mass spectrometry. The approach, termed mass-coded abundance tagging (MCAT), facilitates the automated, large-scale, and comprehensive de novo determination of peptide sequence and relative quantitation of proteins in biological samples in a single analysis. MCAT offers marked advantages as compared with previously described methods and is simple, economic, and effective when applied to complex proteomic mixtures. MCAT is used to identify proteins, including polymorphic variants, from complex mixtures and measure variation in protein levels from diverse cell types. More... »
PAGES163-170
http://scigraph.springernature.com/pub.10.1038/nbt0202-163
DOIhttp://dx.doi.org/10.1038/nbt0202-163
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1032016091
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/11821862
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Analytical Chemistry",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biochemistry and Cell Biology",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Algorithms",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Amino Acid Sequence",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Automation",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Chromatography, Liquid",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Fungal Proteins",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Lysine",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Molecular Sequence Data",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Peptides",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Proteins",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Saccharomyces cerevisiae",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Sequence Analysis, Protein",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Spectrometry, Mass, Electrospray Ionization",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Time Factors",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Trypsin",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Banting and Best Department of Medical Research, Program in Proteomics and Bioinformatics, University of Toronto, Toronto, ON, Canada",
"id": "http://www.grid.ac/institutes/grid.17063.33",
"name": [
"Banting and Best Department of Medical Research, Program in Proteomics and Bioinformatics, University of Toronto, Toronto, ON, Canada"
],
"type": "Organization"
},
"familyName": "Cagney",
"givenName": "Gerard",
"id": "sg:person.01014656545.85",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014656545.85"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Medical Genetics and Microbiology, University of Toronto, Toronto, ON, Canada",
"id": "http://www.grid.ac/institutes/grid.17063.33",
"name": [
"Banting and Best Department of Medical Research, Program in Proteomics and Bioinformatics, University of Toronto, Toronto, ON, Canada",
"Department of Medical Genetics and Microbiology, University of Toronto, Toronto, ON, Canada"
],
"type": "Organization"
},
"familyName": "Emili",
"givenName": "Andrew",
"id": "sg:person.0672573126.10",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672573126.10"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/13690",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029022565",
"https://doi.org/10.1038/13690"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1016/1044-0305(94)80016-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018629105",
"https://doi.org/10.1016/1044-0305(94)80016-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/10890",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012772847",
"https://doi.org/10.1038/10890"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nbt1001-946",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029399357",
"https://doi.org/10.1038/nbt1001-946"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nbt0496-449",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017387569",
"https://doi.org/10.1038/nbt0496-449"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/35015709",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030361158",
"https://doi.org/10.1038/35015709"
],
"type": "CreativeWork"
}
],
"datePublished": "2002-02",
"datePublishedReg": "2002-02-01",
"description": "Proteomic studies require efficient, robust, and practical methods of characterizing proteins present in biological samples. Here we describe an integrated strategy for systematic proteome analysis based on differential guanidination of C-terminal lysine residues on tryptic peptides followed by capillary liquid chromatography\u2013electrospray tandem mass spectrometry. The approach, termed mass-coded abundance tagging (MCAT), facilitates the automated, large-scale, and comprehensive de novo determination of peptide sequence and relative quantitation of proteins in biological samples in a single analysis. MCAT offers marked advantages as compared with previously described methods and is simple, economic, and effective when applied to complex proteomic mixtures. MCAT is used to identify proteins, including polymorphic variants, from complex mixtures and measure variation in protein levels from diverse cell types.",
"genre": "article",
"id": "sg:pub.10.1038/nbt0202-163",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1115214",
"issn": [
"1087-0156",
"1546-1696"
],
"name": "Nature Biotechnology",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "20"
}
],
"keywords": [
"systematic proteome analysis",
"diverse cell types",
"liquid chromatography-electrospray tandem mass spectrometry",
"complex proteomic mixtures",
"biological samples",
"complex protein mixtures",
"de novo determination",
"tandem mass spectrometry",
"proteomic studies",
"proteome analysis",
"proteomic mixtures",
"C-terminal lysine residues",
"lysine residues",
"cell types",
"tryptic peptides",
"mass spectrometry",
"quantitative profiling",
"protein mixtures",
"complex mixtures",
"relative quantitation",
"de novo",
"protein levels",
"protein",
"peptide sequences",
"polymorphic variants",
"single analysis",
"mixture",
"tagging",
"spectrometry",
"residues",
"profiling",
"guanidination",
"novo",
"sequence",
"peptides",
"quantitation",
"variants",
"determination",
"samples",
"practical method",
"variation",
"analysis",
"method",
"levels",
"types",
"strategies",
"advantages",
"study",
"approach"
],
"name": "De novo peptide sequencing and quantitative profiling of complex protein mixtures using mass-coded abundance tagging",
"pagination": "163-170",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1032016091"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/nbt0202-163"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"11821862"
]
}
],
"sameAs": [
"https://doi.org/10.1038/nbt0202-163",
"https://app.dimensions.ai/details/publication/pub.1032016091"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T16:53",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_352.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1038/nbt0202-163"
}
]
Download the RDF metadata as:Â json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nbt0202-163'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nbt0202-163'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nbt0202-163'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nbt0202-163'
This table displays all metadata directly associated to this object as RDF triples.
207 TRIPLES
21 PREDICATES
97 URIs
81 LITERALS
21 BLANK NODES